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Abstract—In data centers, a lot of cluster computing applica-
tions follow the coflow working pattern. That is, a collection of
flows between two groups of machines is semantically related.
On the other hand, network function virtualization (NFV) suf-
ficiently improves the performance of data center networks. It,
however, complicates the network environment by introducing
many multi-function middleboxes each with multiple resources.
Coflows encounter extremely different processing delays under
diverse network functions. Prior coflow scheduling schemes are
insufficient to guarantee the coflow completion time (CCT)
in the multi-resource environment. In this paper, we propose,
model, and analyze the coflow scheduling problem in the multi-
resource environment. We present a dedicated method, DRGC
(Data Rate Guarantee for Coflow), to guarantee the data rate
requirements of coflows in this situation. DRGC prioritizes the
coflow scheduling sequence, assigns precise data rates for coflows,
and deploys a packet scheduling algorithm at middleboxes to
guarantee their transmissions. In our experiments, DRGC effi-
ciently guarantees the completion times of coflows and supports
15% more workload, compared with other scheduling schemes.

Index Terms—Coflow scheduling, QoS guarantee, multi-
resource environment.

I. INTRODUCTION

IN data centers, cluster computing applications, e.g.,
MapReduce [1] and Dryad [2], have been vastly hosted.

These data-intensive applications work in the job granularity.
Each job contains lots of coflows, each of which can be defined
as a collection of data flows between two groups of machines.
Coflow is proposed to abstract the communication require-
ments of prevalent data parallel programming paradigms [3].
Although the individual flows in the same coflow are usually
transmitted in parallel, the coflow completion time (CCT) is
always delayed by the last finished flow in it. Meanwhile,
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Fig. 1. Coflow scheduling with middleboxes.

the input of a coflow usually depends on the output of other
coflows. The dependency relationship between coflows further
complicates the coflow scheduling problem.

Cluster applications usually have strict Quality of Service
(QoS) requirements on the CCT. In web searching, the aggre-
gator needs to integrate the feedback information from edge
workers. A long feedback time of an individual flow delays
the final response to users. A variety of scheduling schemes
[4–6] have been proposed to improve the performance of
cluster applications. However, prior works are insufficient to
achieve better performance when they neglect the collective
objective of the individual flows. Subsequently, the concept of
coflow has been proposed to bridge the gap. CCT is closely
related to the data rates of the flows in a coflow. Thus, some
rate-based coflow scheduling schemes emerged to guarantee
the CCT through different ways. Typically, Baraat schedules
coflows in a multiplexed FIFO (First In First Out) manner [7].
Varys measures the expected CCT and preferably schedules
the coflow with the minimal CCT [8]. RAPIER strives to
minimize the CCT through an appropriate routing scheme [9].
All of these schemes assume that the individual flows only
encounter simple forwarding at network devices. Thus, data
packets experience roughly the same processing delay at these
devices. However, these assumptions are difficult to achieve in
networks deployed with multi-function middleboxes.

Network function devices, also known as middleboxes [10],
have been ubiquitously deployed in data centers, on par
with traditional L2/L3 network devices [11, 12]. Customized
middleboxes incur high cost, including the purchase and the
upgradation of the physical equipments [13]. Network function
virtualization (NFV) sufficiently reduces the cost by deploying
various network functions on commodity hardware. Thus,
NFV devices are also seen as software-centric middleboxes
[10]. Some noticeable characteristics of middleboxes further
complicate the coflow scheduling problem in data centers.

A coflow contains multiple data flows in parallel [8]. These
flows usually experience different transmission delays on their
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respective routing paths [9], which are deployed with diverse
middleboxes. In a special case, some applications are deployed
and executed across geographically distributed data centers
[14]. In this situation, a coflow deriving from these applica-
tions needs to go through diverse middleboxes and undergo the
same or different network functions in different data centers.
With different workloads and hardware configurations, it is
hard to synchronize the transmissions of the flows in the
same coflow, which means its completion time cannot be
guaranteed. The reasons are as follows. Compared with routers
and switches, middleboxes perform a variety of network
functions, including firewall, IDS, basic forwarding, and so
on. Typically, security-based packet analyzing functions [15]
consume more CPU cycles than other functions. For a packet
with the size of 1000 bytes, Redundancy Elimination and
IPSec Encryption respectively consume almost 2× and 11×
of the CPU time, compared with the basic packet forwarding
[16]. As shown in Fig. 1, flows 1, 2 and 3 are set with the
same size and they belong to the same coflow. When flow 1 is
simply forwarded at middlebox 1, the transmissions of flows
2 and 3 will extremely delay the completion of this coflow if
they undergo Redundancy Elimination and IPSec Encryption,
respectively. Even if these middleboxes execute the same
network function, different workloads at these devices will still
result in transmission discrepancy. However, the transmissions
of the individual flows should be completed simultaneously
such that none of them will delay the completion of the coflow.

Meanwhile, data rate partition among flows is difficult in the
multi-resource environment [16]. Network devices, including
switches, routers and middleboxes, are equipped with multiple
hardware resources, e.g., the CPU, the memory, and the NIC.
Packets need to be transferred to the next resource after passing
the previous one [17][18]. However, packet forwarding at
switches and routers consumes short processing time at the
CPU and the memory, and only the NIC will restrict the
transmissions of flows [16]. In this situation, the bandwidth
of the NIC can be discretionarily allocated to flows without
concern for the capabilities of the CPU and the memory. As
we mentioned before, flows under different network functions
consume different amounts of resources at middleboxes. Thus,
any resource may become the bottleneck. Focusing on the
data rate partition only on one resource may exhaust other
resources. Fairly allocating each resource in a middlebox will
not achieve a fair data rate partition for the passing flows
[16]. Not to mention that some hardware resources cannot be
divided or shared by packets simultaneously. Thus, traditional
rate-based coflow scheduling schemes become inapplicable in
the multi-resource environment. Here, we do not consider the
packet processing in the systems with multiple CPUs or NICs.

In this paper, we propose, model, and analyze the coflow
scheduling problem in the multi-resource environment. We
present DRGC (Data Rate Guarantee for Coflow) to guarantee
the completion times of coflows in the multi-resource environ-
ment. DRGC first determines the coflow scheduling sequence
and prioritizes their transmissions. The CCTs are closely
related to the data rates of the individual flows, thus DRGC
makes precise data rate allocation for the individual flows
such that their transmissions can be completed simultaneously

before the predefined completion times. We incorporate end-
points and middleboxes together to achieve this goal. End-
points expose the desired data rates of flows through times-
tamp marking on packets. Middleboxes adopt a scheduling
algorithm to satisfy their requirements on data rates, based on
the priorities of coflows. In our experiments, DRGC efficiently
guarantees the completion times of coflows and supports 15%
more workload, compared with other scheduling schemes.

The rest of this paper is organized as follows. We introduce
related scheduling schemes in §II. The background knowledge
about coflow and the motivation of DRGC are given in
§III. Detailed framework of DRGC is introduced in §IV.
We conduct extensive trace-driven experiments to verify the
performance of DRGC in §V. §VI concludes this paper.

II. RELATED WORK

Scheduling schemes can be classified into many categories
based on different criterions. In this part, we introduce some
coflow-aware scheduling schemes and some schemes used in
the multi-resource environment.

A. Coflow-aware Scheduling Schemes

Prior works [4–6] have already attempted to improve
the performance of cluster computing applications. Formally,
coflow [3] represents the application-level semantics among
individual flows, and many coflow-aware scheduling schemes
have been successively proposed to guarantee the communi-
cation requirements of coflows. As a task-aware scheduling
scheme, Baraat [7] schedules coflows in a FIFO manner. It
detects large coflows and then increases the level of mul-
tiplexing, so as to avoid the head-of-line blocking. Thus,
Baraat possesses the characteristics of decentralization and
non-preemption. On the contrary, Varys [8] implements in a
centralized and preemptive manner. It computes the minimum
CCT for coflows, and uses the proposed Smallest-Effective-
Bottleneck-First (SEBF) algorithm to schedule coflows in the
smallest-CCT-first order. However, Varys suffers from the scal-
ability problem. For avoiding the aforementioned limitations
of Baraat and Varys, D-CAS [19] attempts to minimize the
average CCT through a decentralized and preemptive manner.
Periodically, senders of each subcoflow negotiate with the
receivers about their desired priorities. Then, senders update
priorities of packets according to the feedback from receiver-
s. Subcoflow-level minimum-remaining-time-first is achieved
through priority-based scheduling policy at switches.

RAPIER [9] additionally takes the routing scheme into
account and appropriately selects paths for the individual flows
of each coflow, so as to minimize its CCT. Subsequently,
it allocates minimal bandwidth to flows to synchronize their
completion time and distributes the remaining bandwidth to
other coflows. As a flow information-agnostic scheduling
scheme, Aalo [20] implements a least-attained service scheme
by using a multi-priority queueing system. The coflows with
the same priority will be allocated to a common queue and be
scheduled in the FIFO manner. Besides, the priority of each
coflow decreases according to the traffic it has already sent.
Thus, the coflows with small size are more likely to be finished
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before larger ones, and the average CCT can be reduced. Spe-
cially, Sunflow [21] explores the coflow scheduling problem
in the network deployed with optical circuit switches.

Prior works neglect the packet processing procedure at
middleboxes, which are equipped with multiple hardware re-
sources. Flows consume more processing time at these devices,
compared with routers and switches. The benefit of coflows
is difficult to be guaranteed when the individual flows of the
same coflow pass through different middleboxes. We propose
DRGC to guarantee the data rate requirements of coflows in
this situation. This is the most important difference between
our proposal and prior works.

B. Flow Scheduling in the Multi-resource Environment

Traditional queueing schemes strive to guarantee the QoS
requirements of flows in a single resource queueing system.
For example, Fair Queueing (FQ) [22], Weighted Fair Queue-
ing (WFQ) [23], Start-time Fair Queueing (SFQ) [24] and
Generalized Processor Sharing (GPS) [25] strive to provide
fair service for the passing flows. In the multi-resource envi-
ronment, flows usually consume different amounts of resources
under diverse network functions. Meanwhile, incoming pack-
ets need to be successively processed on diverse resources.
Traditional flow scheduling schemes become inefficient to
guarantee the QoS requirements of flows under these con-
straints. Dominant Resource Fairness (DRF) [26] presents a
fair multi-resource allocation principle for users with diverse
demands on different resources. Here, the dominant resource
of a user is defined as the resource with the maximum
share among all resources. Inspired by DRF, many scheduling
schemes [16][17][18][27][28] have been proposed to provide
fair service in the multi-resource environment. Subsequent
works further improve the availability of this kind of schedul-
ing scheme in many aspects.

Typically, Multi-Resource Fair Queueing (DRFQ) [16] ap-
plies virtual time to measure each flow’s processing time on
its dominant resource. According to this metric, flows are
scheduled in a max-min fairness manner, i.e., the flow with
the minimum virtual time is always scheduled preferably. In
this way, the DRF among flows is achieved in time, rather than
in space. Similarly, Dominant Resource Generalized Processor
Sharing (DRGPS) [27] introduces the concept of GPS into
the multi-resource environment and achieves DRF for flows
strictly at all time. Although DRGPS can only be realized in an
ideal fluid model, where packets can be subdivided infinitely,
it should be taken as a benchmark to evaluate the performance
of other scheduling schemes.

Prior scheduling schemes suffer from the scalability prob-
lem when too many flows are backlogged in the system. Thus,
Multi-Resource Round Robin (MR3) [17] proposes to reduce
the computing complexity by using the round-robin algorithm.
In each scheduling round, the flow at the head of the list of
active flows will be chosen. Then, it can optionally process its
packets as long as its balance, which is reduced according to
the dominant processing time of packets, is positive. Compared
with prior works, MR3 only need O(1) time cost to make
scheduling decisions while still target at achieving the DRF

among flows. However, MR3 may result in large scheduling
delay when flows are assigned with different weights. GMR3

[18] eliminates this concern by separating the flows with
similar weights into different groups, each of which associates
with a timestamp. The flows in the group with the minimum
timestamp will be scheduled in a round-robin manner. Besides
the fairness, ATFQ [29] also strives to improve the resource
utilization by using an efficient scheduling algorithm.

All the aforementioned scheduling schemes deploy per-flow
buffers for flows. This results in more scheduling overhead
with the growing number of the arrived flows. To solve this
problem, Myopia [10] presents an improved count-min sketch
to identify elephant flows. Only these flows will be allocated
a per-flow buffer and scheduled subjecting to the DRF. Mean-
while, the mice flows will be buffered in a common queue
and follow the FIFO scheduling order. Myopia is effective
because it only maintains the state of a few elephant flows,
which contribute the majority of the traffic load in the network.

III. COFLOW SCHEDULING IN THE
MULTI-RESOURCE ENVIRONMENT

We start with the concept of coflow in §III-A. Then, we
model the coflow scheduling problem in the multi-resource
environment in §III-B. For protecting the benefit of coflows,
coflow scheduling priorities are determined in §III-C. Finally,
we make precise data rate allocation for the individual flows of
coflows, so as to guarantee their predefined completion times.

A. Problem Background
A coflow is defined as a semantically-related collection

of flows between two groups of machines [3]. The individual
flows in a coflow derive from the same group of source nodes,
and target at the same group of destination nodes. With a
collective objective, their transmissions are usually in parallel.
For example, web search works in the Partition/Aggregate
pattern [30]. After analyzing the searching request from the
aggregator, all the end-workers will return the searching results
to the aggregator. These parallel flows are semantically-related,
because they all contribute to the final response to users.
Thus, they can be seen as a single coflow. In this context, the
collective objectives of coflows should be taken into account.
Generally, coflow represents many communication modes,
e.g., many to one, one to many, and all to all, depending on
the work patterns of different applications. Here, we list some
necessary notations in Table I.

Normally, a coflow ci can be expressed as a collection
of individual flows: ci={fi,1, fi,2, ..., fi,|ci|}. |ci|, which is
also defined as the width of ci, indicates the number of
flows in this coflow. As prior works [9][31], we assume that
coflow information, including the sizes of individual flows, is
achievable by using some prediction techniques [32]. The size
of a coflow indicates the sum of sizes of individual flows in
it. As for the flow fi,j , its size and data rate are denoted as
size(fi,j) and ri,j , respectively. Thus, the size of the coflow
ci can be calculated as:

size(ci)=

|ci|∑
j=1

size(fi,j). (1)
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TABLE I
NOTATIONS.

Notation Explanation

size(p) the size of packet p
size(fi,j) the size of flow fi,j
start(ci) the start time of coflow ci
end(ci) the actual completion time of coflow ci
start(fi,j) the start time of flow fi,j
end(fi,j) the completion time of flow fi,j
di the predefined completion time of ci
ri,j the data rate of flow fi,j
si,j the completion status of flow fi,j
Rm̃ the m̃-th resource at a middlebox
S(p, m̃) the start time of packet p on Rm̃
L(p, m̃) the processing time of packet p on Rm̃
R(p, m̃) the release time of packet p on Rm̃

If the flow fi,j starts its transmission at start(fi,j), its
completion time is given as follows:

end(fi,j)=start(fi,j)+
size(fi,j)

ri,j
. (2)

The individual flows in ci transmit their data in parallel, but out
of synchronization. The first started flow and the last finished
flow respectively indicate the start time and the completion
time of the coflow, which can be expressed as:

start(ci)= min
fi,j

start(fi,j) (3)

end(ci)= max
fi,j

end(fi,j). (4)

As for some cluster computing applications, e.g., Dryad [2]
and Spark [33], their jobs usually cover multiple stages. In
each stage, several coflows need to be transmitted in parallel.
Besides, the execution of a coflow may depend on the output
of others in the previous stage. This inherent relationship
plays an important role when deciding the coflow scheduling
sequence in practice. Similar to [3][20], we define two kinds
of dependency relationship among coflows as:
• Start-after (ca 9 cb): In Fig. 2(a), the transmission of cb

relies on the whole output of ca. Thus, cb can only start
after ca finishing its transmission.

• Finish-after (ca → cb): In Fig. 2(b), the transmission of
cb depends partially on the output of ca. Although cb
can start concurrently with ca, it can only finish after
ca finishing its transmission. For example, MapReduce
Online [34] makes it possible to push data from map
task to reducers as it is produced. Thus, reducers can
start their work before the completion of the map tasks.

B. Problem Modeling

Scheduling Motivation Given a set of coflows
{c1, c2, ..., ck}, we assume all of these coflows pass
through the same one middlebox. Their completion times are
predefined as {d1, d2, ..., dk}. The benefit of coflows will not
be influenced if they successfully finish their transmissions
before their predefined completion times. In this context, fair
sharing is powerless to guarantee the benefit of coflows when
they compete for the limited resources at this middlebox.

(a) With barrier. (b) Without barrier.

Fig. 2. Dependency among coflows.

Striving to satisfy all the transmission requirements of coflows
will result in inefficiency, on the contrary. Reasonably, the
benefit of coflows should be sequentially guaranteed. In the
essence, the benefit of each coflow relies on the completion
of the individual flows in it. Assume that the coflow ci is
currently scheduled and it possesses the highest priority. For
furthest completing its transmission, we strive to maximize
the number of the individual flows meeting the predefined
completion time. Thus, we get:

Max

|ci|∑
j=1

si,j

s.t. si,j =

{
0, if end(fi,j) > di

1, if end(fi,j) 6 di

(5)

Here, si,j denotes the completion status of the flow fi,j .
end(fi,j) depends on the finish time of its last packet. Thus,
the packet scheduling manner at middleboxes sufficiently
influences the scheduling results.

Packet Processing inside Middleboxes Assume there are
m kinds of resources, denoted as R1, R2, . . ., and Rm. We
make the following constraints:

• Every packet should follow the same resource processing
sequence, i.e., all packets should orderly go through R1,
R2, . . ., and Rm.

• The resource will be monopolized by the packet pro-
cessed on it. Before finishing the processing, that resource
will not be utilized to process another packet.

• For limiting the influence of the buffer system, we assume
that any resource can only buffer one packet. That is,
when a packet has been finished on one resource, it will
be pushed to the next resource as long as the previous
packet has already released that resource.

According to these constraints, the aforementioned schedul-
ing objective directly depends on the packet scheduling se-
quence, denoted as η, at the middlebox. η contains all the pack-
ets of flows coexisting with the coflow ci. With different η,
flows will complete their transmissions in different sequences.
The completion status of ci also relies on η. This relationship
can be expressed as follows:

|ci|∑
j=1

si,j=ϕ(η). (6)

Consequently, we strive to get the packet scheduling sequence
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η∗ in which ci can furthest completes its transmission:

η∗=arg max ϕ(η)

s.t. R(pk, m̃)=Max
{
R(pk−1, m̃+1) , S(pk, m̃)+L(pk, m̃)

}
S(pk,m̃+1)=R(pk, m̃), 16m̃<m

si,j=

{
0, if R(p∗i,j ,m) > di
1, if R(p∗i,j ,m) 6 di

(7)

We denote the kth packet in the scheduling sequence η∗ as
pk. Its start time, the processing time, and the release time
on the resource Rm̃ are denoted as S(pk, m̃), L(pk, m̃), and
R(pk, m̃), respectively. If pk has finished its process on Rm̃,
but Rm̃+1 is still occupied by the previous packet, pk will be
buffered on Rm̃ until Rm̃+1 becomes idle. Thus, we get:

R(pk, m̃)=R(pk−1, m̃+1). (8)

Otherwise, pk will release Rm̃ after finishing its process on
it. In this situation, we get:

R(pk, m̃)=S(pk, m̃)+L(pk, m̃). (9)

pk will also start its process on Rm̃+1 after releasing Rm̃.
Obviously, packets will release the last resource Rm as long
as they finish their process on it. Denote the last packet of the
flow fi,j as p∗i,j . fi,j successfully completes its transmission
if R(p∗i,j ,m)6di.

In the scenario of multiple middleboxes, the flows in
the same coflow pass through different middleboxes. Coflow
transmission becomes more complex in this situation. The
biggest obstacle to the aforementioned scheduling objective
is that different middleboxes do not simultaneously see ci
as the coflow whose benefit should be guaranteed at present.
Otherwise, they can protect the transmission of ci based on
local knowledge. To this end, two kinds of solutions can
be adopted. On one hand, middleboxes can cooperate with
each other. With global knowledge, it is easy for middleboxes
to determine which coflow should be scheduled currently.
However, this solution results in additional communication
overhead and implementation complexity. On the other hand,
coflows should be distinguished by using the priority. If ci
is currently scheduled and possesses the highest priority, all
middleboxes will preferentially guarantee its transmission.
Prioritizing the coflow scheduling sequence is significant to
achieve our scheduling objective when network resources are
scarce. Next, we elaborate how to assign priorities to coflows.

C. Coflow Scheduling Sequence

Cluster computing applications usually work at the job gran-
ularity, and each job consists of multiple coflows. Although we
can prefer the jobs of a specific application by allocating high-
er priorities to them, we do not want to discriminate against
any jobs. Meanwhile, it is hard to estimate the importance of
a job just according to its execution time or data volume. In
this situation, First Come First Serve (FCFS) comes out to
be a reasonable choice. FCFS sequentially schedules jobs just
according to their arising times, thus it does not distinguish
jobs in terms of the execution time or the type of application.
Consequently, we decide to schedule jobs in a FCFS sequence

in the design of DRGC. However, DRGC does not strictly
schedule jobs one after another. We just strive to preferably
satisfy the transmission requirement of the first emerged job.
After that, the residual network resources will still be utilized
to serve other jobs.

Network devices make scheduling decisions at the flow
level, thus they are insufficient to distinguish different coflows.
For identifying coflows, we make the following rules. Job JN
registers the number N on a global counter, which increases
with the registration of jobs. Obviously, the value of N is
unique, and it records the job registration sequence, which
depends on the job arising time. Meanwhile, the execution of
JN usually covers multiple transmitting or computing stages,
each of which contains multiple parallel coflows. We use s
and n to indicate the serial number of the stage and the serial
number of the coflow in each stage, respectively. j is used to
indicate the serial number of each individual flow in the same
coflow. Based on these rules, we use γ=〈N, s, n, j〉 as the
indicator of each individual flow. The reasons are as follows.

1) γ is unique in the network. Different jobs will not be
assigned the same value of N . Meanwhile, cluster computing
applications can assign 〈s, n, j〉 to individual flows at their
own end-points after registering the number N on the global
counter. But in each job, values of 〈s, n, j〉 are also unique
for each individual flow. Consequently, individual flows in the
whole network will be distinguished from each other by using
the indicator 〈N, s, n, j〉.

2) The semantic relationship between the individual flows
of the same coflow can be expressed. Flows with the same
values of 〈N, s, n〉 will be recognized as the ones deriving
from the same coflow. Thus, they will be treated equally at
different devices.

3) Coflow scheduling sequence can be defined. As afore-
mentioned, job JN registers the number N on a global counter.
That means, jobs with earlier arising times will be assigned
smaller value of N . We schedule jobs based on FCFS, thus
smaller value of N indicates higher priorities in the design of
DRGC. In each job, the input of coflows depends partially or
totally on the output of other coflows in the previous stage.
That means, coflows in the next stage will not complete their
transmissions before the completion of the coflows in the
previous stage. Thus, transmission failures of the latter can
even interrupt the transmission of the former. For avoiding
such situation, we preferentially guarantee the transmissions
of the coflows in the previous stage and define that smaller
value of s indicates higher priorities at stage level. Parallel
coflows in the same stage should be seen as independent units.
Following the principles of FCFS, we define that coflows
with smaller value of n should be preferentially scheduled.
Similarly, individual flows with smaller value of j in the same
coflow possess higher priorities.

In summary, we use γ=〈N, s, n, j〉 as the indicator of each
individual flow. Meanwhile, smaller values of N, s, n, and
j indicate higher priorities at different levels. As for two
flows with indicators of 〈N1, s1, n1, j1〉 and 〈N2, s2, n2, j2〉,
we firstly schedule the former if any one of the following items
is matched:
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• N1<N2;
• N1=N2 & s1<s2;
• N1=N2 & s1=s2 & n1<n2;
• N1=N2 & s1=s2 & n1=n2 & j1<j2;

We propose DRGC to guarantee the predefined completion
times of coflows in the multi-resource environment. It still
works even if coflows are scheduled in other sequences.
Shortest Job First (SJF) can also be adopted to achieve the
corresponding scheduling objective, but it needs to measure
the transmission time of coflows in advance. Now that we
have already decided the coflow scheduling sequence, how to
guarantee the predefined completion times of coflows becomes
the most difficult challenge. Bear in mind that CCT is closely
related to the data rates of individual flows. For achieving this
goal, we need to make precise data rate allocation for coflows.

D. Data Rate Requirements of Coflows

Individual flows in the same coflow are semantically related.
Thus, they should be selfless to achieve the collective objective
of the coflow. Prior works have already explored many possi-
ble ways to minimize the average CCT in traditional networks.
In another way, we predefine the CCTs of coflows in advance.
Coflows coming from diverse applications undergo different
data processing. Thus, uniformly predefining the CCTs for
all coflows is unacceptable in practice. Different applications
should determine CCTs for their coflows independently, based
on statistical analysis and measurement.

As for the coflow ci, its completion time depends on the last
finished flow in it. Allocating more bandwidth to other flows
will not reduce its CCT. For avoiding resource waste on the
link bandwidth, other flows should reduce their data rates so as
to lengthen their transmission times and finish simultaneously
with the last finished flow. In this way, a coflow can complete
its transmission with the minimum link bandwidth occupation,
and more coflows can share the network simultaneously. Thus,
we predefine all the completion times of individual flows in
ci as di. Given the sizes and start times of individual flows,
the data rate of fi,j can be expressed as:

ri,j =
size(fi,j)

di − start(fi,j)
. (10)

Additionally, when there exists finish-after dependency
between two flows of successive coflows, denoted as
fi′ ,j′→fi′′ ,j′′ , fi′′ ,j′′ can start as long as fi′ ,j′ starts. Thus,
size(fi′′ ,j′′ ) cannot be confirmed in advance, because it
depends on the output of fi′ ,j′ . The output of fi′ ,j′ is not
equal to its original size after data processing. Conservatively,
we assume the total output of fi′ ,j′ linearly depends on the
size of fi′ ,j′ . Thus, the input of fi′′ ,j′′ is:

size(fi′′ ,j′′ ) = τ · size(fi′ ,j′ ). (11)

The value of τ depends on the corresponding applications. If
fi′′ ,j′′ starts its transmission also at start(fi′ ,j′ ), we get its

Highest priority

P

Scheduler

Q1

Q2

Q3

End points Middlebox

Priority

Timestamp

Fig. 3. Scheduling framework.

data rate as:

ri′′ ,j′′ =
τ · size(fi′ ,j′ )

di′′ − start(fi′ ,j′ )

=
τ ·
(
di′ − start(fi′ ,j′ )

)
di′′ − start(fi′ ,j′ )

· ri′ ,j′

= τ∗ · ri′ ,j′ ,

(12)

where τ∗=τ ·
d
i
′−start(f

i
′
,j

′ )

d
i
′′−start(f

i
′
,j

′ )
. Obviously, ri′′ ,j′′ also linearly

depends on ri′ ,j′ . The benefit of doing so is to simultaneously
transmit the flows within the relationship of finish-after. Thus,
the transmission of fi′′ ,j′′ will not be blocked after that of
fi′ ,j′ . If the value of τ is inappropriately selected, ri′′ ,j′′
can also be precisely recomputed after fi′ ,j′ finishing its
transmission. After determining the data rates of individual
flows in each coflow, we will introduce the design of DRGC.

IV. DESIGN OF DRGC SCHEDULING FRAMEWORK

We attempt to guarantee the predefined completion times
of coflows based only on their priorities at middleboxes.
However, this results in loss on the performance. The rea-
son is that middleboxes are agnostic to the exact data rate
requirements of flows. The flows with higher priorities occupy
too many resources at middleboxes, and leave few scheduling
opportunities to other flows. We propose DRGC to avoid all
of these drawbacks. Its implementation covers the components
at end-points and middleboxes together. End-points indicate
the data rate requirements of coflows by using the timestamp
marking, which, as well as the priorities of flows, is utilized
by middleboxes to make scheduling decisions. Coflows with
higher priorities can only achieve their desired data rates,
which are indicated by the timestamps attached on packets.
Thus, they cannot encroach too many resources at middle-
boxes. Meanwhile, other coflows will not be blocked behind
the ones with higher priorities, because they can utilize the
residual resources.

A. Requirement Statement about Data Rates at End-points

Now that we have already decided the coflow scheduling
sequence and assigned precise data rates for individual flows,
scheduling algorithms need to be designed to guarantee their
data rate requirements at middleboxes. We use Fig. 3 as the
guide of our scheduling framework. Data rate partition is
difficult in the multi-resource environment. Flows undergoing
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different network functions consume different amounts of re-
sources, and packets get unequal processing rates on different
resources. As aforementioned, if we want to maintain the
desired data rates of flows at middleboxes, end-points should
expose the demands of coflows to these devices. In this part,
we focus on expressing the data rate requirements of coflows
by using timestamp.

We denote the sending rate of flow fγ as rγ . If fγ starts its
transmission at start(fγ), the traffic that it has already sent,
denoted as Γ(fγ , t), at time t can be expressed as:

Γ(fγ , t) = (t− start(fγ)) · rγ . (13)

At the packet level, fγ can be seen as a collection of packets,
denoted as {p1γ , p2γ , ..., p

|k|
γ }. Here |k| indicates the number of

packets belonging to it. If we denote the sending time sequence
of these packets as T = {t1, t2, . . . , t|k|}, we get:

t1 =
size(p1γ)

rγ
+ start(fγ)

tk̂ =

k̂∑
i=1

size(piγ)

rγ
+ start(fγ), 1 < k̂ 6 |k|

(14)

According to Eq. 14, we get:

rγ=

k̂∑
i=1

size(piγ)

tk̂ − start(fγ)
. (15)

Reasonably, we can estimate the data rate of a flow depend-
ing on some necessary information, including the start time
of the flow, the sizes of its packets and tk̂, in middleboxes.
However, this will inevitably result in enormous overhead
of information maintenance, especially when the number of
flows passing through the middlebox is huge. To alleviate this
concern, we should refine the information implied in T . Based
on Eq. 14, we get:

tk̂ − tk̂−1 =
size(pk̂γ)

rγ
, 1 < k̂ 6 |k| (16)

Thus, the time intervals between the time sequence in T
have no relationship with start(fγ). For decoupling start(fγ)
from t1, we further adjust T as:

T = T − t1
= {t1 − t1, t2 − t1, . . . , t|k| − t1}
= {t1′ , t2′ , . . . , t|k|′}.

(17)

Finally, we use T as the timestamps of packets to implicate
the footprint of fγ with the sending rate of rγ . pk̂γ will be
attached two tags, i.e., γ and tk̂, when it enters the network. A
new flow can be easily recognized when p1γ with the timestamp
of t1′ =0 arrives at the middlebox. We also set t|k|′ = − 1 to
indicate the last packet of a flow. In addition, the retransmitted
packets will be assigned the same timestamps as before. Thus,
they will not influence the timestamp computation of other
packets. Next, we will explain how to satisfy the data rate
requirements of flows at middleboxes.

Algorithm 1 Preprocessing
Require: P , the list of flow information. Qγ , the buffer list

of fγ . C, the current system clock. C1, the system clock
when the first packet of a flow arrives. fγ , data flow with
the priority of γ. pγ , any packet of fγ . ts, the timestamp
of a packet. TS, the ideal scheduling time of a packet.

1: if pγ .ts = 0 then
2: Allocate Qγ to fγ ;
3: pγ .TS = C;
4: C1 = pγ .TS;
5: Insert pγ into Qγ ;
6: P.insert(γ);
7: else if pγ .ts = −1 then
8: Insert pγ into Qγ ;
9: else

10: pγ .TS = pγ .ts+ C1
11: Insert pγ into Qγ ;
12: end if

B. Scheduling Procedure at Middleboxes

As aforementioned, end-points mark flows with the priority
and timestamp. Next we strive to maintain the desired data
rates of flows at middleboxes. Before that, sorting the flows
according to their priorities, and synchronizing the timestam-
p of packets with the current system clock are necessary
preparatory work for reducing the computing complexity of
the scheduler.

Flow Sorting For providing distinguishing services, all
the newly arrived flows should be sorted according to their
indicators. Two different flows will never have the same value
of γ because each γ is unique in the whole network. We
adopt a list P to maintain the indicator information of flows
in a monotone decreasing order, according to the numbers of
〈N, s, n, j〉. As aforementioned, smaller values of N, s, n, and
j indicate higher priorities at different levels. Thus, each flow
will be assigned an index number of the list P . Obviously, the
flow with the index of 1 possesses the highest priority. For the
management of the list P , we also define some list operations
as follows:

• get (index): return the indicator of a flow according to
the index number

• insert (γ): insert the indicator γ of fγ into P
• delete (γ): delete the information of fγ from P

As explained in Alg. 1, when a packet pkγ arrives at the
middlebox, it will be checked whether fγ is a newly arrived
flow. As aforementioned, each packet of flows has been at-
tached two tags, i.e., γ and tk′ , when it enters the network. We
also predefine the timestamps of the first packet and the last
packet of a flow as 0 and −1, respectively. Here we denote the
timestamp of a packet as ts. If pkγ .ts=0, fγ will be recognized
as a new flow and get a dedicated buffer list, denoted as Qγ .
Then, pkγ will be pushed into Qγ . In this list, packets will be
sequentially buffered according to their timestamps, and the
packet with the minimum timestamp will be buffered at the
head of the list. Reasonably, only the packet at the head will
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be checked whether it should be scheduled in one scheduling
loop. Here, |Qγ | indicates the number of packets in this list.
On the contrary, if pkγ .ts6=0, i.e., fγ has already arrived, pkγ
will be inserted into Qγ at the right place. We use the buffer
list Qγ to support packet retransmission. The retransmitted
packets will still be buffered at the forepart of Qγ such that
they will be quickly scheduled before their subsequent packets
at this device. Finally, we perform insert(γ) to insert the
priority information of fγ into P with appropriate index after
comparing γ with the priorities of other flows in P . Thus, the
overhead of flow sorting depends on the number of the flows
that have already arrived. As aforementioned, at most four
comparisons are needed for comparing the priority information
of two flows.

In other situations, if jobs or coflows should not be sched-
uled with the FCFS policy, we can reenact the priority rules
made in §III-C, and set higher priorities to specific coflows.
Subsequently, DRGC should also sort the arriving flows,
according to the new priority rules, at each middlebox. The
scheduling algorithm of DRGC needs no correction, and still
works on the sorted flow list P .

Time Synchronization Before pushing the packets of fγ
into the queue Qγ , we need to synchronize the timestamps of
its packets with the current system clock. We introduce the
symbol C to denote the current system clock when we use it.
A new flow fγ can be easily recognized when p1γ arrives with
the timestamp of 0. Ideally, this packet expects to be scheduled
immediately. The reasons are that the end-point supposes the
transmission of this flow will not be blocked in the network
such that it can safely complete its transmission before the
predefined completion time. Thus, we use p1γ to record the
transmission trace of this flow at different middleboxes, and
define that the first packet of each flow will be scheduled
immediately after its arrival. From here, we use TS to indicate
the ideal scheduling time of each packet. As for p1γ , we get:

p1γ .TS = p1γ .ts+ C = C1. (18)
We denote the ideal scheduling time of p1γ as C1, which will

be maintained as a constant. Before pushing the subsequent
packets of p1γ into Qγ , their scheduling times can be computed
as follows:

pkγ .TS = pkγ .ts+ C1. (19)

The reason for doing this is to keep the scheduling time
intervals among packets as before. Exceptionally, we will not
recompute the scheduling time of the last packet of each flow,
whose timestamp is set as −1. Obviously, as for each flow,
the overhead of the time synchronization directly depends on
the number of the packets in it.

Time synchronization happens at every middlebox, and it
will not change the original timestamps of packets. End-points
predefine the completion times of coflows according to their
sizes. For avoiding the waste of the link bandwidth, end-points
will stop the transmissions of two kinds of flows: (1) The flows
who have missed their predefined completion times during
their transmissions; (2) The flows whose residual time before
the predefined completion time is not enough to complete
their transmissions. This can be achieved by comparing the

Algorithm 2 The scheduling algorithm
Require: P , the list of flow information. Qγ , the buffer list of

fγ . Qγ .head, the packet at the head of Qγ . C, the current
system clock. γ, the priority of data flow fγ . pγ , any
packet of fγ . TS, the ideal scheduling time of a packet.

1: if |P| = 0 then
2: Go to line 1;
3: else if |P| = 1 then
4: γ = P.get(1);
5: if |Qγ | > 1 then
6: Schedule(Qγ .head);
7: else
8: Go to line 1;
9: end if

10: else
11: for {j = 1; j 6 |P|; j + +} do
12: if j = |P| then
13: γ = P.get(|P|);
14: if |Qγ | > 1 then
15: Schedule(Qγ .head);
16: else
17: Go to line 1;
18: end if
19: else
20: γ = P.get(j);
21: if {(|Qγ | > 1)&(Qγ .head.TS 6 C)} then
22: Schedule(Qγ .head);
23: end if
24: end if
25: end for
26: end if

27: Schedule (pγ) {
28: if pγ .TS 6= −1 then
29: Process the packet pγ ;
30: else
31: Process the packet pγ ;
32: P.delete(γ);
33: end if
34: Go to line 1;}

maximal needed data rate for completing the transmission
of the residual data volume with the bandwidth of the NIC
at endpoints. Until now, all the preparatory operations are
finished, and the scheduler starts to work.

Scheduling Procedure We design Alg. 2 to guarantee the
data rate requirements of coflows at middleboxes, according
to their priorities and the recomputed timestamps of their
packets, comprehensively. The former is utilized to distinguish
the services that different coflows should receive, and the latter
is responsible for data rate limitation. As aforementioned, we
define that the first packet of each flow will be scheduled
immediately after its arrival. Then, the scheduler starts with a
check on the length of P , denoted as |P|. Different branches
spread depending on the value of |P|:

(1) If there is no data flow, i.e., |P|=0, the scheduler will
stay idle until new flows arrive.
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(2) If only one flow has registered in P , and its packets
have been buffered in its queue Qγ , i.e., |Qγ |>1, no more
timestamp comparisons are needed and the packet at the head
of Qγ , denoted as Qγ .head, will be processed through the
method Schedule(pγ). In detail, if Qγ .head is not recognized
as the last packet of flow fγ , the packet will be processed.
Otherwise, the information of fγ will be removed from the
list P after processing its packet. Meanwhile, the buffer space
occupied by this flow will be simultaneously taken back. After
that, the next scheduling loop will start. Obviously, if no
packets exist in Qγ , the scheduler will still restart.

(3) If |P|>1, the scheduler need to select one flow out of
these |P| flows to schedule. Firstly, it estimates the flow with
the highest priority in P . If its packets have been buffered
in its queue, and the timestamp of the packet at the head is
smaller than the current system clock, including the last packet
of this flow, this packet will be scheduled. Reasonably, if the
buffer space of the current flow is empty, the next flow with
a smaller priority will be estimated. As an exception, if the
prior |P|−1 flows are all un-schedulable, the last flow with the
minimum priority will be scheduled as long as it has packets
to be processed. If not, the scheduling algorithm will restart.

In summary, the transmissions of the flows with higher
priorities will be firstly guaranteed in the scheduling procedure
of DRGC. After that, the residual resources will be used to
support the transmissions of other flows. This principle obeys
the design motivation of DRGC.

C. Interpretations about DRGC

DRGC is designed to guarantee the predefined completion
times of coflows, which have a deep relationship with the data
rate, in the multi-resource environment. To this end, end-points
assign timestamps to the packets of each flow so as to indicate
its desired data rate. The time intervals between the timestamps
of the successive packets are utilized by DRGC to satisfy the
desired data rate of this flow at middleboxes. Consequently,
flows with higher priorities cannot occupy excessive network
resources depending only on their priorities. After satisfying
the data rate requirements of these flows, the residual resources
will be remained for other coflows. That is, DRGC strives to
guarantee the data rate requirements of high-priority coflows.
After that, it also maximizes the benefit of others.

In addition, DRGC does not rely on special architectures
of middleboxes or additional flow information. As aforemen-
tioned, we assumed that any resource can only buffer one
packet at middleboxes. In practice, as for an individual flow,
the scheduling algorithm of DRGC strives to maintain the time

TABLE II
THE CPU PROCESSING TIME UNDER DIFFERENT FUNCTIONS.

Function CPU Processing Time (µs)

IPSec encryption (IE) 0.015 · x+ 84.5
Statistical monitoring (SM) 0.0008 · x+ 12.1
Basic forwarding (BF) 0.00286 · x+ 6.2
Redundancy elimination (RE) 0.00699 · x+ 10.97

intervals between the timestamps of its packets at middlebox-
es. In this way, its desired data rate can be satisfied at these
devices. In this procedure, the scheduling algorithm determines
the packet scheduling occasions according to their timestamps.
Then the scheduled packet will be pushed to the first resource
at the middlebox. The number of resources, the sizes of buffers
and the packet processing cost at middleboxes are all needless
for the scheduling algorithm of DRGC. Consequently, DRGC
still works when middleboxes are deployed with large buffers
or more kinds of resources. Even more, DRGC also applies
to the single resource environment. However, it is difficult to
directly deploy DRGC at traditional switches, which support
limited number of priorities and cannot schedule packets
according to their timestamps. This would be our future work.

It is worth noting that DRGC, like DRFQ, assigns separated
buffer space for each individual flow. The space overhead
increases with the growing numbers of the backlogged flows.
Actually, network traffic is mostly contributed by a small frac-
tion of flows with huge sizes. For simplifying the management
of per-flow queues, Myopia [10] only provide efficient trans-
mission controls for huge flows. Small flows will be served by
using the reserved resources. Similar schemes can be adopted
to reduce the space overhead of DRGC. Meanwhile, cluster
applications should set earlier completion times for coflows to
accelerate their transmissions when the network traffic load is
low, such that DRGC will remain work conserving.

V. PERFORMANCE EVALUATION
We designed various experiments to estimate the perfor-

mance of DRGC. The experiment setting is given in §V-A. We
explore the properties of DRGC in various scheduling scenar-
ios in §V-B. Then, we use a large-scale Hive/MapReduce trace
to evaluate the performance of DRGC in §V-C. The experi-
mental results verified that DRGC achieved better performance
in many aspects, in comparison with other schemes.

A. Experiment Setting

Although middleboxes perform a wide range of network
functions, they possess some characteristics in common. Under
some network functions, the packet processing time on a
resource follows an approximate linear relationship with the
packet size [16], which can be expressed as y=ηx+ ξ. Here
x is the packet size in byte. η and ξ are two parameters that
varies according to the performed function. We use the same
CPU processing times under different functions as [17], and
detailed information is listed in Table II. Here, IE, SM, BF
and RE all follow this principle.

TABLE III
SETTINGS OF FLOWS.

Coflow ID Flow ID Time Flow Size Packet Size Function

1
1 0 s 200 MB 600 bytes IE
2 0 s 200 MB 800 bytes SM
3 0 s 200 MB 1000 bytes BF

2
4 0 s 100 MB 600 bytes IE
5 2 s 200 MB 800 bytes SM
6 4 s 400 MB 1000 bytes BF
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(a) CCT=40 s. (b) CCT=30 s.

(c) CCT=40 s. (d) CCT=20 s.

Fig. 4. Data rate partition.

In our experiments, we assume packets will be sequentially
processed on the CPU and the NIC. The packet processing
time on the NIC can be simply achieved according to the
sizes of packets and the bandwidth of the NIC. The bandwidth
of the NIC is set as 200 Mbps. Related flow information is
list in Table III. The packet sizes of different flows are not
set as the same such that these flows will consume more
processing times on different resources. The experiments are
conducted by using Java programming language with about
six hundred lines of code. TCP flow transmission is simulated
at the packet level, because sequenced packets reveal the data
rate requirements of flows at end-points.

Bear in mind that DRGC is proposed to satisfy the pre-
defined completion times of coflows in the multi-resource
environment. CCT is closely related with the transmission
rates of individual flows in each coflow. Thus, we designed
three scenarios to evaluate DRGC on the aspects of satis-
fying the predefined CCTs, supporting stable data rates, and
increasing the resource utilizations. For avoiding the influence
of the congestion control in data centers, these flows will be
transmitted with stable and minimal data rates, based on their
predefined completion times. Meanwhile, the transmissions of
the flows that have already missed the predefined completion
times would continue so as to reveal the transmission control
mechanism of DRGC.The used multi-function middleboxes
in our experiments perform all the mentioned four kinds of
functions as listed in Table II. Meanwhile, each of the passing
flows will undergo just one function.

B. Properties of DRGC

Data Rate Partition In the first scenario, flows 1, 2, and 3
belong to coflow 1. They arrive at middlebox 1 simultaneously
at 0 s and undergo three different functions, as listed in Table
III. We firstly predefine the completion time of coflow 1 as

40 s. In Fig. 4(a), although these flows are configured with
different packet sizes, their transmissions finish simultaneously
at 40 s. Meanwhile, they achieve the same data rate. Ob-
viously, when the resources at the middlebox are relatively
sufficient to support the transmissions of these three flows, no
flow will be blocked. In addition, all flows get stable data rates
without fluctuation. This results from the design principle of
DRGC that it strives to maintain the time intervals between the
packets of each flow as before. Thus, data rate fluctuation can
be avoided by using DRGC when the resources are sufficient.

In another case, we predefine the completion time of coflow
1 as 30 s so as to estimate the performance of DRGC in the
limited resource situation. In this situation, the transmissions
of these flows will exhaust the resources at the middlebox.
In this part, flow transmission will continue even if some
flows miss their predefined completion times. In the design
of DRGC, these flows and the ones whose data rate require-
ments exceed the bandwidth of the NIC will be removed by
endpoints. As illustrated in Fig. 4(b), flow 1, with a smaller
serial number than flows 2 and 3, is firstly served with its
desired data rate and finishes its transmission at the predefined
completion time. Now that its transmission has not exhausted
the resources, flow 2 also gets a part of its desired data rate
before the completion of flow 1. After that, flow 2 finishes
its transmission within another 0.9 s. Finally, flow 3 starts at
30.9 s and finishes its transmission at 39.3 s. Obviously, the
data rate requirements of flows will be sequentially guaranteed
by using DRGC when the resources are insufficient. Resources
will be firstly utilized to service the transmission of the flow
with the highest priority. After that, the residual resources will
be allocated to the next flow. When resources are exhausted,
the transmissions of other flows will be blocked. In this
procedure, the scheduled flows will still get stable data rates
until some flows release parts of resources.



11

Fig. 5. Flow completion times under different scheduling schemes.

In the second scenario, flows 4, 5, and 6 belong to coflow
2. Different from the first scenario, these flows, although with
different flow sizes and packet sizes, arrive at middlebox 2
sequentially. We want to evaluate the performance of DRGC
in this situation. As the same in the first scenario, we predefine
the completion time of coflow 2 as 40 s. In Fig. 4(c), flow 4
achieves its desired data rate in the first 2 seconds. Flows 5
and 6 can also get their desired data rates since they arrive at
the middlebox. In this procedure, the data rate of flow 4 will
not change, because it possesses the highest priority. Other
flows cannot compete for resources with it. We shorten their
predefined completion times to 20 s, such that the resources
become insufficient to finish their transmissions before the
predefined completion time. In Fig. 4(d), flow 4 still gets its
desired data rate until completing its transmission at 20 s.
Flow 5 can only get a part of its desired data rate since its
arrival. At 4 s, although flow 6 has already arrived, it cannot be
scheduled because the residual resources are not enough even
for completing the transmission of flow 5 before 20 s. Thus,
flow 5 monopolizes all the resources after completing the
transmission of flow 4. Finally, flow 6 starts its transmission
after the completion of flow 5, and finishes at 37.3 s.

From these two scenarios we can get the conclusion that
when the resources at middleboxes are sufficient, DRGC
satisfies the data rate requirements of flows such that their
transmissions can be completed simultaneously at their pre-
defined completion times. Otherwise, flows will be served
sequentially based on their priorities. The ones with higher
priorities can get their desired data rates, and others can only
get a part of their desired data rates, or be scheduled later.
Meanwhile, the lost data rates of the latter will be compensated
when they become the ones with relatively higher priorities.

Completion Time Guarantee In the third scenario, we
evaluate the performance of DRGC on guaranteeing the prede-
fined completion times of coflows. We conduct our experiment
with multiple middleboxes. Coflows 1 and 2 converge at
middlebox 3 after passing through middleboxes 1 and 2,
respectively. We suppose all the flows in these two coflows
arrive at middlebox 3 simultaneously at 0 s, and their com-
pletion times are predefined as 50 s. We make such setting
to maintain the middlebox at a work-conservation status,
i.e., at least one resource is fully utilized at any time. As
verified in the previous two scenarios, coflows 1 and 2 can
safely pass through middleboxes 1 and 2 when setting their
completion times as 40 s. The situation will not change in
this scenario where these two coflows require lower data rates

Fig. 6. Resource utilizations under different scheduling schemes.

at middleboxes 1 and 2, respectively. We implement FCFS
at the packet level and the flow level, denoted as FCFS-P
and FCFS-F, respectively. In detail, FCFS-P simply schedules
packets just according to packet arrival times. However, FCFS-
F sequentially schedules flows one after another according to
the flow arrival times. DRGC makes scheduling decisions at
middleboxes, but Aalo [20] and CODA [35] are agnostic to
the packet processing procedure at middleboxes. Comparing
DRGC with them is extremely unfair, so we did not make
related comparisons. DRFQ and MR3 all take DRF as the
scheduling criterion. MR3 uses the round robin algorithm to
reduce the scheduling overhead of DRFQ. However, they all
strive to provide fair service for the passing flows. Typically,
we select DRFQ to make comparisons with DRGC.

In Fig. 5, flows 1, 2, and 3 finish their transmissions
simultaneously at 50 s, i.e., their predefined completion times,
by using DRGC. Flows 4, 5, and 6 miss their predefined
completion times and finish sequentially, according to their
priorities. Under DRGC, coflows are scheduled based on their
indicators. As aforementioned, the benefit of the coflows with
higher priorities will be preferentially guaranteed when the
hardware resources are insufficient. In this situation, the data
rate requirements of coflow 1 will be firstly satisfied. Thus, the
three flows in coflow 1 take up necessary resources so as to
transmit their data, and safely complete their transmissions
before their predefined completion times. Meanwhile, the
residual resources are insufficient to support the transmission
of coflow 2 in this procedure. Thus, flows 4, 5, and 6 will
be sequentially scheduled according to their serial numbers. It
is clear that DRGC takes coflows as the scheduling unit and
can effectively guarantee the predefined completion times of
coflows through packet-level scheduling.

With the same data rate setting under DRGC, packets of
each flow will be evenly separated because all the flows have
the same arrival time and completion time. FCFS-P schedules
packets just according to their arrival times, and will not
distinguish coflows at the packet level. Consequently, FCFS-P
results in long FCTs for all the flows and these flows all miss
their predefined completion times. FCFS-F achieves relatively
short FCTs because we did not make data rate control under
it. Flows are scheduled one after another under FCFS-F, such
that they sequentially complete their transmissions. However,
before the completion of the previous flow, the next flow has
to wait and suffers from very long blocking time. This is
unacceptable for some delay sensitive cluster applications. As
a typical fairness-driven scheduling scheme, DRFQ provides
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(a) Situation 1 (b) Situation 2

Fig. 7. Traffic load of valid coflows.

fair service for the passing flows. The packets of flows 1
and 4 consume more processing time on the CPU. Flow 1
completes its transmission after flow 4, because of its bigger
size. Flows 2, 3, and 5 are set with the same flow size and
are all backlogged on the NIC. Such that they can complete
their transmissions simultaneously. However, it is clear that
coflows 1 and 2 all miss their predefined completion times
because of the long completion times of some individual flows
under DRFQ. Thus, DRFQ is also pernicious to the benefit of
coflows without coflow identification.

Resource Utilization With the same setting as in the third
scenario, we evaluate the resource utilizations of the CPU and
the NIC in the time dimension, i.e., the ratio of the resource
usage time to the total completion time. In Fig. 6, when flows
are scheduled sequentially under FCFS-F, the utilizations of
the CPU and the NIC are relatively low. However, DRGC,
FCFS-P, and DRFQ, which schedule flows in a mixed man-
ner, achieve higher resource utilizations on all the resources.
This observation stems from the fact that flows undergoing
different network functions usually exhibit diverse preference
on hardware resources. Thus, at least one resource cannot
be sufficiently utilized if flows are exclusively scheduled one
after another. If the packets of different flows are scheduled
alternately, the complementary resource demands of flows
will improve the resource utilizations. Although coflow 1
successfully finishes its transmission before its predefined
completion time only by using DRGC and FCFS-F in Fig.
5, but in the long term, FCFS-F is inapplicable in the multi-
resource environment.

C. Large-scale Simulation

In the previous subsection, we have verified that DRGC
can detect distinct coflow traffic and sequentially guarantee
their predefined completion time. Next, we use a large-scale
Hive/MapReduce trace to estimate the performance of DRGC.
The one-hour trace data was collected from 3000 machines
within 150 racks [8][20]. Next, we will analyze some impor-
tant characteristics of the trace data. The size of a coflow is
defined as the sum of the sizes of all its individual flows. In
the used trace data, the sizes of 96.6% coflows are smaller
than 100 GB, but the residual 3.4% coflows contribute 96.6%
of the total workload. Obviously, the sizes of coflows follow
the heavy-tailed distribution. As aforementioned, this makes it
possible to reduce the scheduling overhead of DRGC through

providing transmission controls just for the coflows with huge
sizes. A small part of network resources can be reserved to
serve other coflows. The length of a coflow is defined as the
maximal flow size among all its individual flows. The lengths
of 92.6% coflows are smaller than 1 GB, but a small part
of coflows contain the flows with sizes about 100 GB or 1
TB. We also measure the width of coflows, i.e., the number
of parallel flows in the same coflow. The width of 79.1%
coflows is smaller than 100. However, a non-ignorable part
of coflows contains more than 10000 flows. In the trace data,
a new coflow arrives in every 0.1∼20 s in most situations.

In this part of our experiments, we randomly separate
the aforementioned 150 racks into three sets, each of which
contains 50 racks. Each set of racks connects to one mid-
dlebox, and the individual flows randomly undergo one of
the four aforementioned network functions at their directly
connected middleboxes. In this way, individual flows have
been almost equally distributed at three middleboxes. We set
the bandwidth of the NIC as 200 Mbps. Meanwhile, the sizes
of coflows, including the sizes of the individual flows, in the
original trace have been scaled down by 1024 times so as to
match our experiment setting. The completion times of the
coflows with sizes smaller than 1 MB are set as 1 s, and
the completion time of the coflow with the maximal size is
set as 500 s. We also predefine that the completion times of
other coflows linearly depend on their sizes. Thus, all the
coflows have the chance to finish their transmissions before
their predefined completion times. As aforementioned, the
majority of the traffic load is contributed by a small number
of coflows. The sizes of huge coflows are extremely bigger
that the sizes of small ones. Striving to maximize the number
of the coflows meeting their predefined completion times,
which is not the scheduling objective of DRGC, results in
inefficiency of the network. DRGC does not discriminate any
coflows. It schedules coflows according to their arrival times.
Thus, DRGC provides better support for huge coflows, whose
transmissions will continue for a long time. In this part, we use
the traffic load of valid coflows, i.e., the ones that successfully
complete their transmissions before the predefined completion
times, to estimate the performance of different schemes.

As illustrated in Fig. 7(a), the traffic load of valid coflows
accounts for roughly 42% and 46% of the total workload at
each middlebox by using FCFS-P and DRFQ, respectively.
DRGC performs better at each middlebox, and supports ad-
ditional more than 15% of the traffic load of valid coflows
in total, compared with FCFS-P and DRFQ. Obviously, net-
work resources are insufficient to satisfy all the transmission
requirements of coflows in this situation. Thus, we extend
the completion times of all the coflows, such that their data
rates will reduce. In Fig. 7(b), when we set the completion
time of the coflow with the maximal size as 1000 s, all
of these schemes support more traffic load than that in the
previous situation. However, DRGC still outperforms FCFS-P
and DRFQ by roughly 32% and 14% in total, respectively.

In summary, DRGC achieves better performance than other
schemes for the following reasons. Firstly, by using the coflow
indicator, distinct coflow traffic can be recognized at the packet
level under DRGC. Bear in mind that the transmission of any
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individual flow in a coflow may delay the completion of the
whole coflow. DRGC schedules each coflow as a whole and
strives to synchronize the transmissions of its individual flows
so as to protect the benefit of the coflow. However, FCFS-P and
DRFQ treat flows as independent ones, thus the transmissions
of the flows in the same coflow are out of step. Secondly, when
the network resources are insufficient, DRGC sequentially
schedules coflows according to their priorities. It centralizes
resources to support the transmissions of the coflows with
higher priorities. Only after that would the residual resources
be utilized to serve other coflows. That means, the benefit of
coflows will be sequentially guaranteed under DRGC. FCFS-P
and DRFQ strive to satisfy the transmission requirements of
all the coflows at all time. As a result, most coflows will miss
their predefined completion times.

VI. CONCLUSION

Flow scheduling has always been a meaningful problem in
data centers. Novel schemes need to be designed to satisfy
the QoS requirements of flows in new scheduling scenarios.
With the emergence of the concept of coflow, the benefit
of coflows, rather than that of the individual flows, should
be guaranteed. This problem has already been a difficult
challenge in traditional networks, it becomes more complex
in the multi-resource environment, where coflows encounter
different transmission delays at diverse middleboxes.

In this paper, we propose DRGC to guarantee the pre-
defined completion times of coflows in the multi-resource
environment. DRGC integrates end-points and middleboxes to
make fine-grained data rate control for coflows. Coflows with
higher priorities are more likely to achieve their desired data
rates at middleboxes such that their completion times can be
sufficiently guaranteed. Meanwhile, they will not monopolize
all the resources at middleboxes, and other coflows can also
be scheduled by using the residual resources. We evaluated
the performance of DRGC through extensive simulations and
trace-driven experiments. DRGC efficiently guaranteed the
predefined completion times of coflows, improved the resource
utilizations and supported more workload, in comparison with
other scheduling schemes.
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