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CoMan: Managing Bandwidth Across Computing
Frameworks in Multiplexed Datacenters

Wenxin Li, Deke Guo, Alex X. Liu, Keqiu Li, Heng Qi, Song Guo, Ali Munir, and Xiaoyi Tao

Abstract—Inefficient bandwidth sharing in a datacenter network, between different application frameworks, e.g., MapReduce and Spark,
can lead to inelastic and skewed usage of link bandwidth and increased completion times for the applications. Existing work, however,
either solely focuses on managing computation and storage resources or controlling only sending/receiving rate at hosts. In this paper,
we present CoMan, a solution that provides global in-network bandwidth management in multiplexed data centers, with two goals:
improving bandwidth utilization and reducing application completion time. CoMan first designs a novel abstraction of virtual link groups
(VLGs) to establish a shared bandwidth resource pool. Based on this pool, CoMan implements a three-level bandwidth allocation model,
which enables elastic bandwidth sharing among computing frameworks as well as guarantees network performance for the applications.
CoMan further improves the bandwidth utilization by devising a VLG dependency graph and solves an optimization problem to guide the
path selection using a 3

2
-approximation algorithm. We conduct comprehensive trace-driven simulations as well as small-scale testbed

experiments to evaluate the performance of CoMan. Extensive simulation results show that CoMan improves the bandwidth utilization
and speeds up the application completion time by up to 2.83× and 6.68×, respectively, compared to the ECMP+ElasticSwitch solution.
Our implementation also verifies that CoMan can realistically speed up the application completion times by 2.32× on average.

Index Terms—Data-parallel computing frameworks, multiplexed datacenter, bandwidth management.
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1 INTRODUCTION

DAtacenters are increasingly hosting a mixed variety
of applications: from Internet services to data-parallel,

HPC and scientific applications. Driven by this wide range
of applications, researchers and engineers have been de-
veloping a diverse set of computing frameworks such as
MapReduce [1], Spark [2], and Pregel [3]. Moreover, new
computing frameworks will continue to emerge, and no
single framework will be optimal for all applications. There-
fore, organizations will want to run multiple frameworks in
the same datacenter, so as to choose the best framework for
each application, and at the same time reduce the invest-
ments of datacenters [4, 5].

Unfortunately, simply multiplexing a datacenter among
different computing frameworks can lead to several nega-
tive consequences. As we know, many applications of these
computing frameworks involve massive amounts of data
transfers in datacenter networks. These data transfers can
account for more than 50% of the application completion
time [6, 7]. Since each framework lacks network optimiza-
tion to speed up such data transfers, the application comple-
tion time is usually extended. Meanwhile, the distribution
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of these data transfers can be non-uniform on datacenter
links. This leads to the skew use of link bandwidth. That is,
some links are overloaded while some others possibly expe-
rience extremely low bandwidth utilization. In the context
of multiple frameworks coexisting in the same datacenter,
the extended application completion time and the skew
problem of network utilization will be more serious. As a
consequence, the scalability of deployed applications can be
significantly restricted. Moreover, because these frameworks
are developed independently, there is no way to perform the
collaborative bandwidth sharing across frameworks, thus
creating the inelastic use of the bandwidth. In other words,
the bandwidth allocated to one framework cannot be used
by others frameworks even if it is unused. Therefore, to
improve application completion times, it is important to
design an intelligent bandwidth management mechanism
to avoid inelastic usage of the link bandwidth and a path
selection mechanism to avoid the skewed usage of network
resources in a datacenter shared by multiple computing
frameworks.

The existing work on network bandwidth management
either considers only a single application framework in the
network or does not consider the network resources while
sharing network bandwidth across frameworks. First, some
existing mechanisms only focus on managing the CPU and
memory resources across these network-bound frameworks,
and ignore the network resource utilization [5, 8, 9]. Second,
some mechanisms only consider transport layer solutions
for bandwidth sharing by adapting the sending/receiving
rates of the flows to minimize flow or coflow comple-
tion times [6, 10, 11]. However, these mechanisms do not
consider the collaborative use of in-network bandwidth
across multiple computing frameworks. Lastly, some ex-
isting network sharing mechanisms [12–14] consider band-
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width management of multiple VMs in datacenter networks
but do not solve skewness issue (or resolve congestion) as
they do not consider routing or path level isolation.

In this paper, we propose CoMan, a bandwidth man-
agement and network path selection mechanism for shared
datacenter networks. CoMan aims to improve the network
bandwidth utilization and reduce the application comple-
tion times using following three design principles: 1) allow
the elastic use of link bandwidth among multiple computing
frameworks, 2) provide performance guarantees to applications,
and 3) avoid the skewed usage of network bandwidth.

To distribute network bandwidth among competing
frameworks and do path selection to improve application
performance, it is crucial to build a shared resource pool.
However, it is extremely difficult to build such pool for in-
network bandwidth of a datacenter because the bandwidth
resources on the datacenter links are tightly coupled, as
a flow’s progress depends on the transfer rates it gets
on all the links along the connection path. To tackle this
challenge, CoMan devises a novel abstraction of virtual link
groups (VLGs), where each VLG is a group of decoupled
links. All the links in a datacenter are encapsulated into
different VLGs, and a large shared bandwidth resource
pool is established accordingly. Based on this pool, CoMan
further performs the path selection to avoid the skew use of
link bandwidth. To this end, we devise a VLG dependency
graph and formulate a path selection problem to minimize
the residual network bandwidth. Specifically, we present
a 3

2 -approximation algorithm to solve the NP-hard path
selection problem.

CoMan implements a three-level bandwidth allocation
model to manage inter and intra application bandwidth.
The first level reserves the bandwidth for different frame-
works, in a max-min fashion, to enable the elastic band-
width sharing among computing frameworks. The second
level performs the inter-application bandwidth allocation
with respect to the guaranteed network performance of
its applications. To efficiently manage the network band-
width among different frameworks, we use three algorithm-
s, i.e., the weighted fair sharing, bandwidth preemption,
and bandwidth borrowing. The third level performs intra-
application bandwidth allocation for the individual flows,
which determines the application performance [10].

The first challenge for CoMan is how to design virtual
link groups (VLGs). To address this challenge, we leverage
the datacenter architecture while encapsulating the links
into different VLGs. The commodity data centers typically
follow the design of three-level tree (Core, Aggregation, and
Edge) [15], and network flows follow fixed paths from the
source to the destination. We therefore characterize the links
into either upstream or downstream links, and group the
ingress or egress links of the switch to form a VLG.

The second challenge in CoMan design is how to make
bandwidth sharing elastic. To address this challenge, we
propose a preemptive bandwidth sharing model, where
a framework can share its spare bandwidth with other
frameworks and later preempt it upon increase in its own
load. We propose a bandwidth preemption and bandwidth
borrowing models to solve this problem.

The third challenge in CoMan design is how to avoid
link utilization skewness. To address this challenge, we

propose a path selection mechanism that leverages the VLG
abstraction. The bandwidth manager in CoMan allocates
bandwidth on a shared pool of links and, during path
selection, the flow can choose path with the lower load, from
its shared pool, to transfer data. This helps distribute flows
evenly across the links and avoid link utilization skewness.

To evaluate the performance of CoMan, we conduct
both large-scale trace-driven simulations and small-scale
testbed implementation. The comprehensive simulation re-
sults show that applications complete up to 4.55× and
6.68× faster on average, in comparison to the widely used
ECMP+Per-Flow and ECMP+Elasticswitch solutions [12,
16, 17], respectively. In addition, compared to ECMP+Per-
Flow and ECMP+Elasticswitch, CoMan improves the band-
width utilization by up to 2.88× and 2.83×, respectively.
Furthermore, our implementation verifies that CoMan can
realistically speed up the application completion time by up
to 2.32× on average.

In summary, the main contributions of this paper in-
clude:

• We address the challenging problem of managing the
in-network bandwidth across multiple computing
frameworks in a multiplexed datacenter. Specifically,
we focus on two goals: improving the bandwidth
utilization and reducing the application completion
time.

• We propose CoMan, a collaborative bandwidth man-
agement architecture, which contains three key com-
ponents: bandwidth virtualization model, three-level
bandwidth allocation model, and the VLG depen-
dency graph-based path selection.

• We conduct extensive trace-driven simulations as
well as a small-scale testbed implementation to eval-
uate the performance of CoMan.

The remainder of this paper is organized as follows.
Section 2 summarizes the related work. Section 3 presents
the motivation and challenges for the problem of manag-
ing the in-network bandwidth across multiple computing
frameworks in a single datacenter. Section 4 presents the
overview of CoMan and the novel bandwidth virtualization
model. In Section 5, we discuss the three-level bandwidth al-
location model and Section 6 presents a dependency graph-
based path selection algorithm. In Section 7, we evaluate
and analyze the performance of CoMan. We discuss current
limitations of CoMan and revelent future research in Sec-
tion 8, and we conclude in Section 9.

2 RELATED WORK

Existing works on network bandwidth management and
datacenter scheduling can be divided in three categories
such as network sharing, network scheduling, in datacenter
networks, and the resource management in cluster frame-
works.

2.1 Network sharing in datacenter networks
Existing network bandwidth sharing mechanisms for dat-
acenter networks do not address the skewness and elastic
usage of network bandwidth simultaneously. For example,
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Faircloud [18] proposed a set of desirable properties and
allocation methods for achieving the VM-pair level fairness
when sharing the bandwidth on congested links. Guo et
al. [19, 20] proposed a game theory based bandwidth al-
location strategy, which guarantees minimum bandwidth,
and at the same time, achieves VM-pair level fairness. Liu et
al. [21] proposed a novel distributed rate allocation algorith-
m based on the Logistic Model under the control-theoretic
framework, and leverage the feedback of link utilization
from switches to control the rate of senders. Since the total
bandwidth guarantee is less than the physical bandwidth
in the solution of [21], they further propose SoftBW that
can provide efficient bandwidth/fairness guarantee with
bandwidth over commitment [22]. Seawall [13] allocates
bandwidth to sources based on the established hypervisor-
to-hypervisor tunnels among physical servers, to achieve
the per-source fair sharing on congested links. NetShare [23]
leverages weighted fair queues for proportional bandwidth
sharing among different tenants on congested links. Elastic-
Switch [12] utilizes the spare bandwidth from unreserved
capacity, to achieve both the minimum bandwidth guaran-
tees and work conservation properties. Chen et al. [24] focus
on the performance-centric fairness for sharing datacenter
network bandwidth among data-parallel applications, and
present distributed algorithms to derive such fairness shar-
ing. These network sharing methods mainly concern on al-
locating bandwidth among competing entities, i.e., address
elastic usage but do not address the skewness problem
as they do not consider routing while making bandwidth
sharing decisions.

2.2 Network scheduling in datacenter networks

The network scheduling based mechanisms share the net-
work among flows of a single application or multiple ap-
plications by carefully designing the orderings of flows to
be transported in the network. These mechanism can be
categorized into two folds, the flow-level scheduling and the
coflow-level scheduling. For the flow-level schedulers, some
of them focus on traffic management with the aim of increas-
ing network throughput or achieving load balancing, e.g.,
Hedera [11] and MicroTE [25], and others design transport-
level mechanism to minimize the flow completion time (e.g.,
pFabric [26], PASE [27], L2DCT [28] and PIAS [29]). AC/DC
TCP [14] is a virtual congestion control protocol that allows
the network administrators to control per VM congestion
control in a multi-tenant network. For the coflow schedul-
ing, which accounts for the collective behaviors of flows,
Chowdhury et al. [6] first propose a centralized architecture
to share bandwidth at both intra-coflow and inter-coflow
level. Baraat [30] integrates both the advantages of FIFO and
FS strategies for inter-coflow scheduling. Varys [10] further
improves coflow scheduling by combining priority-based
inter-coflow scheduling and weighted-based intra-coflow
scheduling. Aalo [31] focuses on scheduling coflows with-
out requiring a prior knowledge of coflows. These coflow
schedulers donot account for the bandwidth management as
most of them only focus on adjusting the sending rate at the
hosts. No matter scheduling at flow-level or coflow-level,
the network scheduling methods do not consider the flexible
bandwidth sharing across multiple computing frameworks.

2.3 Resource management and scheduling in cluster
computing frameworks

Existing cluster management and scheduling frameworks
ignore the network resource while making sharing decisions
and only focus on sharing the compute and storage of
the computing frameworks. For example, the fair scheduler
in Hadoop [32] and delay scheduler in Dyrad [33] try to
achieve data locality, by considering compute resources and
input data storage location, to avoid network transfers as
much as possible. For the resource management in clus-
ter computing, Omega [8] mainly focuses on designing a
distributed, multi-level job scheduling method. Similarly,
Mesos [5] uses an offer-based approach to design a two-
level scheduler, while Yarn [9] leverages a request-based
approach to implement a two-level scheduler. However,
these resource managers in cluster computing framework
are only applicable for sharing the computation and s-
torage resources among diverse computing frameworks.
They leave the network resource sharing to the underly-
ing transport mechanisms, which make the applications
of computing frameworks to suffer from unpredicted net-
work performance and to experience arbitrary completion
times. Moreover, these resource managers cannot simply be
extended to the network management due to the lack of
network-level abstraction. Recently, NEAT [34] proposed a
network state aware task placement framework, however,
it does not address the skewed usage of network resources
as it does not consider path selection while making task
placement decisions.

3 MOTIVATION AND CHALLENGES

Deploying multiple computing frameworks in a single
datacenter can significantly slow down the completion of
applications belonging to these frameworks. For a better
intuition of this point, we run two applications on a same
datacenter: one is MapReduce application and the other one
is Spark application. Both of them implement a WordCount
function. The datacenter consists of 8 servers and 10 4-port
switches, and every two servers connect to an edge switch
(detailed topology of this datacenter will be introduced in
Section 7.2). For each edge switch, we let one connect-
ing server run MapReduce application and the other one
run Spark application. As such, each application occupies
4 homogenous servers, implying that they can get equal
amount of CPU and memory resources. We first run these
two applications in turn, and then run them simultaneously.
This implies that each application is first executed in an
exclusive mode and then is executed in a shared mode. We
calculate the extended completion time of an application as
its completion time in the shared mode minus that in the ex-
clusive mode. Fig. 1 plots the extended completion time for
these two applications, under various sizes of input data. We
find that coexisting frameworks in a datacenter considerably
extends application completion time. This phenomenon can
be more serious as the input data size increases, for both
MapReduce and Spark applications. Under the same config-
urations of CPU and memory resources, the root cause for
such extended completion time is the lacking of an efficient
in-network bandwidth managing scheme.
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Fig. 1. The extended completion time when deploying multiple comput-
ing frameworks in a data center.

TABLE 1
Example settings for each computing framework (CF).

Bandwidth Settings (Mbps) CFs
1 2 3

Minimum guaranteed bandwidth for each application 10 20 25
Maximum guaranteed bandwidth for each application 15 25 30
Minimum guaranteed bandwidth for each framework 20 30 40
Maximum guaranteed bandwidth for each framework 30 40 45

To efficiently manage the in-network bandwidth across
multiple computing frameworks, we argue that both band-
width allocation and routing should be considered.

Potential benefit of three-level bandwidth allocation:
When multiple computing frameworks coexist in a dat-
acenter, the bandwidth should be allocated at three-level
rather than one-level or two-level. One-level bandwidth
allocation refers to distributing bandwidth at the level of
individual flows, e.g., per-flow sharing scheme [17], which,
however, cannot account for collective behaviors of flows.
This is because that the application completion time de-
pends on the time it takes to complete all the flows, instead
of the time to complete the individual flows. The two-
level bandwidth allocation, distributing bandwidth at the
application-level, e.g., [16, 31], can grasp the application-
level semantics. Unfortunately, it may cause the applications
of a certain computing framework to exclusively occupy the
network resources, leaving no bandwidth for applications
of other frameworks. The is mainly because that the two-
level bandwidth allocation makes no effort to limit the
bandwidth that each computing framework can use. The
three-level bandwidth allocation means that the bandwidth
is first allocated to each computing framework, then to each
application, and finally to each flow. In such a case, the
application-level semantics can be accurately grasped, yet
the bandwidth can have a chance to be elastically shared
among different computing frameworks.

We use an example to illustrate how the three-level band-
width allocation can enable such elastic bandwidth sharing.
Consider there are a 100Mbps link and three computing
frameworks. Each framework as well as each application
have been configured with a minimum and a maximum
guaranteed bandwidth, as shown in Table 1. When CF1 has
no applications, its minimum guaranteed bandwidth can
then be borrowed by CF2 and CF3, such that the applica-
tions of CF2 and CF3 can all be guaranteed with a minimum
bandwidth. Once CF1 increases its load, i.e., there are two
new applications, CF1 needs to preempt the bandwidth that

Fig. 2. An illustrative example of how the three-level bandwidth alloca-
tion can support elastic bandwidth sharing among multiple computing
frameworks.

Fig. 3. A motivating example of load-balancing routing.

it previously lent to CF2 and CF3. In such a case, the two
new applications of CF1 can then be guaranteed with a
minimum bandwidth.

Potential benefit of load-balancing routing: It has been
revealed that the input data of applications in computing
frameworks like MapReduce and Spark are not necessarily
uniform, and often exhibit significant skew [35–37]. Such
skewed distribution of the input data can make a small
number of links to be utilized significantly more than others,
leading to the skew use of link bandwidth. Such skewness may
help to save energy in datacenter networks [38–40], as long
as the flow bandwidth demands on each path is under
the link capacity. However, it can increase the possibility
of congestion and failure [41, 42], and thus reduces fault
tolerance of the application. Hence, a load-balancing routing
scheme is desired. Load balancing routing ensures that no
link is overloaded and thus improves the overall system
performance. The main aim of load-balancing routing is to
assign flows to appropriate links and balance the bandwidth
usage among all links. Efficient load-balancing routing helps
in high link bandwidth utilization and helps in implement-
ing failover, enabling scalability, avoiding bottlenecks and
reducing application completion time.

For a better intuition of this point, we use an example to
show the benefit of load-balancing routing. In this example,
there are two applications: Application a has flows fa1 and
fa2 with the bandwidth demands of 50Mbps and 20Mbps
respectively; Application b has flows fb1 and fb2 with the
bandwidth demands of 80Mbps and 40Mbps respectively.
The link bandwidth are all 100Mbps. Fig.3(a) shows a case
of randomized routing by equal-cost multipath (ECMP). Un-
der ECMP scheme, the flows of application b are congested
on path s → M2 → d, failing to guarantee the flow band-
width demands and affecting the application completion
time. However, when we applying a load-balancing routing
scheme for flows of both applications a and b, all flows can
successfully be routed with bandwidth guarantee, yet the
link bandwidth utilization can significantly be improved, as
shown in Fig.3(b).

Fundamental challenges: The above examples look s-
traightforward with simple settings. But the general prob-
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lem of jointly considering bandwidth sharing and routing
to manage the in-network bandwidth across multiple com-
puting frameworks in a datacenter can be difficult, due to
the following challenges. First, a flow’s progress depends on
the bandwidth allocation on all links along its routing path,
yet an application’s performance depends on all its flows’
progress, leading to tight coupling among the datacenter
links, network flows and applications. Second, the arrival
pattern of applications belonging to each computing frame-
work is unknown in advance, yet is difficult to be accurately
predicted. In most practical scenarios, we can only get
the information of applications that have arrived. So, how
can we enable efficient elastic bandwidth sharing among
multiple computing frameworks in such highly dynamic
environment? Third, the bandwidth allocation strategy will
directly impact the routing decision for each flow because
each link has a fixed amount of bandwidth capacity. This
implies that bandwidth allocation and routing are deeply
intertwined with each other.

4 COMAN: COLLABORATIVE BANDWIDTH MAN-
AGEMENT

4.1 CoMan Overview
In this work, we propose CoMan, a bandwidth sharing
and routing framework to share network resources among
competing frameworks, in a multiplexed datacenter. To
manage the in-network bandwidth, CoMan first reserves
an amount of bandwidth for each computing framework
which then distributes the reserved bandwidth between its
applications and flows. We propose a novel abstraction layer
for network bandwidth management to address the elas-
ticity and skewness problems. To manage routing, CoMan
further computes the routing paths for the individual flows
of each application, before the application is admitted to
the datacenter network. The key idea is to achieve global
coordination among multiple frameworks, with the aim of
improving the bandwidth utilization and reducing applica-
tion completion times. To this end, CoMan focuses on the
following three design principles:

• Elastic bandwidth usage: The reserved bandwidth
for each computing framework should be either used
or lent out, such that the bandwidth efficiency can be
improved in a flexible way.

• Guaranteed network performance: Each application
should be assigned minimum bandwidth to meet its
performance guarantees.

• Bandwidth skewness avoidance: The path selection
mechanism for the individual flows should distribute
flows evenly in the network to avoid the skewed link
bandwidth utilization.

CoMan proposes a novel abstraction layer to do band-
width sharing and network path selection. The CoMan
architecture is shown in Fig. 4. At the lowest level, Co-
Man decouples the network resources from the underlying
datacenter links using the proposed novel abstraction of
virtual link groups (VLGs). Each VLG encapsulates a set
of decoupled links, that carries the network traffic. By
taking advantage of the VLG abstraction, CoMan builds
a VLG-based datacenter network and maintains a large

Fig. 4. The overview of our collaborative bandwidth management archi-
tecture — CoMan.

shared bandwidth resource pool. Given the shared resource
pool, CoMan implements a three-level bandwidth alloca-
tion model to distribute the bandwidth between multiple
computing frameworks, multiple applications and among
the flows of the same application. To compute the paths,
to meet the bandwidth guarantees and evenly distribute
load in the network, CoMan constructs a VLG dependency
graph, where each VLG is scheduled to perform the link
selection with the aim of scrabbling all flows’ routing paths.
The link selection problem is formulated as a minimum
residual bandwidth problem (MRBP) and is solved through
a 3

2 approximation algorithm.

4.2 Network Resource Virtualization Model

The key building block of CoMan is the VLG abstraction.
Below, we first present the abstraction overview and then
discuss how it can be used to build a VLG-based datacenter
network.

4.2.1 Abstraction of virtual link groups (VLGs)

The bandwidth resources on all intra-datacenter links can be
consolidated into a large shared resource pool to do band-
width management and path selection. A shared resource
pool is becoming increasingly important in datacenter envi-
ronments to improve the resource utilization and reduce the
network management costs [43]. For example, the shared
CPU or memory resource pool, encapsulating resources on
hundreds or even thousands of servers through the virtu-
alization technique, has been widely applied in multi-user
cloud environments [44]. However, simply encapsulating
the link bandwidth into a shared pool can be problematic
because of link coupling problem. link coupling happens
due to the close ties among the network flows and the
datacenter links because a flow utilizes the bandwidth on all
the links along its routing path. To tackle this challenge and
decouple the network resources from the underlying links,
we propose a novel virtual link group (VLG) abstraction that
consolidates the bandwidth resources on all intra-datacenter
links into a large shared resource pool. VLG can be formally
defined as follows:

Definition 1. A virtual link group (VLG) is defined as a group
of decoupled links, in which the flows can be transferred on
any link.
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Fig. 5. Encapsulating links in a partial 4-radix Fat-Tree topology.

We leverage datacenter architecture while encapsulating
the links into different VLGs. The commodity data centers
typically follow the design of three-level tree (Core, Aggre-
gation, and Edge) [15, 45], and when designing tree-like data
centers [46], most network flows follow fixed paths, going
up from the source first and going down to the destination
late. We therefore characterize the links into either upstream
or downstream links, and consider two link encapsulation
polices:

• Upstream link encapsulation: For a given pod,
the upstream links sharing a same head node (edge
switch) can be encapsulated into a VLG. Similarly,
the upstream links on egress of a same pod can also
be encapsulated into a VLG because flows may come
out from any one aggregation switch.

• Downstream link encapsulation: For a given pod,
the downstream links sharing a same tail node (edge
switch) can be encapsulated into a VLG. Similarly,
the downstream links directing to a same pod can be
encapsulated into a VLG.

Insights: We highlight the following benefits that such
VLG abstraction can bring to bandwidth resource alloca-
tion and traffic engineering in datacenter networks. First,
such VLG abstraction can significantly reduce the network
management costs, and can provide flexible design choice
for bandwidth allocation strategy. This is because that the
VLG can abstract entire datacenter network resources into
a large shared bandwidth resource pool. Second, the VLG
group can significantly simplify the routing optimization for
network flows. As we will show in Section 6, by constructing
the VLG dependency graph, once a flow has determined
to be routed on a link in a certain VLG a, the link for
composing this flow’s routing path can directly be identified
in the VLG that depends on VLG a.

4.2.2 VLG-based datacenter network
Fig. 5 depicts an example of the link encapsulation in a
partial 4-radix Fat-Tree network, which contains 12 VLGs in
total. Given the link encapsulation polices, we can generate
multiple VLGs in a datacenter, with the collection of links
belonging to each VLG being disjoint. To this end, we build a
virtual bandwidth resource pool which contains bandwidth
on multiple VLGs. Note that we do not consider the edge
links for encapsulation, as we do not control task placement
and leave that to the task schedulers.

Under the VLG abstraction, we focus on a VLG-based
datacenter network model, with key notations in Table 2.
We model the datacenter network as a directed graph
G=(N , E), where N={v1, v2, · · ·, vN} represents the set of
all VLGs and E is the set of edges that connect these

TABLE 2
Key Parameters in VLG-based Datacenter Network.

Notations Definitions
N The set of VLGs
K The set of computing frameworks
M The set of applications
Li The set of links encapsulated in VLG vi ∈ N
Ci The bandwidth capacity of vi
F(vi) The set of flows hosted by vi

F(vi, aj)
The set of flows hosted by VLG vi and
belonged to application aj ∈ M

M(vi) The set of applications hosted by vi

M(vi, tk)
The set of applications hosted by vi and
belonged to computing framework tk ∈ K

Rmin
i,k The minimum guaranteed bandwidth configured for tk in VLG vi

Rmin−
i,k The amount of consumed bandwidth in Rmin

i,k

Rmin+
i,k The amount of available bandwidth in Rmin

i,k

Rmax
i,k The maximum reservable bandwidth configured for tk in VLG vi

αi,k
The minimum guaranteed bandwidth per application
configured for tk in VLG vi

βi,k
The maximum consumable bandwidth per application
configured for tk on VLG vi

Φi,k The amount of bandwidth to be preempted for tk in vi
Ψi,k The amount of bandwidth to be borrowed for tk in vi
rji,k The amount of bandwidth allocated to aj ∈ M(vi, tk)

xf
i,j The amount of bandwidth allocated to flow f ∈ F(vi, aj)

µf
i The amount of bandwidth allocated to flow f ∈ F(vi)

VLGs. Specifically, an edge connecting two VLGs repre-
sents a dependency relationship (which will be introduced
in Section 6). Let Li denote the set of links in VLG
vi, and Ci=

∑
l∈Li

cl denote the bandwidth capacity of
vi, where cl is the bandwidth capacity of link l∈Li. Let
K={t1, t2, · · ·, tK} denote the set of coexisting frameworks
in the datacenter, with tk denoting the k-th framework.
Consider that there are a set of applications submitted by
all frameworks in a given time period,M={a1, a2, · · ·, aM},
which carry a set F of flows. Let aj index the j-th applica-
tion, and denote F(aj) as the set of flows in aj∈M.

We divide the individual flows among VLGs, and ac-
cordingly divide the applications among those VLGs, based
on the distribution of flows in each application. Based on the
VLG abstraction, we observe that a flow typically consumes
bandwidth on either 2 VLGs or 4 VLGs, determined by
whether it’s an intra-pod flow or an inter-pod flow. For
ease of presentation, let F(vi) denote the set of flows hosted
by vi, with F(vi, aj) being the set of application aj ’s flows
that are hosted by vi. In addition, let M(vi) denote the set
of applications hosted by vi, with M(vi, tk) being the set
of applications belonging to tk. It should be noted that an
application may be simultaneously distributed to multiple
VLGs, as its flows may traverse multiple links that belong
to multiple VLGs. Therefore, M(vi) ∩ M(vi′) ̸=∅ may be
feasible for some vi ̸=vi′ , whileM(vi, tk) ∩M(vi, tk′)=∅ is
always feasible.

5 COMAN BANDWIDTH ALLOCATION MECHANISM

CoMan implements a three-level bandwidth management
mechanism for the inter-framework, inter-application, and
intra-application bandwidth sharing, which we discuss be-
low.

5.1 Inter-framework bandwidth allocation
To share the bandwidth among frameworks in an elastic
manner, CoMan allocates the bandwidth to VLGs in a max-
min manner, so as to avoid the exclusive use of bandwidth



7

by any computing framework. Data centers are increasingly
hosting a mixed variety of computing frameworks, and
are typically multi-user environments, where hundreds of
applications may run simultaneously [32]. In such a case,
the bandwidth is shared among multiple computing frame-
works in an elastic way by first providing them required
bandwidth and then sharing the remaining bandwidth in
fair share manner among the frameworks.

To achieve max-min bandwidth sharing, CoMan first
reserves a minimum guaranteed bandwidth for each com-
puting framework tk on each VLG vi. If the applications of a
certain computing framework require more bandwidth than
the minimum reserved bandwidth, then more bandwidth
can be reserved. Otherwise, the idle part of the minimum
reserved bandwidth can be lent to applications of other
frameworks. To support elastic bandwidth sharing, the ap-
plications can later preempt the bandwidth borrowed by
other computing frameworks, so as to obtain at least its
minimum bandwidth share. We can define it formally as
follows: let Rmin

i,k and Rmax
i,k denote the minimum guaran-

teed bandwidth and maximum reservable bandwidth for tk
in vi, respectively. The max-min bandwidth constraint model
for inter-framework bandwidth reservation becomes:

• Each tk has the minimum guaranteed Rmin
i,k and the

maximum reservable bandwidth Rmax
i,k on each vi,

where Rmin
i,k ≤Rmax

i,k ,∀vi ∈ N , ∀tk ∈ K.
• The sum of the maximum reservable bandwidth is

allowed to exceed the VLG’s bandwidth capacity;
that is,

∑
tk∈K Rmax

i,k ≥ Ci, ∀vi ∈ N .
• To avoid congestion, the sum of the minimum guar-

anteed bandwidth should not exceed the VLG’s
bandwidth capacity; i.e.,

∑
tk∈K Rmin

i,k ≤ Ci,∀vi ∈
N .

Given this model, datacenter operators can flexibly set
parameters of Rmin

i,k and Rmax
i,k for each framework. For

example, if the scientific applications dominate the data-
center and require more resources, then the minimum and
maximum bandwidth for the corresponding framework are
set to be higher than other frameworks.

5.2 Inter-application bandwidth allocation

The next step in bandwidth allocation is to share the band-
width reserved for each framework among the applications.
To provide bandwidth guarantee and performance isolation
for applications, we assign at least the minimum required
bandwidth of each application and formulate a min-max
problem, since it provides a lower bound on the application
performance irrespective of the communication patterns of
other applications [18, 19]. It can be formulated as: let αi,k

denote the minimum guaranteed bandwidth per application
configured for framework tk on VLG vi. In addition, let βi,k

denote the maximum consumable bandwidth per applica-
tion configured for tk and vi. Where, αi,k≤βi,k.

We formulate inter-application bandwidth sharing as a
max-min bandwidth allocation (MMBA) problem. Let rji,k
denote the amount of bandwidth allocated to the applica-
tion aj∈M(vi, tk), and define Ωi,k,[αi,k, βi,k]. CoMan allo-
cates inter-application bandwidth allocation independently
across different VLGs because a VLG may carry flows from

Algorithm 1 Bandwidth preemption for tk in vi

1: Initialize pd=0 and compute Φi,k (Eq. (5));
2: while pd≤Φi,k do
3: Search a tk′∈K with nonzero λk′

i,k>0;
4: pd+=min{λk′

i,k,Φi,k−pd};
5: λk′

i,k−=min{λk′

i,k,Φi,k−pd};
6: if Rmin+

i,k +pd ≥ αi,kMi,k then
7: Invoke the weighted fair sharing algorithm;
8: else
9: Ensure rji,k←αi,k for as many applications as possible;

a variety of applications and all the VLGs along a flow
path may not have same amount of bandwidth available.
This implies that the allocated bandwidth of an application
on each of the involved VLGs is not necessarily the same.
Therefore, for each VLG vi, we have the following MMBA
problem:

max
∑
tk∈K

∑
aj∈M(vi,tk)

1rji,k>0 (1)

Subject to:
∑

aj∈M(vi,tk)

rji,k ≤ Rmax
i,k ,∀tk ∈ K, (2)

∑
tk∈K

∑
aj∈M(vi,tk)

rji,k ≤ Ci, (3)

Variable: rji,k ∈ Ωi,k ∨ {0}, ∀tk∈K, ∀aj∈M(vi, tk), (4)

where 1rji,k>0 is an indicator variable that is 1 if rji,k>0

and 0 otherwise. The objective of admission control in Eq.
(1) is to maximize the number of accepted applications. As
enforced by Eq. (2), the consumed bandwidth of each tk
cannot exceed the maximum reservable bandwidth Rmax

i,k .
Eq. (3) is a capacity constraint for VLG vi. Eq. (4) ensures
that the decision variable is either 0 or between the range
of [αi,k, βi,k]. Note that, one can obtain different objectives
such as minimizing the application completion time, given
the above constraints. In this paper, we mainly focus on
maximizing the number of accepted applications for im-
proving the scalability of deployed applications.

Next, we combine three bandwidth allocation algorithm-
s to derive an optimal solution to the MMBA problem.
Let the available and consumed bandwidth in the mini-
mum guaranteed bandwidth (Rmin

i,k ) be denoted by Rmin+
i,k

and Rmin−
i,k , respectively, where, Rmin+

i,k +Rmin−
i,k =Rmin

i,k

(∀vi∈N , ∀tk∈K).

5.2.1 Weighted fair sharing

The weighted fair sharing algorithm is used, for each frame-
work tk in vi, if the available minimum bandwidth Rmin+

i,k is
sufficient to guarantee the minimum bandwidth αi,k for all
applications inM(vi, tk). It first tries to allocate αi,k amount
of bandwidth to each application. Next, it divides the re-
maining bandwidth between each application aj based on
its weight wj , under the constraint of maximum consumable
bandwidth per application (βi,k). For simplicity, the weight
wj is defined as the number of flows in the application aj ,
to achieve fairness among applications at the network scale.
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Algorithm 2 Bandwidth borrowing for tk in vi

1: Initialize tb=0 and compute Ψi,k based on Eq. (6);
2: Update tb=min{Zi,Ψi,k} and Zi−=min{Zi,Ψi,k} if

Zi>0;
3: while tb≤Ψi,k do
4: Search a tk′∈K with Rmin+

i,k′ >αi,kMi,k′ ;
5: tb+=min{Rmin+

i,k′ −Mi,k′αi,k,Ψi,k};
6: λk

i,k′+=min{Rmin+
i,k′ −Mi,k′αi,k,Ψi,k};

7: Allocate αi,k to the un-served applications inM(vi, tk)
until the borrowed bandwidth tb is used up.

5.2.2 Bandwidth preemption
The bandwidth preemption algorithm, as shown in Algorith-
m 1, is invoked when the available minimum bandwidth
Rmin+

i,k is insufficient to accommodate all the applications
demands in M(vi, tk) and some bandwidth has been bor-
rowed by other computing frameworks. Formally, for each
vi, let λk′

i,k represent the amount of minimum bandwidth
that computing framework tk previously lent to tk′ . Let Mi,k

denote the number of applications in M(vi, tk). Then, the
amount of bandwidth that needs to be preempted for tk in
vi can be calculated as follows:

Φi,k = min{Mi,kβi,k −Rmin+
i,k ,

∑
tk′∈K

λk′

i,k}. (5)

Algorithm 1 begins by searching a tk′ with nonzero λk′

i,k

until Φi,k amount of bandwidth is located for preemption
(Steps 2-5). It then allocates the bandwidth based on the
summation of Φi,k and Rmin+

i,k . Similarly, if each application
can be guaranteed with a minimum bandwidth αi,k, it in-
vokes the weighted fair sharing algorithm (Step 7). Otherwise,
it tries to allocate αi,k amount of bandwidth to as many
applications as possible (Step 9).

5.2.3 Bandwidth borrowing
The bandwidth borrowing algorithm, as shown in Algorithm
2, is invoked when there is spare bandwidth in the network
and some applications have more requirement to achieve
their performance. Note that applications in an overloaded
framework can only obtain a minimum guaranteed band-
width. We therefore calculate the amount of bandwidth to
be borrowed for tk in vi as follows:

Ψi,k = min{Rmax
i,k −Rmin

i,k ,Mi,kαi,k −Rmin+
i,k − Φi,k}. (6)

Let Zi=Ci−
∑

tk∈K Rmin
i,k denote the amount of band-

width in VLG vi, which is shareable among all computing
frameworks. To borrow Ψi,k amount of bandwidth for tk,
Algorithm 2 first seeks the available shared bandwidth
(Step 2). It then borrows the available minimum bandwidth
from tk′ ∈ K until Ψi,k is filled up (Steps 3-6). Finally,
it allocates αi,k amount of bandwidth to those un-served
applications until the borrowed bandwidth is used up (Step
7).

After the processing of these three algorithms, we final-
ly update the available bandwidth Rmin+

i,k and consumed
bandwidth Rmin−

i,k for all vi∈N and tk∈K.
Theorem 1. The above allocating algorithms ensure an optimal

solution for the MMBA problem, if αi,k satisfies

αi,k ≤ min{
Rmin

i,k

Mi,k
,
Ci −

∑
tk∈K Rmin−

i,k

Mi
}, ∀vi, ∀tk, (7)

where Mi is the number of applications hosted by VLG vi.

Proof: Clearly, the optimal value for the MMBA prob-
lem is Mi. Considering three conditions:

• if αi,kMi,k≤Rmin+
i,k ,∀vi, tk, only the weighted fair

sharing will be invoked. Certainly, each application
can obtain a minimum guaranteed bandwidth.

• If for all vi and tk, αi,k ≤ (Rmin+
i,k +Φi,k)/Mi,k ≤

Rmin
i,k /Mi,k. Then, the bandwidth preemption algo-

rithm will be invoked, and each application can also
be guaranteed with a minimum bandwidth.

• Some frameworks may still have applications failed
to obtain any bandwidth, after executing the weight-
ed fair sharing and bandwidth borrowing algorith-
m. In this case, we denote the set of framework-
s that hold unserved applications as K1, and as
well denote the set of the remaining framework-
s as K2. Leveraging the fact that the total bor-
rowed bandwidth should not exceed the bandwidth
that can be borrowed, we have

∑
tk∈K1

Mi,kαi,k −
Rmin+

i,k − Φi,k ≤ Zi +
∑

tk∈K2
(Rmin+

i,k −Mi,kαi,k).

Substituting Zi = Ci−
∑

tk∈K Rmin
i,k , we yield

Miαi,k ≤ Ci−
∑

tk∈K Rmin
i,k +

∑
tk∈K2

Rmin+
i,k +∑

tk∈K1

(
Rmin+

i,k +Φi,k

)
. We can easily check that

the minimal value for the right side of the above
equation is Ci −

∑
tk∈K Rmin−

i,k . Thus, we have
αi,k≤(Ci−

∑
tk∈K Rmin−

i,k )/Mi.

Finally, we can infer from the above three conditions that
Theorem 1 is proved.

5.3 Intra-application bandwidth allocation
Once an application has been allocated bandwidth on each
involved VLG, CoMan assigns the allocated bandwidth
to individual flows of the application. Note that different
computing frameworks may not necessarily use the same
intra-application bandwidth allocation strategy, as these
frameworks may have different data flow computing model.
For completeness, we present a referenced intra-application
bandwidth allocation method to derive the flow-level band-
width allocation.

AsM(vi, tk)∩M(vi, tk′)=∅ for any tk ̸=tk′ in a given vi,
we number all rji,k (∀tk∈K, ∀aj∈M(vi, tk)) for vi in order,
and drop the index k. Accordingly, we get the bandwidth rji
allocated to each aj∈M(vi). For each flow f∈F(vi, aj) of
size dj,f , the bandwidth xf

i,j allocated to it can be calculated
as xf

i,j=rji×dj,f/(
∑

f∈F(vi,aj)
dj,f ). This implies that the

bandwidth allocated to each flow is proportional to the flow
data size, and we can easily check that

∑
f∈F(vi,aj)

xf
i,j=rji .

This method enforces all the flows of a same application
to have the equal flow completion times, and accordingly
will not make any flow become the bottleneck for poor
performance.

Finally, it should be noted that a flow may obtain dif-
ferent amounts of bandwidth in different VLGs. To pursue
work-conserving property, CoMan only allocates the min-
imal bandwidth (minvi x

f
i,j) to this flow on the involved

VLGs. The remaining bandwidth can be recycled to serve
more flows and more applications, by deploying a central-
ized controller [6].
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Fig. 6. An example of the VLG dependency graph in the case of a partial
4-radix Fat-Tree datacenter.

6 VLG DEPENDENCY GRAPH BASED PATH SE-
LECTION

In this section, we first present the VLG dependency graph
and then present the VLG selection algorithm for the indi-
vidual flows.

6.1 Virtual link group dependency graph

The bandwidth allocation algorithm reserves the bandwidth
across VLGs in the datacenter. Next step is to compute the
routing paths for individual flows, so as to quickly transmit
flows and solve the skewed use of the link bandwidth by
carefully planning the routing path for each flow. To this
end, we select one link for each flow from the involved
VLGs along the path such that the flow should be able to
compose a feasible routing path. This implies that the link
selection on different VLGs has implicit orderings. More
concretely, if two VLGs host a same flow and this flow has
been determined to pick a link from the first VLG, then the
flow should be placed on a dependent link in the second
VLG.

Therefore, based on above insights, we devise a de-
pendency relationship on the abstracted graph G=(N , E).
Specifically, an edge eii′∈E connecting VLG vi to VLG vi′
represents that vi depends on vi′ . We call the new graph
with dependency relationships as the “VLG dependency
graph”, which contains three types of dependency relation-
ships as follows:

• An upstream VLG within a pod (UgP) depends on the
upstream VLG on the top of this pod (UgToP), as well as
the downstream VLG within this pod (DgP).

• An upstream VLG on the top of a pod (UgTop) depends
on the downstream VLGs on the top of all pods (DgToP),
except that pod.

• A downstream VLG within a pod (DgP) depends on the
downstream VLG on the top of this pod (DgToP).

The VLG dependency essentially means that if VLG a
depends on VLG b and a flow selects a certain link in VLG
b, then the link in VLG a that can compose the routing path
for this flow should be directly identified. In such a case,
each flow only picks one link on each involved VLG, and
thus the routing path for each flow can be established. Note
that if two links share a mutual switch and the VLG with
the first link depends on the VLG with the second link,
then the first link depends on the second link. Fig. 6 shows
an example of such graph in the case of a partial 4-radix

l2

l4 l3
10

1 8

3 12

l1

Pod 0 Pod 1

Fig. 7. VLG dependency graph based path selection.

Algorithm 3 ScheduleGraph(G)
1: Initialize isScheduledi=0, ∀vi∈N ;
2: while isScheduled ̸= 1 do
3: Search a VLG vi with the in-degree being 0 in G;
4: LinkSelection(vi);
5: isScheduledi=1;
6: Remove the edges associated with vi in G;

Fat-Tree (in Fig. 5). Fig. 7 shows an example of selecting
path for a flow, which traverses four VLGs (3, 1, 8, 12), from
the leftmost edge switch to the rightmost edge switch. Since
VLG 8 does not depend on any VLG, we start with the link
selection on it. If the selected link is the red link l1, then we
observe that link l2 depends on l1. Therefore, this flow must
utilize the link l2. Similarly, we can pick links l3 and l4 for
this flow.

CoMan uses Algorithm 3 on the VLG dependency graph
to decide the link selection orderings of VLGs. The algo-
rithm starts by searching a vi with the in-degree being 0
(Step 3) and then invokes the LinkSelection(vi) algorithm to
perform the link selection for flows on the scheduled vi
(Step 4). Finally, it updates the VLG dependency graph with
the scheduled VLGs, and deletes the associated edges (Step
6).

6.2 Link selection

The link selection on vi is to select a link l∈Li for each flow
f∈F(vi), with the aim of improving the link bandwidth uti-
lization. We formulate such a link selection as the minimum
residual bandwidth problem (MRBP). Since xf

i,j has been
obtained for each aj ∈ M(vi) and each f ∈ F(vi, aj) in
a given vi, we actually obtain the bandwidth allocated to
each flow in vi. Specifically, let µf

i denote the bandwidth
allocated to flow f∈F(vi). To formally define MRBP, let
If,l be the decision variable, representing whether flow f is
placed on link l. Let cleftl =cl−

∑
f∈F(vi)

µf
i If,l denote the

residual bandwidth on link l∈Li. The MRBP problem is
formulated as follows:

min
If,l

∑
l∈Li

cleftl (8)

Subject to:
∑

f∈F(vi)

µf
i If,l ≤ cl, ∀l ∈ Li, (9)

∑
l∈Li

If,l = 1, ∀f ∈ F(vi), (10)

Variable: If,l ∈ {0, 1},∀l ∈ Li, ∀f ∈ F(vi). (11)
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The objective of MRBP is to minimize the residual band-
width. Eq. (9) enforces the total consumed bandwidth on a
link not to exceed the link bandwidth capacity. Specifically,
each flow can only pick one link in Li, as shown in Eq.
(10). This optimization problem is an integer optimization
problem, and appears to be in the form of Generalized
Assignment Problem (GAP) that is NP-hard [47].

Therefore, we propose a heuristic based solution to
solve MRBP problem, as shown in Algorithm 4. For each
scheduled vi, we first assign links to flows that have already
selected the related dependent links (Step 1). Then, we
remove those flows from the set F(vi) (Step 2), and update
the residual bandwidth for each l∈Li (Step 3). By now, there
still exist a set of remaining flows, which are then sorted in
the increasing order of their allocated bandwidth (Step 4).
Finally, for each flow, we search a link with the maximum
residual bandwidth in the set {l|cleftl ≥µf

i , ∀l∈Li}, and place
this flow on the available link (Steps 5-8). The following
theorem proves the approximate ratio of this algorithm.
Theorem 2. By applying Algorithm 4, the approximation factor

for the MRBP problem is, at most, 3
2 .

Proof: We first transform the MRBP problem to an
equivalent problem as follows:

max
∑
l∈Li

∑
f∈F(vi)

µf
i If,l s.t. Eqs (9), (10), (11). (12)

Let OPT denote the optimal value for Eq. (12). It is clear
that OPT ≥maxf µ

f
i and OPT ≥ 1

|Li|
∑

f∈F(vi)
µf
i . Consid-

er the link l with maximum load wdl. Let f be the last flow
assigned to the link l. When f was assigned, the link l must
have a load smaller than the average load. Then we have

wdl = (wdl−µf
i )+µf

i ≤
1

|Li|
∑

f ′∈{F(vi)−{f}}

µf ′

i + max
f∈F(vi)

µf
i .

This immediately shows that the approximation factor is 2.
However, we now prove that such an approximation factor
can be 3

2 if slightly more careful analysis is performed. Note
that if there are at most |Li| flows in F(vi), then optimal
solution is to place each flow on a link. If there are more
than |Li| flows, then there is at least one link in the optimal
solution that must get 2 of the first |Li|+1 flows. Meanwhile,
the bandwidth of these flows is at least as big as µ

|Li|+1
i .

Thus, OPT ≥2µ|Li|+1
i . Similarly, we consider f to be the

last flow assigned to the link l with maximum wdl. Here,
we assume that f>|Li|+1, or else the optimal solution can
be generated. As flows are sorted, we have µf

i ≤µ
|Li|+1
i and

wdl≤
1

|Li|
∑

f ′∈F(vi)−{f}

µf ′

i +µf
i ≤OPT +

OPT
2

=
3

2
OPT .

Thus, Theorem 2 is proved.
Remarks: One may question that the VLG dependency

graph based path selection is still flow level path allocation,
and this has already been realized by many existing traffic
routing approaches. For example, Hedera [11] focuses on
how to distribute flows to balance the traffic load in the
network. It should be noted that our path selection is
based on the outputs of the three-level bandwidth allocation
mechanism, which has already accounted for the collective
behaviors of flows belonging to a same application. That

Algorithm 4 LinkSelection(vi)
1: Assign f∈F(vi) to l if f has been assigned to l’s (l∈Li)

dependent links.
2: Remove the flows from F(vi), with

∑
l∈Li

If,l=1;
3: Update cleftl , ∀l∈Li;
4: Sort all f∈F(vi) in the decreasing order of µf

i ;
5: for each f∈F(vi) do
6: l← argmax{l|cleft

l ≥µf
i ,∀l∈Li} c

left
l ;

7: If,l=1;
8: Update cleftl =cleftl −µf

i ;

is to say, our path selection essentially investigates how
to distribute the bandwidth demands of flows belonging
to the same application evenly into the network, such that
the application-level performance can be guaranteed in real
datacenter network.

7 PERFORMANCE EVALUATION

In this section, we evaluate CoMan using large-scale simu-
lations and a small-scale testbed implementation.

7.1 Large-scale trace-driven simulation

Network topology: We simulate a 16-radix Fat-tree topol-
ogy, with 1024 servers and 4096 directed links resulting
in a total of 2048 upstream and downstream links. The
bandwidth capacity of each link is set to 1Gbps, which is
the common case in some data centers [48]. Based on the
link encapsulating polices, all links in such a 16-radix Fat-
tree are partitioned into 288 VLGs.

Datasets: Our experiments are conducted on the dai-
ly trace from Google cluster [49]. The trace contains the
statistics of application (Job) submissions during a period
of 29 days and each application comprises many tasks. The
scheduling class in the trace indicates the type of the task, and
its value ranges from 0 to 3, i.e., 0 refers to the least latency-
sensitive tasks, while 3 indicates the most latency-sensitive
tasks. In our experiment, we assume that each scheduling
class in the trace reflects the importance degree of each
computing framework, and accordingly this trace covers
4 computing frameworks. Given the trace, we extract the
information of applications in an approximate 7-day dura-
tion, which contains a 1000-interval period of time with each
interval being 10 minutes. The total number of the extracted
applications is 151082. The number of applications fall into
the four types are 76750, 31905, 28710, 13717, respectively.
For each extracted application, we generate flows among its
tasks using a many-to-many traffic pattern. Each flow’s data
size is set to be a random value within [0, 64]Mb because the
input data size of a task is typically less than 64Mb in those
computing frameworks, i.e., MapReduce [1].

Parameter settings: In our simulation, the mini-
mum guaranteed and maximum reservable bandwidth for
each computing framework accounts for 20% and 60%
of a given VLG’s bandwidth capacity, respectively, i.e.,
Rmin

i,k =0.2×Ci, R
max
i,k =0.6×Ci ∀vi∈N , ∀tk∈K. Without loss

of generality, the minimum guaranteed bandwidth per ap-
plication is set to be the same for all computing frameworks
and all VLGs, i.e., αi,k=α,∀vi, tk. Similarly, the maximum
bandwidth per application βi,k (∀vi, tk) is set to be 1Gbps.
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To investigate the impact of the minimum guaranteed band-
width per application, we record the number of rejected
applications under different settings of α. Table 3 indicates
that the number of rejected applications grows up as b1
increases. In this paper, we only present the evaluation
results in two scenarios, α=25Mbps and 50Mbps, due to
the page limitation. To ease the presentation, let “CoMan
(25)” and “CoMan (50)” denote two such scenarios.

TABLE 3
The number of rejected applications

α (Mbps) 25 30 35 40 45 50
Num. of Rejected Apps 0 447 1059 2828 5070 8444

We compare CoMan with the following four schemes.

• ECMP+Per-Flow: all the flows are routed by ECMP
(a randomized routing scheme) and compete fairly
for the link bandwidth [16, 17].

• ECMP+ElasticSwitch: an integration of the ECMP
routing and the ElasticSwitch bandwidth sharing
method [12]. ElasticSwitch first partitions the hose-
model guarantee of a virtual machine (VM) into VM-
to-VM guarantees, and then uses weighted-fair shar-
ing strategy to enforce VM-to-VM rate. The weight of
the flows between each VM pair is the correspond-
ing VM-to-VM guarantee. To simulate ElasticSwitch,
each server in the Fat-tree network is treated as a
VM, and the hose-model guarantee of each VM is set
to be 1Gbps.

• Routing+Per-Flow: all the flows are routed by a
heuristic based load balancing routing scheme and
compete fairly for the link bandwidth. This load
balancing routing selects path, going up from the
source first and going down to the destination late,
for each flow. Moreover, when a flow traverses a
switch (Core, Aggregation, or Edge) with multiple
links, it will choose a link with least workload to
route this flow.

• Routing+ElasticSwitch: an integration of the heuris-
tic based load balancing routing and the Elastic-
Switch bandwidth sharing method.

Performance metric: For comparison, we use the factor
of improvement as a performance metric. For instance, com-
pared to “ECMP+Per-Flow” or “Routing+ElasticSwitch”,
the factor of improvement on the application comple-
tion time (ACT) is computed as ACT in ECMP+Per-Flow

ACT in CoMan or
ACT in Routing+ElasticSwitch

ACT in CoMan . For bandwidth allocation of ap-
plication (BAA) and the link bandwidth utilization (L-
BU), such a metric is defined as BAA (LBU) in CoMan

BAA (LBU) in ECMP+Per-Flow or
BAA (LBU) in CoMan

BAA (LBU) in Routing+ElasticSwitch .
The application completion time (ACT): Fig. 8(a) first

shows the CDF of the application completion time (ACT) for
all schemes. We observe that CoMan performs better than
all of the schemes: ECMP+Per-Flow, ECMP+ElasticSwitch,
Routing+Per-Flow, and Routing+ElasticSwitch. Specifical-
ly, the percentage of applications completing within 5s is
94.26% and 95.74% for CoMan (50) and CoMan (25), respec-
tively, compared to 44.43% for ECMP+ElasticSwitch, 60%
for the ECMP+Per-Flow, 19.13% for the Routing+Per-Flow,
and 17.03% for the Routing+ElasticSwitch. Moreover, all
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tion time

Fig. 8. The performance related to application completion time when
using CoMan, compared to ECMP+Per-Flow, ECMP+ElasticSwitch,
Routing+Per-Flow, and Routing+ElasticSwitch.

applications can be finished within 10s in the case of CoMan
(25). Note that few applications failed (around 5.5%) in the
case of CoMan (50). This is because that some computing
frameworks cannot accommodate all applications on them,
due to the high minimum bandwidth configured for each
application.

Compared to ECMP+Per-Flow, ECMP+ElasticSwitch,
Routing+Per-Flow, and Routing+ElasticSwitch, Fig. 8(b)
shows that both CoMan (50) and CoMan (25) achieve small-
er average ACTs. Note that, we only consider the applica-
tions, which are successfully admitted in the case of CoMan
(50). The factor of improvement for the CoMan (50) is larger
than that for the CoMan (25) across all application types.
An interesting observation is that the computing framework
with more application instances achieves less improvement
on the average ACT. Such observation is mainly from the
fact that the improvement on the average ACT of the four
computing frameworks increases from Type 1 to Type 4
while the number of applications for them decreases from
Type 1 to Type 4 (i.e., the number of applications for Type
1 to Type 4 are 76750, 31905, 28710, 13717 respectively).
The underlying reason for this observation is that more
applications can lead to more intense competition of the
bandwidth. Compared to ECMP+Per-Flow, the improve-
ment in average ACT for CoMan (50) and CoMan (25) is
up to 14.41× and 11.67×, respectively. Whereas, compared
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to ECMP+ElasticSwitch, we observe improvements of up to
19.38× and 15.69× for CoMan (50) and CoMan (25), respec-
tively. Compared to Routing+Per-Flow, the improvements
can be up to 47.61× and 38.55× for CoMan (50) and CoMan
(25), respectively. Compared to Routing+ElasticSwitch, the
improvements can be up to 68.75× and 55.67× for CoMan
(50) and CoMan (25), respectively. Across all application
types, the average ACT achieved by CoMan is improved
by up to 4.55×, 6.68×, 16.32×, and 24.93×, compared
to ECMP+Per-Flow, ECMP+ElasticSwitch, Routing+Per-
Flow, and Routing+ElasticSwitch, respectively. In Fig. 8, we
observe that the ElasticSwitch based schemes perform even
worse than Per-Flow based schemes in the metric of ACT.
The main reason for this is that even though ElasticSwitch
is able to manage bandwidth well and allocate more band-
width to the applications, compared to Per-Flow, however,
ElasticSwitch may not be able to distribute the allocated
bandwidth of an application to the individual network
flows in an optimal way, as it is unaware of the application-
level semantic. We can further observe that ECMP based
schemes perform better than Routing based schemes. The is
because that this routing selects the link with least workload
among all links associated with a switch, making it unable
to achieve global optimal strategy for balancing the traffic
load among all links in the network. Eventually, this affects
the ACTs of applications.
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Fig. 9. Performance related to bandwidth allocation of application when
using CoMan, compared to ECMP+Per-Flow, ECMP+ElasticSwitch,
Routing+Per-Flow, and Routing+ElasticSwitch.

The bandwidth allocation of applications: To inves-
tigate the bandwidth allocated to each application, Fig.
9(a) plots the CDF of the bandwidth per application. Note
that the X-axis is in logarithmic scale and the bandwidth
allocated to the rejected applications is 0. We can see that
about 5.59% of the applications obtain 0Mbps in CoMan
(50). We further observe that most applications in CoMan
(25) and CoMan (50) can acquire an amount of bandwidth
greater than 25Mbps and 50Mbps, respectively. The por-
tion of applications with bandwidth less than 25Mbps in
CoMan (25) and 50Mbps in CoMan (50) is only 8.2% and
13.22%, respectively. On the contrary, 35% and 48.86% of
applications obtain less than 25Mbps and 50Mbps in the
case of ECMP+Per-Flow, respectively. ECMP+ElasticSwitch
performs a little bit better than ECMP+Per-Flow, as the
portion of applications with bandwidth less than 50Mbps
is 48.06%. For Routing+Per-Flow, 56.1% and 70.33% of ap-
plications obtain less than 25Mbps and 50Mbps respectively.
While those portions for Routing+ElasticSwitch are 55.2%
and 67.96%.

Fig. 9(b) plots the factor of improvements on the av-
erage bandwidth allocation across all applications and al-
l time intervals for both CoMan (50) and CoMan (25),
compared to ECMP+Per-Flow and ECMP+ElasticSwitch.
We can observe that as the number of applications of a
computing framework increases, the factor of improvement
decreases. This directly confirms the phenomenon in Fig.
8(b) that the more application instances in a computing
framework, the less improvement on the average ACT.
Compared to ECMP+Per-Flow and ECMP+ElasticSwitch,
the improvement on the average application bandwidth
achieved by CoMan (50) and CoMan (25) can be up
to 17.27× and 13.60×, respectively. Whereas, compared
to Routing+Per-Flow and Routing+ElasticSwitch, we ob-
serve improvements of up to 44.31× and 43.74× for Co-
Man (50) and CoMan (25), respectively. Across all ap-
plication types, CoMan also improves the average band-
width by up to 3.30×, 2.53×, 9.77× and 7.09×, compared
to ECMP+Per-Flow, ECMP+ElasticSwitch, Routing+Per-
Flow, and Routing+ElasticSwitch, respectively. We further
observe that even though ECMP+ElasticSwitch can allocate
more bandwidth to applications than ECMP+Per-Flow, it
performs poor in terms of ACT, because of more skewed us-
age of the application bandwidth. Also, the reason for why
Routing based schemes perform worse than ECMP based
schemes is that the routing achieves worse load balancing
than ECMP since it can only balance the load among the
links related to a switch rather than the whole network.

Link bandwidth utilization: Fig. 10(a) shows the CD-
F of per link bandwidth utilization across all links over
different time intervals. We observe that all schemes,
ECMP+Per-Flow, ECMP+ElasticSwitch, Routing+Per-Flow
and Routing+ElasticSwitch, cause the skewed use of link
bandwidth. In other words, they fully utilize some links,
while leave the other links to experience extremely low
bandwidth utilization. More precisely, ECMP+Per-Flow
and ECMP+ElasticSwitch fully utilize about 10% of links,
and the reminder 90% of links are almost idle, while
Routing+Per-Flow and Routing+ElasticSwitch can only ful-
ly utilize about 5% of links. On the other hand, CoMan
utilizes link bandwidth more evenly and we observe that
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Fig. 10. Performance related to link bandwidth utilization using CoMan,
compared to ECMP+Per-Flow, ECMP+ElasticSwitch, Routing+Per-
Flow, and Routing+ElasticSwitch.

CoMan (50) achieves a little bit higher link bandwidth
utilization than CoMan (25). This is because the CoMan
(50) configures a higher minimum guaranteed bandwidth
for each application.

Fig. 10(b) shows the factor of improvement on aver-
age bandwidth utilization across all links in the network.
We observe that both CoMan (50) and CoMan (25) per-
form better than ECMP+Per-Flow, ECMP+ElasticSwitch,
Routing+Per-Flow and Routing+ElasticSwitch, in terms
of the average link bandwidth utilization as the fac-
tor of improvement is always larger than 1. The
main reason for low average bandwidth utilization of
ECMP+Per-Flow, ECMP+ElasticSwitch, Routing+Per-Flow
and Routing+ElasticSwitch, is that they make the skewed
use of link bandwidth. We also observe that compared to
ECMP+Per-Flow and ECMP+ElasticSwitch, the factor of
improvement on the average link bandwidth utilization
achieved by CoMan (50) is up to 2.88× and 2.83×, respec-
tively. While CoMan (25) improves performance by up to
2.83× and 2.78×, respectively. Compared to Routing+Per-
Flow and Routing+ElasticSwitch, the factors of improve-
ment on the average link bandwidth utilization achieved by

Pica8 3297

1Gbps

1Gbps

1Gbps

Core

Aggregation

Edge

Hosts

Fig. 11. Testbed topology.

CoMan are both up to 5.59×.
Remarks: The above results verify the three design princi-

ples of CoMan: 1) elastic use of bandwidth among comput-
ing frameworks; 2) guaranteeing the network performance
of applications to speed up the completion; 3) avoiding the
skewed use of link bandwidth to improve link bandwidth
utilization.

7.2 Small-scale testbed implementation

We embed our CoMan into a Software-defined Network
(SDN) controller, which performs the bandwidth allocation
and path selection strategies. For the path selection, we
use the controller to configure the flow entries of involved
switches along the flow’s routing path. Meanwhile, we
leverage SDN functions (e.g., the MeterTable in OpenFlow)
to enforce the bandwidth allocated to each flow. In our
implementation, we construct a datacenter testbed with a
Fat-Tree like topology comprising 10 switches and 8 servers,
as shown in Fig. 11. We use a Pica8 3297 48-port Gigabit
switch with PicOS 2.6.32 system that supports both Layer
2/3 and OpenFlow. Each switch has 4 ports created from
the virtualization of a SDN switch. Each server has a 2-core
Intel(R) Pentium(R) 3.00GHz CPU, 2GB RAM, and 1G NICs.
All the servers are configured with the Ubuntu, 12.04 64bit
version operating system.

To evaluate the CoMan performance, we inject 10 ap-
plications with 55 flows into the datacenter network. These
applications are considered to be submitted by two com-
puting frameworks. The flow size is set to be 1Gb. We use
iperf to generate TCP flows, and the traffic pattern of all
the flows follows an all-to-all manner. We distribute these
flows among the 10 applications, where each application
aj (j=1, 2, · · ·, 10) contains j flows. For the parameters
settings, the minimum guaranteed bandwidth and the maxi-
mum reservable bandwidth for each computing framework
accounts for 50% and 60%, respectively, on each VLG. In
addition, for all the computing frameworks and all VLGs,
we use αi,k=100Mbps and βi,k=200Mbps to enforce the
bandwidth per application. As a comparison, we also eval-
uate the case of the baseline, where all the flows are routed
by the default shortest path, and all of them fairly compete
for bandwidth. That is, the baseline does not use CoMan.

Fig. 12(a) shows that the CoMan can significantly reduce
(e.g., up to 67.37 seconds for the 4-th applications) the ACT
of all 10 applications, in the testbed experiment. Across
all applications, the average reduction of the ACT is 33.03
seconds resulting in the factor of improvement on the ACT
achieved by CoMan of up to 2.32×. To understand this
on a microscopic level, we plot the bandwidth allocated
to the individual flows in Fig. 12(b). We can see that the
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Fig. 12. Performance comparison in the test bed deployment.

minimum value of the flows’ bandwidth of one application
in the absence of CoMan is always lower than that in the
case with CoMan. The experimental results demonstrate
that CoMan can account for the collective behaviors of
flows when performing the bandwidth allocation, and can
adequately utilize the link bandwidth, given the same traffic
load, which improves the application completion times.

8 DISCUSSION

Supporting other datacenter network topologies: So far we
have only focused on the Fat-Tree topology. However, it is
important to keep in mind that our solution can simply be
extended to other topologies [50, 51]. For example, when
extending our solution to BCube [51], the only thing we
need to do is to construct VLG groups. For example, in
BCube, the links that source from, or direct to a same
server can be encapsulated into a VLG. With the VLGs in
BCube, we can then construct the VLG dependency graph
and perform the bandwidth allocation and routing with the
same way we did in this paper. We leave this as one part of
our future work.
Incorporating with existing computing frameworks: Co-
Man relies on bandwidth allocation and routing techniques
to be deployed in reality, and both techniques can be im-
plemented by taking advantages of the SDN controllers and
SDN switches. To incorporate CoMan with existing comput-
ing frameworks, the only thing we need to do is to design
a middle layer that can bridge the computing frameworks
and the SDN controller. For example, the SDN controller can
get the flow information of Spark applications through the
MapOutputTracker and the Spark DAG scheduler [52, 53].
We remain this point as an open challenge.
Source/destination placement: CoMan assumes that the
source and destination nodes are fixed when performing

bandwidth allocation and routing for each flow. This simpli-
fies the complexity of managing the bandwidth across mul-
tiple computing frameworks in a datacenter. However, in
general, the relations among source/destination placement
(e.g., data placement, map/reduce placement), bandwidth
allocation and routing are deeply intertwined with each
other. This can be incorporated into CoMan by using the
data/task placement techniques in [54, 55] before we perfor-
m bandwidth allocation and routing for the network flows.
In such a case, the application performance can further be
improved. We leave this as another part of our future work.
Dealing with WAN bandwidth allocation: Currently, Co-
Man focuses only on managing the in-network bandwidth
within a single datacenter. Since the data-parallel jobs are
increasingly running across multiple geographically dis-
tributed datacenters [56, 57], one may question that can
CoMan be extended to manage the inter-datacenter WAN
bandwidth? Actually, this can incorporated into CoMan by
first encapsulating the inter-datacenter links source from or
direct to a same datacenter into a VLG group and then con-
structing VLG dependency graph. Finally, we can perform
bandwidth allocation with the resources in each VLG and
also select routing paths for each flow based on the VLG
dependency graph.
Handling applications within one computing framework:
One may wonder at this point that even when deploying
one computing framework in a datacenter, the bandwidth
utilization “skewness” still exists. This is because that such
“skewness” is caused by the skew input data of applications
[35–37], rather than deploying different computing frame-
works in a datacenter. In such a case, how to manage the
bandwidth? One possible way is to define a set of priority
queues, and leverage the max-min bandwidth constraint model
to set the bandwidth that each queue can use. We can then
distribute the bandwidth of each queue to its applications
and flows, and finally perform routing for each flow.

9 CONCLUSION

In this paper, we propose a bandwidth management archi-
tecture called CoMan, which enables the global coordina-
tion among multiple computing frameworks for achieving
high bandwidth utilization and short application comple-
tion times. Specifically, we tackle a challenging link cou-
pling problem, and propose a novel abstraction of VLGs
to virtualize the bandwidth into a pool. Accordingly, we
introduce a three-level bandwidth allocation model to allow
elastic bandwidth sharing among computing frameworks
as well as guarantee the network performance for applica-
tions. We further propose a novel VLG dependency graph
and formulate a minimum residual bandwidth problem to
guide the path selection, with high bandwidth utilization
as the objective. Overall, the trace-driven simulation results
show that CoMan improves the bandwidth utilization and
speeds up the application completion time by up to 2.83×
and 6.68×, respectively, in comparison to the widely used
ECMP+ElasticSwitch solution. Moreover, the testbed results
show that applications complete up to 2.32× faster, on
average, when using CoMan.
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