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Abstract—The rapid development of mobile computing has prompted indoor navigation to be one of the most attractive and promising
applications. Conventional designs of indoor navigation systems depend on either infrastructures or indoor floor maps. This paper
presents CloudNavi, a ubiquitous indoor navigation solution, which only relies on the point clouds acquired by 3D camera embedded in
a mobile device. It pushes the design of indoor navigation to the extreme on five dimensions: accurate, easy-to-deploy, infrastructure-
free, robust to environment and crowds, and universal. CloudNavi conducts a first but significant step towards realizing this vision by
fully exploiting the advantages of point clouds. Particularly, CloudNavi first efficiently infers the walking trace of each user from captured
point clouds. Many shared walking traces and associated point clouds are combined to generate the point cloud traces, which are then
used to generate a 3D path-map. Accordingly, CloudNavi can accurately estimate the location of a user using a limited number of point
clouds, and then guide the user to its destination from its current location. Extensive experiments are conducted on office building and
shopping mall datasets. Experimental results indicate that CloudNavi exhibits outstanding navigation performance in both office

building and shopping mall.

Index Terms—Indoor navigation, point cloud processing, mobile crowdsourcing, 3D path-map, indoor localization

1 INTRODUCTION

Indoor navigation is highly attractive for a user to ob-
tain the most convenient and shortest walking path to the
destination. For instance, the user could pose the query
“How can I arrive at the meeting room from my current
location in the conference building?” or “How can I find the
walking path towards a store in a shopping mall?” Despite
the strong demand, ubiquitous navigation service remains a
great challenge for indoor environments, since it is expected
to realize the following goals.

e Accurate: It should be able to accurately guide a user to
its destination and track the walking progress.

« Easy-to-deploy: It should not require any prior indoor
map or dedicated indoor localization system deploy-
ment.

o Infrastructure-free: It should be independent of any
infrastructure, such as WiFi access point, bluetooth, and
UWB. Actually, it is unnecessary for indoor environ-
ment to offer such infrastructures.

e Robust: It should be robust to environment variations
and crowds, and can be able to detect deviation events
to notify the users.

o Universal: It should be able to guide a user to any
destination from its current location, rather than from a
few predefined locations.
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Conventional indoor navigation methods fall into the
following two categories. The first category significantly
relies on indoor localization infrastructures. Thus, the nav-
igation scenarios are restricted to WiFi based [1], [2], [3],
[4] and Visible Light Communication (VLC) based [5], [6])
environment. The second category highly depends on the
available indoor maps, e.g., the dead reckoning based [7],
[8] and the images based [9], [10] systems. It is clear that
such indoor navigation methods are neither easy-to-deploy
nor infrastructure-free.

Recent works demonstrate that indoor navigation can
be easily bootstrapped and deployed for motivated users
without comprehensive indoor localization systems or even
floor maps [11], [12], [13]. Motivated by the prospective
of self-deployable indoor navigation, we propose a ubiqg-
uitous approach, CloudNavi. It pushes the design of indoor
navigation to the extreme on the five dimensions for wide
deployment. This extreme vision, if realized, can give sig-
nificant benefits for ubiquitous indoor navigation.

Although the Travi-Navi approach makes a first step
towards self-deployable indoor navigation [11], it does not
tackle the last three design goals. It jointly utilizes mul-
tiple sensors (e.g., camera, inertial sensor, magnetometer)
to guide a user to its destination. However, its application
has been restricted by several limitations. First, it still re-
quires particular infrastructures (e.g., WiFi access point) for
practical use. Second, images are not robust to environmen-
tal variations and crowds as they are sensitive to scale,
rotation, illumination, and moving crowds. Finally, users
can be guided from only a limited number of predefined
locations, such as the building entrances. FollowMe [12]
shares similar idea with Travi-Navi, while replacing images
with geomagnetic data. Furthermore, iMoon [13] uses the
Structure-from-Motion (SfM) results of large-scale images to
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guide users. SfM, however, is also not reliable and feasible
in dynamic and cluttered indoor environments insufficient
features. The camera location inferred by SfM is not accurate
and hence decreases the navigation accuracy [14] .

Signals (e.g., WiFi, geomagnetic data, and images) used
by existing navigation systems are inherently unstable and
may vary significantly [11], [12], [13]. However, the indoor
structural information (e.g.,, windows, doors, logos, and
decorations) is invariant and robust to crowds within a long
duration. This motivates us to design ubiquitous navigation
systems using the structural information of indoor space.

To achieve this goal, this paper presents a point cloud
based indoor navigation system, named CloudNavi. In
particular, a pathway navigation system is designed since
people usually move along pathways [8]. Methods from the
computer vision community are used to solve this problem.
First, point cloud can provide rich structural information
of an indoor space. In addition, features extracted from
point clouds are commonly not affected by variations in
scale, rotation and illumination [15]. Therefore, it is more
robust to environment variations and is more stable than
other signals (e.g., RE, magnetic data, and images). Second,
during the tracking process, using point clouds only are
sufficient for navigation. In contrast, most existing works
rely on data from multiple types of sensors in a mobile
device. Third, with the rapid development of low-cost 3D
perception mobile devices (e.g., Google project tango mobile
device!) and techniques (e.g., [16], [17]), point cloud can
be easily obtained and is becoming a type of ubiquitous
resources.

Despite the above benefits, CloudNavi faces several ma-
jor challenges. First, since CloudNavi takes crowdsourced
point cloud traces as its input and each point cloud trace
can be acquired under different pose of a mobile device (e.g.,
holding in hand or with swinging arms), varying number of
features might be included in these point clouds. It is critical
for a mobile device to accurately model the point cloud
trace, including the acquisition of high-quality point cloud
and the accurate estimation of walking trace. To collect high-
quality point cloud, the pose of a mobile device is estimated
to trigger the acquisition process under desired conditions.
To accurately estimate the walking trace of a user, the Visual
Inertial Odometry (VIO) method is used to address the hand
pose variation problem.

Second, it is unknown how to accurately construct a 3D
path-map using point clouds only. To tackle this problem,
a set of turning points are detected to partition a trace into
several segments. Point clouds are then used to measure
the similarity between two walking traces. Next, large-scale
walking traces are systematically integrated to a 3D path-
map. To improve the accuracy of a 3D path-map, false match
detection is considered as an optimization problem and a
heuristic solution is proposed. In addition, a marking task is
designed to semantically label the 3D path-map.

Third, given the resultant 3D path-map, it remains a
great challenge to locate a user and immediately guide
the user along an optimal path without the information of
initial localization. In this paper, a novel localization method
is proposed to accurately locate a user by calculating the

1. http:/ /www.google.com/atap /project-tango/
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Fig. 1: An indoor navigation example.

similarity of input point cloud against the 3D path-map.
Besides, CloudNavi can be used to automatically plan the
navigation path, track the walking progress of a user, and
detect the deviation of walking progress.

A CloudNavi prototype system is implemented and
comprehensive experiments have been conducted in two
typical buildings under various conditions (e.g., during
daytime and night). Experimental results demonstrate that
CloudNavi exhibits outstanding navigation performance in
both office building and shopping mall. The major contribu-
tions of this paper are summarized as follows:

o Five design goals are defined for a ubiquitous indoor
navigation system, including accurate, easy-to-deploy,
infrastructure-free, robust, and universal. CloudNavi is
proposed to satisfy these goals by exploiting the indoor
structural information only.

o A novel method is proposed to construct a 3D path-
map using point clouds by measuring the similarity
between two walking traces. Different from radio map,
3D path-map is robust to environment variations and
crowds.

e A novel localization method is designed by calculat-
ing the similarity between point clouds. Accordingly,
CloudNavi can automatically plan and track the navi-
gation path.

o A prototype of CloudNavi is implemented. Its feasi-
bility and performance is tested in two typical indoor
environments. Extensive experimental results demon-
strate that CloudNavi makes a great progress towards
ubiquitous and widely deployed indoor navigation ser-
vice.

The rest of this paper is organized as follows. Section
2 presents an overview. Section 3 provides the preliminary
techniques used in CloudNavi. Section 4 describes the de-
tails of CloudNavi. Section 5 reports the evaluation results,
followed by technical discussions in Section 6. The related
work is summarized in Section 7 and this paper is concluded
in Section 8.

2 OVERVIEW
2.1 AnIndoor Navigation Example

A navigation example of our CloudNavi system is presented
in Fig. 1. A self-motivated user (e.g., an OMI store owner)
collects a point cloud trace (the red line in Fig. 1) using a
mobile device with CloudNavi system. As the user holds the
mobile device in an upright position and walks to the OMI
store (i.e., point B in Fig. 1) from an entrance (i.e., point A in
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Fig. 1), pathway point clouds are acquired and a point cloud
trace is automatically generated by the CloudNavi System.
If there are many self-motivated users, multiple point cloud
traces will be collected. A point cloud map is then generated
by CloudNavi using these point cloud traces (the blue lines
in Fig. 1).

If a user wants to reach the OMI store (i.e., point B in
Fig. 1), CloudNavi system first locates him in the 3D path-
map (i.e., point C in Fig. 1) and then generates an optimal
navigation trace plan (i.e., the golden line in Fig. 1). As the
user naturally holds its mobile device in hand and moves
forward, CloudNavi system tracks its walking progress in
the 3D path-map by matching instant point clouds. If the
user is off the correct path, the deviation event will be
detected and a notification will then be given. In that case,
a new optimal trace will be calculated based on the current
location of the user.

2.2 System Architecture

Figure 2 illustrates the architecture of the proposed Cloud-
Navi system. It consists of three components: mobile client,
server, and navigation user.

Mobile Client. Crowdsourced sensor data from collec-
tors are recorded in indoor space. Specifically, the walking
trace of a data collectors is obtained using the VIO algorith-
m. Meanwhile, the point clouds are associated with walking
traces to generate point cloud traces. More importantly, the
pose of a mobile device is estimated to acquire high-quality
point clouds and reduce computational cost. The generated
point cloud traces are then uploaded to the server for further
processing.

Server. This part includes the 3D path-map construction
module and the navigation module. In the 3D path-map
construction module, crowdsourced traces are merged to
generate a 3D path-map. In order to track the walking
progress of a user, its localization on the 3D path-map is
estimated by the navigation module in real time during the
whole navigation time. Based on the localization results,
a notification is given to the user and the recommended
navigation trace is updated if the user is off the correct trace.
In addition, the optimal plan can automatically selected if
multiple traces are available from the start location to the
destination

Navigation Users. The only task for a user is to give
CloudNavi its destination and to start the point cloud
acquisition process.

3 PRELIMINARIES AND MEASUREMENTS

In this section, the major techniques behind our system
are presented, primary measurements are also conducted
to understand the variation of point clouds.

3.1 Point Cloud

A point cloud is a set of vertices defined in a three-
dimensional coordinate system with X, Y, and Z values.
Point clouds are usually generated by a 3D scanner, such
as a Google tango tablet. A large number of points on
the surface of an object can be acquired by a 3D scanner.
Recently, the open-sourced Point Cloud Library (PCL) [18]
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Fig. 2: System architecture.

has been released to include a number of existing point
cloud processing algorithms. In our work, the XYZ data type
of a point cloud is used.

3.2 Point Cloud Properties

In this subsection, a systematic study is conducted to inves-
tigate the effects of various factors (temporal changes, illu-
mination variation, color variation, human diversity, mov-
ing speed, and hand pose) on the properties of point clouds.
10 volunteers were invited to conduct experiments, these
volunteers are different in genders, heights and weights.
7889 point clouds along 288 walking traces were collected
in our office building across nine months using the Google
project tango tablet and the Xtion PRO Live camera®. These
traces covered most areas of the experimental field and
were different in length. In order to calculate the difference
between two point clouds, the number of keypoints is used.
The Scale-Invariant Feature Transform (SIFT) algorithm is
used to detect the keypoints for a point cloud [19].

Temporal Changes. The layout of a building may be
changed because of the refurbishing of buildings and rooms
over time, such as room facades. In order to test the influ-
ence of temporal changes, the Wanda shopping mall was
selected, which is located in China. It has four storeys and
more than 250 stores. The floorplan of Wanda mall con-
tains rich information including store names, store location,
promotion information, widths of the corridors, and store
facades. The number and proportion of changed rooms on
different dates are counted (i.e., three months, six months,
and nine months). Table 1 shows that the layout of the
indoor space remains unchanged and only the locations of
a small number of indoor general objects (e.g., chairs) are
changed. Besides, an updated method is proposed to reduce
the effect of temporal changes in Sec. 4.3.4.

2. http:/ /www.asus.com

TABLE 1: The number and proportion of changed rooms in
a large shopping mall with more than 250 stores.

3 months 6 months 9 months
Number 8 14 20
Proportion 0.040 0.056 0.080
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Fig. 3: The number of keypoint detected in point clouds
acquired under different situations.

Illumination Variation. We tested the influence of illu-
mination on point clouds. The point clouds were collect-
ed under three different lighting conditions (i.e., 200lux,
100lux, and 50lux) along the same path by the same vol-
unteer. Figure 3(a) shows that detected keypoints are similar
for point clouds acquired under different lighting condition-
s. There are several reasons for this result. First, the XYZ
data type of a point cloud is used in our work. Point clouds
are not influenced by illumination variations. Second, the
depth data is recorded by a 3D camera (e.g., Google project
tango tablet) using structured light technique, which is roust
to illumination variations.

Human Diversity and Moving Speed. Furthermore, we
tested the effect of human diversity on point clouds. Vol-
unteers with different genders, heights, and weights were
asked to collect point clouds along the same walking trace.
The keypoints of each point cloud were generated using
the SIFT algorithm. Figure 3(b) shows that the keypoint
detection results are highly similar for different people.
For the same volunteer, the detected keypoints vary with
respect to different moving speed of the volunteer (as shown
in Fig. 3(c)). Therefore, point clouds are robust to human
diversity and moving speed , which provides opportunities
for navigation.

Hand Pose. We tested the effect of hand pose for point
cloud collection. The point clouds were collected by two
holding poses along the same path for the same volunteer,
i.e., the device was held in a static hand and a swinging
hand, respectively. Figure 3(d) shows that swinging pose
can affect the number of keypoints detected in a point cloud.
This hand pose variation problem will be further analyzed
in Sec. 4.1.

3.3

An Iterative Closest Point (ICP) algorithm is used to match
two point clouds. It first select some sample points from one
or both point clouds, and matches these points to sample

Iterative Closest Point

4

points in the other set. The alignment error is minimized
by an iterative process. Given two sets of corresponding
points P and @ from two point clouds with partial overlap,
the least square method is used to calculate the translation
vector 1" and the rotation matrix R. The two point clouds
are registered by minimizing the error function:

B(R, T)=2 3" lae(Rpit )| 0
i=1

where ¢; € Q, p; € P, n is the number of corresponding
points between two point clouds. The performance of the
ICP algorithm is affected by the overlap between a pair of
point clouds. Here, the overlap is defined as the common
part between two point clouds. A higher overlap leads to a
more accurate registration. In CloudNavi, the ICP algorithm
is mainly used for 3D path-map construction (Sec. 4.2) and
localization (Sec. 4.3).

Note that, the ICP algorithm is significantly affected by
the overlap rate between two point clouds. A higher overlap
rate results in more accurate registration. However, if the
overlap rate is too high, more point clouds are needed to
construct the 3D path-map. In this paper, the overlap rate
is set to be at least 60% [20]. The overlap rate is calculated
using the translation and rotation values of a mobile device.
The translation value of a mobile device represents the
walking distance of a user along a straight line, and the
rotation value represents the rotation angle. First, since the
points within a depth range (i.e.,, 0.5~4m for a Google
project tango tablet) can be recorded by a mobile device,
we select point clouds using a distance interval A(d), where
A(d) is set to one step distance (typically 0.75m). A(d) is
sufficient to accurately calculate the walking trace using the
VIO algorithm [21], [22]. Generally, the pose of the mobile
device is stable within one step [11]. Second, since the points
within the field of view (i.e., 57.5x45 for a Google project
tango tablet) can be recorded by a mobile device, we set the
rotation value (®) based on two considerations. If the user
is static, we set $=20° according to the field of view. If the
user walks one step, we set $=10°.

4 SYSTEM DESIGN

In this section, we first describe the point cloud trace
modeling and the 3D path-map construction methods, and
then introduce the methods for user localization, walking
progress tracking, and deviation event notification.

4.1 Point Cloud Trace Modeling

Key Point Cloud Acquisition. One bottleneck for Cloud-
Navi is point cloud processing, especially for the ICP al-
gorithm. Therefore, we performed a quantitative analysis
using 1275 point clouds acquired in office and mall. Several
interesting observations are listed as follows.

1) Point clouds in two consecutive frames are highly sim-
ilar, as shown in Figs. 4 (a-b).

2) The number of keypoints detected from a plain back-
ground (e.g., floorboard, ceilings) is smaller than a
textured background (e.g., logos, decorations) using
the SIFT algorithm. For instance, 30, 26, 738, 1361,
643, and 16 keypoints are detected in the point clouds
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Fig. 5: The number of keypoints detected in a point cloud
acquired under different poses of a mobile device.

acquired from different backgrounds, as shown in Figs.
4(a-f), respectively. Moreover, the number of keypoints
detected from a point cloud is related to the pose of
a mobile device, as shown in Fig. 5. For example,
when a mobile device is directed towards a textured
background (e.g., a logo), the number of keypoints is
significantly larger than the point clouds acquired from
floorboard or ceiling.

Motivated by these observations, an efficient point cloud
acquisition method is proposed using the Logistic Regres-
sion (LR) algorithm [23].

First, the point cloud acquisition event f is defined as a
binary classification problem, i.e.,

fim {é start aCC!u.IS.ltIOIl o)
no acquisition,

where f; defines acquisition event at ith time. Then, a
predict model is defined using three pose angles (i.e., a,
p, r), the walking distance, and the data from light and
proximity sensors. For ¢ and ¢+1, A(d) denotes the walking
distance, A(d)=d(t+1)-d(t). Let ¢(t)=[a(t), p(t), r(t)], we have
O=||p(t+1)-4(t)]|. The parameter settings for A(d) and ®
have been discussed in Sec. 3.3. The data from the light and
proximity sensors (s;, sp,) are used to determine whether the
mobile device is in a bag or pocket. Let X denote the set of
variables, i.e., X=[®, 51, sp, A(d)], © denotes the parameter
set. The LR problem is defined as

f=0TX. (3)
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Fig. 6: The number of keypoints detected in point clouds
acquired with different hand poses.

The cost function J(O) is

m

T(©)= 13" yDlog(fo () +(1-yiog(1-fo (x)))]

i=1

)

The gradient descent algorithm is used to derive the
optimal parameters:

0=0-« \V/] J, (5)

where « is the length for gradient descent, and
Vol =g 5],

In addition, if no point cloud is acquired within A(d), an
acquisition event is repeated until a point cloud is acquired.
Thus, point cloud acquisition can be automatically started.

Hand Pose. The variation of hand poses significantly
affects the quality of captured point clouds. Since the 3D
camera can be blocked if the mobile device is hold with
a swinging hand, the quality of point clouds acquired in
this case is very low. To solve this problem, an effective
approach is proposed to capture high-quality point clouds.
It is observed that the quality of point clouds is highly
related to hand swinging. Figure 6 plots the number of
keypoints detected in each frame against the differential of
accelerometer magnitude. We found that high-quality point
clouds can be acquired when the 3D camera is placed at the
highest point during swinging.

Usage of Key Point Clouds. In this paper, the key point
clouds are used for three purposes.

(1) Key point clouds are used to estimate walking traces
of a user based on the VIO algorithm [21], [22]. Although
dead reckoning method has been widely applied in mobile
computing, it has several limitations. First, it cannot accu-
rately estimate the pose of a mobile device [21], [22]. Second,
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its accuracy is lower than the VIO algorithm for walking
trace estimation, even for a short distance [24]. Thus, the
VIO algorithm is used in this paper to estimate walking
traces. Point cloud traces are generated by combining walk-
ing traces with key point clouds.

(2) Key point clouds are used to measure the similarity
between two traces, as described in Sec. 4.2.1.

4.2 3D Path-map Construction

In this section, the crowdsourced point cloud traces are used
to generate a 3D path-map by merging similar traces. A
marking task is then designed to semantically label the 3D
path-map based on the current location of the data collector.

4.2.1 3D Path-map Generation

Once a large number of point cloud traces are collected
using the method proposed in Sec. 4.1, the next step is
to calculate the similarity between two point cloud traces.
These similar point cloud traces are merged based on the
ICP algorithm.

Trace partitioning. When crowdsourced traces are up-
loaded to the server, the turning points are used to partition
the traces into segments. In practice, turning point detection
is very challenging when the user walks in indoor space.
For example, a data collector may look at a poster on the
wall in a straight corridor and turn around. Such false
turning points should be detected and removed. Therefore,
the key challenge is to accurately detect the turning points.
Generally, the turning pattern of a user is divided into left
turn (i.e., point A in Fig. 7), right turn (i.e., point B in Fig. 7)
and U-turn (i.e., point C' in Fig. 7). A correct turning is that
the direction of walking of a user is changed, while a false
turning (i.e., point D in Fig. 7) is that the the direction of
walking of a user is not changed. Therefore, false turning
points are accurately detected by checking the pose of a
mobile device produced using the VIO algorithm [24].

Similar Segment Detection. Given two segments un-
der their local coordinate systems, 71 and 72, where
~v={x;,yi,pc;}, the trace is firstly divided into several
segments using turning points, i.e., y'={si, sl ... sL},
v?={s2,s3,...,52}, where n and m are the numbers of
turning points for 4! and 42, respectively. The similarity
between a pair of segments is then calculated using the
following method.

Step 1: The SIFT algorithm is used to generate SIFT de-
scriptors for a point cloud (). Let D), represent the number
of SIFT descriptors, corresponding points between a pair of
point clouds are then estimated using these SIFT descriptors
[14]. Let C), represent the number of corresponding points,

6
the similarity between a pair of point clouds is calculated
as:

|Gyl
|DpUD;?|
Step 2: To calculate the similarity between two segments,
the longest common subsequence (LCS) method is used. Let

sq and sp be two segments with their lengths of m and n,
respectively. The LCS metric is defined as:

S(I1,1I)= (6)

0, if m=0 or n=0;
1+L(Sa,m—1, Sbn—1),
if S(S a.ms Sbm) < €and [m-n| < §;
max(L(Sa,m, Sbn-1), L(Sa,m-1,5b.n)),
otherwise.

L(Sa7m7 Sb,n):

@)
where § is the length threshold for two point cloud traces
and e is the similarity threshold. The similar score S is

defined as: I
6 L5 I (50)

feF min(m,n) ’

®)

where F' represents a set of sliding windows. If S is
larger than the threshold Sy, the two point cloud traces
are considered as similar.

Trace Merging. Before trace merging, false matches
should be detected. Given n segments and a set of /; similar
segments for segment 4, the task of the False Match Detec-
tion Problem (FMDP) is to find the set of similar segments H
to minimize the number of false matching. Let .S denote the
set of the similar segments, H={h;;|h;, h; € 5,1 < i,j <
n,i # j}. When the matching of segments i and j is false,
a segment k is matched to the segment ¢ or j, as P ;.
Therefore, the objective is to find the set I to minimize the
number of false matching;:

Hlbi{n Z Z Pijihi; ©)

i=1j=1

sit. i# 7. (10)

FMDP is NP-complete [9]. Here, a heuristic algorithm
is proposed to solve this problem. First, let m;; denote the
similarity between segments ¢ and j in H. If segments ¢ and
j are selected, m;;=0; otherwise, m;;=c (c is a constant). We
then take M=}, .. m;;. Intuitively, the best H will produce
the smallest M for all possible H. The details are described
as follows:

1) Initialization: The segments with |l;|=1 are merged and
the smallest M is calculated.

2) Iteration: When a new trace containing similar seg-
ments in S is given, in order to merge these new seg-
ments, some merged segments may be split based on
relative position constraints in traces. We compute M
in each changing state and select these similar segments
with the smallest M. Furthermore, these new segments
are removed from S.

3) Termination: S=g.

Note that, the trace merging process can be implemented
in parallel using a graph-subgraph isomorphism algorithm
(i.e., the VF2 algorithm [25]). In addition, since the point
cloud traces are represented in their local coordinate system-
s, the Bursa Wolf model [26] is used to transform these point
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cloud traces into an indoor coordinate system. Finally, these
similar point clouds from different traces are merged using
the ICP algorithm. (z;,y;, pc;) represents the coordinate of
i-th point cloud in the merged point cloud traces.

4.2.2 Marking Task Design

In order to obtain the semantics along a walking path, the
data collectors are asked to semantically label its current
location, such as store names in a shopping mall and room
numbers in an office building. These semantics can be used
as navigation destinations in CloudNavi. Similar to Jigsaw
[27], we assume that several incentive mechanisms [28] will
be further developed for our practical system.

4.3 3D Path-map Based Navigation

To guide a user to its destination, it is important to locate
the user on the 3D path-map. First, the current location of
the user is considered as the start point of the navigation
trace. Second, the location is used to track the user along the
navigation trace. If there are multiple traces, a path planning
algorithm is used to select the optimal trace. In addition, if
the user is off the navigation trace, the user will be notified
and the trace will be updated based on its current location.

4.3.1 Localization

Given a captured point cloud, the location is estimated
using point clouds. Since each point cloud is acquired under
the coordinate system of camera, the distance between the
camera and each point of the point cloud is known [22].
Therefore, a triangulation method is proposed to calculate
the relative location and pose of a camera from the point
cloud. Furthermore, feature matching based method is used
to register the point cloud with the 3D path-map to locate
the mobile device.

The time for localization is increased with the number
of point clouds in the 3D path-map used for matching. For
start location detection, the point cloud is matched against
the global 3D path-map, its time cost is relatively high.
However, the time cost is acceptable in the initialization
process (which is similar to GPS initialization). Then, the
previous location can be used to define a local 3D path-map
for point cloud matching, which significantly reduces the
time consumption.

Triangulation Method. Three points are randomly se-
lected from the point clouds (e.g., A, B, and C), as shown
in Fig. 8(a). We have

O=T.1B7 (11)
~ | 2(za-ze) 2(ya-ye)
where O—[«T; y], T= Q(QjB-xc) 2(yB'yC) and

B= [ Qxi-zx%-gyi;d%g-dig ]
Tp-Te+ypYo+deo-dpo

Given three beacons and their coordinates, C4(z4,y4),
Cp(zp,yp), and Co(xzc,yc) (see Fig. 8(a)), the distance
between each beacon and the location of a user is calculat-
ed as [dAO, dgo, dCO]Z[HCA'O”, ||CB-OH, ||Cc-0||], where
0=(0,0).

Due to the complexity of indoor environment, point
clouds acquired by different users at the same place may
cover different scenes. Besides, two distinct locations may
have similar point clouds (e.g., white walls). It is likely

Dxnyafobel o
: AA/‘B‘STC o

(b) Location estimation

(a) Triangulation method

Fig. 8: An illustration for user location estimation. (a) The
location (O) of a user is estimated by one point cloud using
the triangulation method. (b) The location (G4) of a user
is estimated by multiple point clouds using the center of
gravity. O;, Oz, O3, and Oy represent four point clouds.
Go,, Go,, Go,, and Go, represent the estimated location
of each point cloud. G2, G5, and G4 represent the estimated
location using the center of gravity, respectively.

that insufficient distinguishable features are acquired for
localization in these cases. In practice, if the first point cloud
acquired by the camera has problem for accurate identifi-
cation, CloudNavi will continuous to acquire a new point
cloud. However, the computation complexity is increased
by using more point clouds. The challenge is how to choose
appreciate point clouds. To solve this problem, a Point
Cloud Localization Algorithm (PCLA) is proposed in this
paper.

Point Cloud Localization Algorithm. Given a set of
point clouds in a location N={n;|1 < i < n} (n is the
number of acquired point clouds at a location), the objective
of PCLA is to minimize the total number of matching errors.
We denote the decision variables as B={b;|1 < k < n}. The
labels of the chosen point clouds for a location is denoted
by Py,p when a set of point clouds N is given. The rotation
matrix between two point clouds can be calculated by the
ICP algorithm (ie., R={r|1 < i,j < ™=1}) [29]. The
objective is to find the set P to maximize the matching
performance of point clouds with the minimum number of
point clouds, the set P is computed as follows

P=argmax(Py p)
P (12)
s.t. Ni=Tij X N, Ni, Nj € N,Tij € R,i 75 7,

where i, j=1,2,...,n. An illustration of PCLA is shown in
Fig. 8(b).

Step 1: One point cloud (O,) is selected to calculate the
location (G'1) of a user using the triangulation method.

Step 2: Another point cloud (e.g., O3) is selected to
determine another candidate location (Gp,). We take the
center of gravity (G2) as the final location for point clouds
O1 and Os. Furthermore, we define the distance between G;
and G; as dij=+/(z;-1;)%+(yi-y;)>.

Step 3: Step 2 is repeated until d;;<e. Considering
computation complexity, we empirically tune e accordingly
to the environment.

4.3.2 Path Planning and Tracking

The Dijkstra’s planning algorithm is used to calculate an
optimal trace [30]. If the destination is changed, another
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navigation trace will be recommended. That is, CloudNavi
tracks the walking progress in real time using the locations.

4.3.3 Deviation Handling

If the user is off the correct path, the deviation event will
be detected and the user will be notified. A method is
proposed in CloudNavi to handle two cases of deviation
events, including point cloud mismatch and real deviation.

Given a point cloud trace, the coordinates of a point
cloud (zpc, Ypc), and the current location (z2,y2), it is con-
sidered as a mismatch if the distance between the captured
point cloud and current location of the user is larger than
the maximum working distance of the 3D camera (e.g., 4m
for Google project tango tablet). Otherwise, it is considered
as a correct match.

Point Cloud Mismatch. If the estimated location is over
the distance of previous point cloud acquisition, it is con-
sidered as a mismatch. Then, new point cloud is acquired
to calculate the location of the user again. Consequently, the
location of the user can be corrected in real time.

Real Deviation. If the location of a user determined
by CloudNavi does not match the navigation path, it is
considered as a real deviation. A notification will then be
given to the user and a new optimal trace will be calculated
based on the current location of the user.

4.3.4 Robustness to Environmental Variations and Crowds

Environment Variations. To address environment dynamics
(e.g., the change of location of indoor objects), an update
method is proposed in this paper. First, if the new point
clouds provide more details of an area already covered
by the latest 3D path-maps, the new point clouds will
be registered to the latest 3D path-maps based on feature
matching. Second, if the new point clouds represent changes
in indoor scenes, or cover an area that has not been included
in the latest 3D path-maps, these point clouds cannot be
directly registered to the latest 3D path-maps. In this case,
CloudNavi system will first create 3D path-maps from the
new point clouds and then merge them with the existing
ones.

Crowds. The indoor space is sometimes full of crowds,
especially in a shopping mall. It is clear that the captured
point clouds can be affected by the crowds. Accordingly,
to improve the robustness of our CloudNavi system, a
lightweight method is proposed. First, crowds are detected
from point clouds using the work presented in [22]. Next,
the user will be notified by our CloudNavi system to capture
the point clouds of space between the head level of crowds
and the ceiling. Such method can effectively remove the
impacts of crowds.

5 IMPLEMENTATION AND EVALUATION

In this section, we first describe the implementation details
of our CloudNavi system, and introduce the evaluation
methodology and setups. We then test the performance of
each component of our CloudNavi system.

5.1 Implementation

The CloudNavi prototype consists of two parts: a mobile
client running on an Android mobile device and a naviga-
tion pipeline working on a server. The mobile client interface
can be installed in different Andorid mobile devices which
support WiFi and 3D cameras. The navigation pipeline was
implemented on a Lenovo computer, which supports WiFi
and has 32GB RAM, an i7 CPU processor and a 12GB Titan
GPU. For most of our experiments, WiFi networks are used
for communication between the mobile devices and the
server.

Mobile Client. The mobile client software was used to
acquire point clouds with timestamps. Instant point clouds
are then automatically compressed and transmitted to the
server with WiFi network.

Server Configuration. The server was implemented in
a computer with Ubuntu Linux system using two threads.
The first thread is used to receive and store incoming point
clouds, the second thread is used to process point clouds,
create the 3D path-map, and generate navigation instruc-
tions. To reduce the running time for point cloud processing,
a 12GB Titan GPU was used in our work.

5.2 Evaluation Methodology and Setups

We conducted experiments on one floor of a typical office
building and a shopping mall. The office building covers
1000m? with the length of 50m and width of 20m. The shop-
ping mall covers 4000m? with the length of 100m and width
of 40m, as shown in Fig. 9. In experiments, the CloudNavi
prototype is carried by a user while walking in office and
mall buildings. The collected point clouds were transmitted
to a server for post-processing using PCL (version 1.6.1).
Specifically, a pass through filter was first used to remove
noise in point clouds®. The SIFT algorithm was then used
to extract keypoints and the Fast Point Feature Histograms
(FPFH) algorithm was used to obtain feature descriptors
[15], [19]. Point cloud matching was achieved by comparing
the corresponding points using the Random Sample Con-
sensus (RANSAC) algorithm [15]. IC'P algorithm was used
to calculate the rotation and translation between two point
clouds [29]. These results were directly sent to CloudNavi
to generate instructions for the guidance of indoor walking.

15 volunteers were invited to participate in the data
collection procedure. These volunteers consisted of 7 cus-
tomers in a shopping mall and 8 members in our research
group. The walking traces for point cloud acquisition were
determined by volunteers themselves. The IMU data were
automatically recorded by CloudNavi. For 3D path-map
generation, 8556 point clouds along 268 walking traces were
collected by these volunteers over a period of 3 days. These
traces covered most areas of the experimental field. Each
trace was connected to at least 2 rooms, and each room was
covered by at least 5 traces. These traces are different in the
areas they covered and in their lengths. The dataset was
used to construct the 3D path-map. In order to evaluate the
performance of navigation, volunteers were asked to collect
150 walking traces in the office building (dataset A) and 200
walking traces (dataset B) in the shopping mall.

3. http:/ /pointclouds.org/
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5.3 Performance Evaluation
5.3.1 Navigation Performance

Dataset A was used for the office building. In our ex-
periments, all volunteers can successfully arrive at their
destinations along their optimal traces, under the guidance
of CloudNavi. Figure 10 shows that 90% tracking errors
produced by CloudNavi are less than 1.39m. As reported
in [11], the typical tracking error achieved by Travi-Navi is
less than 4 steps. In contrast, CloudNavi achieves a smaller
tracking error with an error less than 2 steps (typically
0.75m for one step). That is because the point clouds used by
CloudNavi are more robust to environment variations and
crowds when compared to images. Moreover, the tracking
error of CloudNavi is also less than FollowMe (95% of
its spatial errors were smaller than 2m) [12] and iMoon
(with a localization error of 2m) [13]. That is because the
indoor structural information is invariant and robust to en-
vironmental dynamics within a long duration, while signals
(e.g., WiFi, geomagnetic data, and images) are inherently
unstable and may vary significantly in complex indoor
environments.

Further, our CloudNavi system was tested in the Yue-
fang shopping mall using dataset B. In our experiments,
all volunteers can successfully arrive at their destinations.
Figure 10 shows that 90% tracking errors produced by
CloudNavi are less than 1.20m. The tracking error of Cloud-
Navi is also smaller than Travi-Navi [11], FollowMe [12],
and iMoon [13]. Moreover, the tracking error achieved in
the shopping mall is smaller than that achieved in the office
building. That is because the point clouds acquired in a
shopping mall are rich in texture features.

We further tested the relationship between the tracking
error and the walking distance on dataset . The tracking
errors under different walking distances were recorded. The

different walking lengths along traces.

mismatching and real deviation events.

walking distance is increased from 0 to 360m for each
experiment. It can be found in Fig. 11 that the tracking error
remains stable as the distance of walking traces increases.
That is because the drift caused by tracking can be timely
corrected by estimating the locations of the user on the 3D
path-map.

5.3.2 Deviation Detection

We then tested the deviation detection performance of
CloudNavi. If a deviation event is detected, the user is
notified by CloudNavi and the type of deviation event is
recorded. We recorded the location once a deviation event
happened. Therefore, the distance between the start point
and the location where the deviation event happened can
be calculated. Figure 12 shows that the 90% deviation errors
produced by CloudNavi are 2.8m for point cloud mismatch
and 2.7m for real deviation, respectively.

In summary, the tracking errors and the accuracy of
deviation detection can satisfy the requirements of an indoor
navigation system. Specifically, a user can easily find its
destination with 90% tracking error of less than 1.5m (see
Fig. 10), that is because the destination is within the range
of the visibility.

5.8.3 Accuracy of 3D Path-map Construction

We further evaluated the accuracy of 3D path-map construc-
tion using the Root Mean Square Error (RMSE). Given n

TABLE 2: RMSE of constructed 3D path-map (m).

Office | Mall

1 0.567 | 0.489

2 0.520 | 0.505

3 0.561 0.491

4 0.560 0.499
Avg. 0.552 0.496
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locations with 2D coordinates S/°¢=(z¢ yF¢), and their
ground truth coordinates S&=(x% y%) (i=1,2,...,n). The
RMSE is calculated as

\/ S (SPC-56)2
€RMS= .

(13)
n

The volunteers were asked to construct a 3D path-map
in the office building and shopping mall. In total, 8556
point clouds along 268 walking traces were collected. The
ground truth was recorded manually. Table 2 shows that
the RMSEs of 3D path-map is small (e.g., less than 0.567m)
for both of the office and mall scenarios. It is clear that
the accuracy of 3D path-map increases with the number
of participated volunteers. This indicates that the proposed
system can generate a highly accurate 3D path-map using
crowdsourcing.

5.3.4 Localization Accuracy of Mobile Users

The localization accuracy is crucial for tracking and devi-
ation detection. Due to the complexity of indoor environ-
ment, point clouds acquired by different users at a same
place may cover different scenes. Besides, similar point
clouds may be acquired from two different places. It is
likely that sufficient distinguishable features are sometimes
unavailable for localization. We first tested the accuracy of
point cloud identification in both office and mall buildings.
The number of point clouds for localization was increased
from 1 to 6. Figure 13(a) shows the experimental results. We
find that the accuracy of point cloud identification increases
with the number of point clouds. When the number of point
clouds is increased to 5, the highest accuracy of point cloud
identification is achieved (with an accuracy of 100%).
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Fig. 15: The evaluation of point clouds quality. (a) Number
of keypoint with/without pose detection; (b) Accuracy of
matching for point clouds with/without pose detection.

We further tested the performance of PCLA. We random-
ly selected 20 sample locations, for each sample location, 5
point clouds were acquired from different directions. We
compared the performance of PCLA to the method using
only one point cloud (denoted as One-PC). As shown in
Fig. 13(b), the accuracy of localization can be doubled using
PCLA. Specifically, the 50-percentile error is reduced from
2.43m to 1.17m, and the 80-percentile error is reduced from
3.17m to 1.92m.

In addition, we compared the localization performance
of our CloudNavi with images based [9], WiFi fingerprinting
based, and point cloud based methods. Note that, the point
cloud based method was implemented using Xtion PRO
Live. The localization errors are shown in Fig. 13(c). Cloud-
Navi achieves a median location error of 1.17m, which is
significantly smaller than the image based (2.4m) and WiFi
based (4.8m) methods. It is clear that the localization accura-
cy of CloudNavi is superior to the image based approaches
due to the use of depth information. While, the point cloud
based method using Xtion PRO Live (Xtion-based) achieves
a smaller localization error than our CloudNavi system.
That is because high-precision 3D cameras were used in
the point cloud based method while low quality-commodity
mobile devices were used in our CloudNavi system.

5.3.5 Accuracy of Walking Traces

In this section, we tested the tracking error of the VIO
algorithm and compared it with the dead reckoning method.
For this evaluation, the volunteers were asked to walk
randomly in office building and Yuefang shopping mall.
The CDF of the tracking error for the VIO algorithm and the
dead reckoning method is shown in Figs. 14(a-b). The VIO
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Fig. 16: Location error under the factors of environment variations, crowds, and color variation.

algorithm performs better than dead reckoning. It achieves
a median tracking error of 0.7m, as compared to 2.1m for
dead reckoning in office and a median tracking error of
0.8m, as compared to 2.4m for dead reckoning in mall. That
is because the accuracy of mobile devices” pose calculated
by the VIO algorithm is more accurate than that achieved
by the dead reckoning method.

5.3.6 Keypoints Detected in Point Cloud

The volunteers were asked to walk along corridors in office
and 200 point clouds were captured in two situations, this
is, with and without pose estimation. Figure 15(a) shows the
number of keypoints detected with/without pose estima-
tion. It can be seen that the number of keypoints detected in
point clouds acquired with pose estimation is always larger
than that acquired without pose estimation. Thus, pose
estimation can be used to improve the feature richness of
point clouds. Furthermore, we investigated the accuracy of
point cloud matching with/without pose detection. Figure
15(b) shows that better matching accuracy can be obtained
when the pose of mobile device is estimated for point
cloud acquisition. That is, the average matching error is
about 1.9% using pose estimation. In contrast, the average
matching error is about 6.8% without pose estimation. It is
further demonstrated that the captured point clouds usually
have rich features with pose estimation.

5.3.7 Response Delay

We deployed CloudNavi using a Google project tango tablet
and a server equipped with a 32GB RAM, an i7 CPU
processor, and a 12GB Titan GPU. The response delay were
evaluated for two cases: initial phase and navigation phase.
The initial phase includes data uploading, global localiza-
tion, destination query, and path planning. The navigation
phase includes data uploading and local localization. Since
the WiFi radio transmission speed is about 2MB/s, point
cloud uploading takes 0.1s on average. Global localization
takes 3.6s on average, and local localization takes 0.4s on
average. Destination query costs only 0.002ms on a library
with 185 labeled destinations, and path planning takes
0.1s. In total, initial phase costs about 3.8s (0.1+3.6+0.1s),
the navigation phase costs about 0.6s (0.1+0.4+0.1s). It is
reasonable that the initial localization phase takes relatively
long time while the navigation phase is highly efficient.
Note that, the response delay can further be reduced using
more powerful machines.

5.3.8 Energy Consumption

If point clouds are acquired using cameras and are upload-
ed using WiFi network, relatively high power consump-
tion can be incurred. We tested the energy consumption
of our CloudNavi mobile client software, including those
consumed by cameras and WiFi network. The energy is
estimated using the PowerTutor profiler [31] installed in
the Google project tango tablet. During the experiment,
we turned off all background applications and additional
hardware components. The energy consumed by camera
and WiFi network is 6.9 Joule and 1.6 Joule for a point cloud,
respectively. Compared to the battery capacity of 20k Joules,
point cloud capturing and uploading do not constitute any
signification power consumption for a mobile device [27].

5.3.9 Other Factors

In this section, we tested the performance of our CloudNavi
system with respect to environment variations, crowds, and
color variation.

Impact of Environment Variations. To analyze the effect
of environment variations, we conducted a set of tests by
moving some objects, such as chairs, desks, posters. 12 point
clouds were acquired and CloudNavi was used to locate
the camera using the updated 3D path-map. Experimental
results are shown in Fig. 16(a). It can be seen that Cloud-
Navi can successfully identify the location with comparable
accuracy.

Impact of Crowds. Since the points within a depth range
(i.e., 0.5~4m for a Google project tango tablet) and the field
of view (i.e., 57.5x45 for a Google project tango tablet)
can be recorded by a mobile device, it is reasonable that
we set the maximum number of volunteers to 6. In order
to analyze the effect of human existence, 0, 1, 3, and 6
volunteers were asked to keep walking in the 3D camera
view in our experimental, respectively. Experimental results
are shown in Fig. 16(b). It can be seen that the location
can be successfully estimated. The accuracy of localization
clearly demonstrates the effectiveness of the point clouds
acquired from the space between the head level of crowds
and ceilings.

Color Variation. Furthermore, we tested our CloudNavi
system under color variations. A set of tests were conducted
by placing two electronic display screens on both sides of
our camera. 12 point clouds were acquired at the same loca-
tion, and the camera localization was estimated using these
point clouds and the 3D path-map. Experimental results are
shown in Fig. 16(c). It can be seen that the location can be
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successfully estimated with comparable accuracy. Therefore,
our CloudNavi system is robust to the color variation. That
is because our CloudNavi system does not rely on any color
information and it is therefore robust to color variations.

6 DiscussiON AND FUTURE WORK

Ubiquitous Point Clouds. Although point clouds can only
be captured by Google project tango mobile device cur-
rently, 3D cameras (e.g., Intel realsense?, TI 3D camera®)
will be widely equipped with mobile devices in the future.
Point clouds will become as ubiquitous as 2D images. The
design of CloudNavi is motivated by the development of
3D cameras.

Limitations of the Experiments. We only tested the per-
formance of indoor navigation on point clouds acquired by
Google project tango tablet. Thai is because Google project
tango tablet is the only available tablet with a 3D sensor in
market. In addition, our method provides a general frame-
work and can be used on different hardware platforms. In
the future, once more tablets with 3D sensors are available,
we can do more experiments.

The Scalability of Navigation Service. It is clear that the
number of participated data collectors determines both the
navigation performance and the scalability of CloudNavi.
If only a few data collectors participate in the service, the
collected point clouds would be insufficient. This is a com-
mon challenge faced by most crowdsourcing-based systems.
At the initial stage, CloudNavi provider should contribute
some useful traces to bootstrap the navigation service, then,
upcoming users can be navigated to their destinations using
CloudNavi. At the same time, a rewarding mechanism can
be designed to encourage users to contribute long walking
trace and to record their destinations. Through such a simple
way, the navigation system can collect sufficient traces to ex-
pand its coverage area and to enhance its service capability.

Multiple Floors. A user may walk on multiple floors.
Therefore, CloudNavi will be improved for multiple floor
navigation in our future work. Inspired by the works [7],
[32], the motion states of a user can be recorded by inertial
sensors when walking across different floors (e.g., through
stairs, escalators, or elevators). CloudNavi can incorporate
these motion states to achieve multiple floor navigation.

Building Types. The 3D path-map generated by Cloud-
Navi mainly focus on the connection between corridors and
other rooms that lying along both sides of the corridor,
such as in office building and shopping mall. The proposed
solution may be failed in large open environments, such as
hall, gymnasium, museum and lobby, where the movement
of a user is difficult to be characterized. Ubiquitous indoor
navigation services in large open indoor environments will
be our future work.

Using Semantics from Crowdsourced Point Clouds. We
plan to extend our system to support automatic semantic
labelling of 3D path-map by object identification. Object
identification is a very active research topic in computer
vision community [15], [33]. It is reasonable to use such
technique to decrease the dependency on crowdsourced
labeling and to improve its flexibility.

4. http://click.intel.com /realsense. html
5. http://www.ti.com
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7 RELATED WORK

Indoor navigation has been extensively studied and can be
roughly categorized as follows.

SLAM. The task of Simultaneous localization and map-
ping (SLAM) is to reconstruct maps in an unexplored envi-
ronment using different sensors (e.g., laser sensors, cameras,
and odemetry) [34], [35], [36], [37]. We share similar goals
with SLAM, however, our problem has several significant d-
ifferences. First, a robot systematically explores all accessible
areas in an indoor space using SLAM, while our CloudNavi
system is a crowdsourcing system. It is more challenging
to construct maps using a crowdsourcing system. Second, a
robot is usually equipped with high precision sensors (e.g.,
laser finders) in SLAM, while our CloudNavi system uses
low precision 3D cameras (e.g., Google project tango tablet).
Third, the locomotion of humans is more complicated than
that of indoor robots. Therefore, the crowdsensed data is not
only noisy but also piece-wise, as they are usually collected
by unorganized users

Infrastructure Based Navigation Services. Existing in-
door navigation systems usually rely on indoor localization
systems. Radar [1], LiFs [2], Ubicarse [3], SpotFi [4], and
the works presented in [38], [39], [40] use existing WiFi
infrastructure to perform indoor localization. Epsilon [6],
Luxapose [5], Spinlight [41], and Lightitude [42] achieve
high indoor localization accuracy through VLC. Although
these systems are different in details, all of them rely on a
particular infrastructure. In contrast, our CloudNavi system
makes a first step towards a ubiquitous indoor navigation
using point clouds only. It has two advantages. First, our
method is more applicable to scenes without WiFi or VLC
infrastructures. Second, our method is orthogonal to exist-
ing WiFi-based and VLC-based methods for indoor naviga-
tion systems. They can be combined to further improve the
accuracy and stability of navigation systems.

Self-deployable Navigation Service. Recent techniques
(including Travi-Navi [11], FollowMe [12] and iMoon [13])
can provide self-deployable indoor navigation service. Trivi-
Navi [11] uses the images of pathway to track the user’s
walking progress. FollowMe [12] uses the geomagnetic field
to guide a user by providing the “scent” left by the lead-
ers or previous travelers. iMoon [13] uses crowdsourced
photos to build a smartphone-based indoor navigation sys-
tem. CloudNavi is significantly different from and better
than these systems in many aspects. First, CloudNavi uses
structural information of indoor space (i.e., point cloud) to
perform navigation, it is more stable, robust, and accurate
than signal (e.g., RF, magnetic data, and images) based sys-
tems. Therefore, it satisfies the requirements for a ubiquitous
indoor navigation system. Second, The existing systems rely
on IMU sensor (including gyroscope and accelerometer)
based dead reckoning method [11], [12], [13]. Since the dead
reckoning method is highly sensitive to usage diversity (e.g.,
different hand holding, various walking speed), it is difficult
to accurately estimate the steps, walking directions, and step
length. In contrast, CloudNavi uses the VIO algorithm to
reduce the effect of usage diversity. Third, existing systems
can only be launched at some predetermined positions
(e.g., the building entrances). In contrast, CloudNavi can be
started from any position on a related indoor pathway.
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Besides, there are significant amount of literatures for
localization using point clouds [43], [44], [45], [46]. These
methods used high-precision 3D cameras to acquire point
clouds. However, our CloudNavi system used commodity
mobile devices equipped with low-quality 3D sensors. Ad-
ditionally, the traces and point clouds are also highly noisy
due to error accumulation. Therefore, our CloudNavi is a
ubiquitous system.

Note that, although it is possible to develop a self-
deployable indoor navigation system using the dead reck-
oning method [7], [8], [47], such system extremely depends
on indoor maps and suffers from low navigation accuracy.
CloudNavi does not require floor maps and can achieve a
high navigation accuracy.

Indoor Map Construction. Indoor map based naviga-
tion systems are also available. Google Maps started to
provide detailed indoor floorplans. However, they only
have a small fraction of millions of indoor environments.
First, buildings owners may not allow the sharing of their
floorplans. Second, manual generation of these maps re-
quires slow, labor-intensive tasks, and they are subject to
intentionally incorrect data produced by malicious users
[48]. To resolve these problems, the research community
has recently embarked to develop automatic construction
method for indoor floorplans by exploiting crowdsourced
data collected by mobile device users [14], [27], [32], [49].
CrowdInside [32] and the work in [49] are dependent on
aggregated user motion traces derived from inertial data.
Jigsaw [27] and CrowdMap [14] use both images and inertial
data to reconstruct the indoor floorplan. These systems
[14], [27], [32], [49] are easy-to-deploy, infrastructure-free,
and universal. However, they are not robust and accurate.
Therefore, none existing technique is as ubiquitous as our
CloudNavi system.

8 CONCLUSION

Indoor navigation is an emerging research area with attrac-
tive and promising applications in daily life. This paper
presents a point cloud based indoor navigation solution
(namely CloudNavi). It pushes the design of indoor navi-
gation to the extreme on five dimensions: accurate, easy-to-
deploy, infrastructure-free, robust, and universal. Extensive
experiments were conducted on a large number of point
clouds acquired in office building and shopping mall. Ex-
perimental results show that CloudNavi achieves promising
indoor navigation performance and outperforms several
state-of-the-art systems.
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