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Abstract—Changes of network state are a common source
of instability in networks. An update event typically involves
multiple flows that compete for network resources at the cost of
rescheduling and migrating some existing flows. Previous network
updating schemes tackle such flows independently, rather than as
the entity of an update event. They only optimize the flow-level
metrics for the flows involved in an update event. In this paper,
we present an event-level abstraction of network update which
groups flows of an update event and schedules them together
to minimize the event completion time (ECT). We then study
the scheduling problem of multiple update events for achieving
high scheduling efficiency and preserving fairness. The designed
least migration traffic first (LMTF) method schedules all update
events in the FIFO order, but avoids head-of-line blocking by
randomly fine-tuning the queue order of some events. It can
considerably reduce the update cost, the average, and tail ECTs
of all update events. In addition, we design a general parallel-
LMTF (P-LMTF) method to guarantee fairness and further
improve scheduling efficiency among update events. It improves
the LMTF method by opportunistically updating multiple events
simultaneously. The comprehensive evaluation results indicate
that the average ECT of our approach is up to 10x faster than
the flow-level scheduling method for network update events, and
its tail ECT is up to 6x faster. Our P-LMTF method incurs 75%
reduction in the average ECT compared with FIFO when the
network utilization exceeds 70%, and it achieves a 42% reduction
in tail ECT.

I. INTRODUCTION

Due to updating issues triggered by operators, application-
s, and network devices etc., network condition consistently
undergoes changes. Issues include the upgrades of switches,
network failures and VM migrations [1]. When upgrading a
switch, all flows initially passing through it should be rerouted
along other parts of the network to ensure the normal execution
of network applications. For the VM migration, a set of new
flows would be generated for migrating involved VMs to other
servers in the network. There are two general consequences of
such update issues: change of network topology and change
of traffic matrix. The aforementioned updating issues are
common sources of instability in networks. Therefore, each
network update should be planned well in advance and should
be tackled by designing effective and efficient update schemes.

For a network update event under the initial network con-
figuration, an update plan would usually derive a desired
final network state in advance, including the final network
topology and traffic distribution. The update process, however,
usually includes many intermediate network states and may
exhibit serious traffic congestion and other issues. For this
reason, prior updating schemes focus on realizing the correct
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transition from an initial network state to a final network
state and are roughly divided into two categories. One is the
consistent update [2], which means that a packet/flow traverses
the network obeying either old or new network configuration.
The two-phase update method and its variants [3], [4], [5]
fall into such a category. The other is the congestion-free
update, which makes an update plan for any update event in
advance. This plan contains a series of intermediate states,
but the transition across adjacent states is lossless. SWAN [6],
zUpdate [1] and their variants [7], [8] fall into this category.

An update event typically involves a collection of new or
existing flows, and it cannot finish until such flows have been
completed. However, existing updating schemes treat each
flow in such a collection in isolation rather than organizing
involved flows of an update event as an entity. Those updating
schemes to optimize flow-level metrics do not perform well
in optimizing event-level metrics, including event completion
time (ECT) of an update event, the average and tail ECTs
of multiple update events. Actually, the abstraction of per-
flow update cannot capture the event-level or inter-event
requirements in a collection of update events. Prior updating
schemes fail to provide a frame to represent those event-level
update semantics. For example, some flows of an update event
may be blocked because they lack sufficient network resources,
which are occupied by heavy flows of other update events. This
would lead to high average and tail ECTs.

In this paper, we define an event-level abstraction of network
update to group a collection of flows for an update event and
schedule them together. If the network cannot serve a flow
in the collection, a few existing flows are locally migrated to
other appropriate paths if they exist to satisfy the bandwidth
requirement of the flow in the collection [8]. We define the
update cost of an update event as the amount of migrated
traffic of existing flows for all of its flows. However, it is NP-
complete to identify which existing flows should be migrated
to satisfy the requirement of any flow in an update event and
guarantee a minimal update cost. Accordingly, we propose
an efficient method to calculate the set of migrated flows to
approximate the optimal solution. The event-level abstraction
can decrease the ECT by cooperatively allocating network
resource for an update event. This considerably speed network
update process and is very important for network management
[9].

However, operators, applications, and network devices cre-
ate multiple update events in a shared network. Such update

IEEE
computer
psoaety



events exhibit wide variations in the number of flows, the
size of individual flows, and the total size. Simple scheduling
mechanisms like FIFO [10] remains inapplicable to this inter-
event scheduling problem. It usually incurs the serious head-
of-line blocking problem when we use scheduling method like
FIFO. That is, the head-event may be heavy and occupies more
network resources for a longer period of time. Thus, many
smaller update events that arrive later would be slowed down
a long wait time in the update queue. This would increase the
average ECT and tail ECT of a set of update events.

In this paper, we investigate the scheduling problem of
multiple update events and focus on two different objectives:
1) speeding up the network update process by decreasing the
average and tail ECTs and 2) preserving the update fairness.
We propose the least migration traffic first (LMTF) method
which schedules update events based on their arrival order, but
dynamically fine-tunes the execution order when heavy update
events are encountered. An intrinsic method is to dynamically
compute the costs for all update events in the queue and
execute the update event with the lowest cost first. This would
cause non-trivial computation and time overhead. In contrast,
LMTF compares the head-event with a few update events
randomly selected from the queue and executes the smallest
one first. This policy ensures that not all smaller update events
are blocked behind heavy update events as they also have
a chance to be executed earlier in each round. Additionally,
LMTF considerably simplifies and accelerates the decision-
making process.

Although LMTF can effectively decrease the average and
tail ECTs, it impacts the FIFO fairness of queued events. To
improve fairness for a queue of update events, we design a
more general method called P-LMTF, which introduces the
policy of opportunistic updating on the basis of our LMTF
method. After inferring the new head-event from LMTE, it
tries to find several potential events in arrival order that can be
executed at the same time as the head-event. A heavy update
event, which arrives earlier but is delayed by LMTF, still has
priority to be executed in a timely manner during the process
of opportunistic updating. This opportunistic updating policy
further increases scheduling efficiency. In summary, as a gen-
eral inter-event scheduling method, P-LMTF relaxes fairness
slightly to achieve high efficiency, effectively decreasing the
average and tail ECTs. The extensive trace-driven evaluations
indicate that the average ECT of our approaches is up to
10x faster than the flow-level scheduling method for network
update events, and the tail ECT is up to 6x faster. Our P-
LMTF incurs 75% reduction in the average ECT against FIFO
when the network utilization exceeds 70%, and it achieves a
42% reduction in tail ECT.

The remainder of this paper is organized as follows. Section
II gives an overview of network update. In Section III, we
present an event-level abstraction of network update and dis-
cuss inter-event scheduling models. In Section IV, we design
inter-event scheduling methods for achieving both fairness and
efficiency. We report the evaluation methodology and results
in Section V. We discuss related work and conclude this paper
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Fig. 1. The success probability of accommodating a flow for an update event,
without migrating other flows.
in Sections VI and VII, respectively.
II. NETWORK UPDATE OVERVIEW
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An update event typically involves a collection of new flows
or existing flows. All flows in this collection need to compete
for network resources along desired routing paths. However,
the desired path for such a flow may not offer sufficient
residual bandwidth for it. In this scenario, the desired path
will exhibit congestion once the related flow is inserted into
the network, especially when the link utilization is very high.
Fig. 1 plots the success probability of inserting a flow of
an update event into a Fat-Tree data center when k=8. The
success probability decreases along with the increase of link
utilization under the trace of Yahoo! data center [11] and the
random trace with the distribution of traffic [12], irrespective
of the flow size.

For this reason, it is necessary to first check if all links
along the desired path offer sufficient link bandwidth when
tackling each flow of an update event. If they do not, then
the update event needs to be carefully addressed. An intrinsic
method is to assign priorities to all flows in the network [13].
Existing flows with lower priorities will be removed if they
block the new flows of higher priorities. This policy incurs
a large volume of burst traffic, due to the retransmission of
all removed flows. What is worse, determining which flows
should be removed in an update event is an NP-hard problem,
as proved in [8].

Another method is to reroute all existing flows to supply the
flows of the update event with sufficient network resources.
This policy aims to achieve a better network performance, in
terms of load balance and link utilization, when the network
topology or traffic changes. It is time-consuming to solve a se-
ries of linear programming (LP) problems. Moreover, globally
rerouting all existing flows will lead to serious network-scale
traffic migration.

Despite such considerations, the network update problem
still lacks efficient solutions. In this paper, we present a novel
strategy to locally adjust a few existing flows at congested
links on the desired path of each flow. For such a flow, we
look to see if a feasible path exists whose residual network
resource is sufficient to meet the flow’s requirement. If not,
we locally migrate a few existing flows on congested links, so
as to accommodate the new flow. Migrating more traffic will
certainly take more time and negatively impact applications.
We prefer to find a local re-routing solution to minimize the
migration of existing flows, while releasing sufficient network
resource to support a flow of the update event.
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Fig. 2. The update orders of flows under flow-level and event-level methods.

The above approaches optimize flow-level metrics such
as success probability and update speed. However, they are
incapable of optimizing event-level metrics like average ECT
and tail ECT, which are the primary goals for network update
in many networks. Consider a series of flows caused by three
update events. We may schedule such flows independently,
as shown in Fig. 2(a). Alternatively, we may regard flows
of an update event as a collection and schedule them in a
certain order, as shown in Fig. 2(b). The average ECT of
the three events is (3+ 7+ 12)/3=22/3 under the event-level
scheduling manner, which is lower than (9+11+12)/3=32/3
under the flow-level scheduling manner. The tail ECTs of the
three update events under the two scheduling manners are the
same since we assume the durations of all flows are the same.
In real networks, the durations of flows usually vary. So, the
tail ECT of these three update events changes as well.

III. EVENT-LEVEL ABSTRACTION OF NETWORK UPDATE

In this section, we start with the event-level abstraction of
network update and discuss the cost optimization of an update
event. Accordingly, we characterize the inter-event scheduling
problem of multiple update events.

A. Abstraction of event-level network update

The network is defined as a graph G=(V,E), where V' and
E denote a set of switches and a set of links connecting those
switches, respectively. Let ¢;; be the residual bandwidth of
link e; ;€E, while D denotes the network diameter. In addition,
F refers to all flows in the network. For any flow f€F, its
bandwidth requirement is defined as 4/ Flow f is routed along
a selected path p from set P(f), denoting all feasible paths for
that flow. For each link e; ; in the selected path p, d’ii denotes
the consumed bandwidth by flow f on link e; ;. The network
is congestion-free if the following constraints are satisfied:

o Vf, Veijep, d =dl,

o V[, Vei¢p, dii =0,

. Ve,;JEE, C,“J'ZO.

The aforementioned constraints ensure that each flow fe€F
is unsplit and is forwarded along a certain path p. The last
condition indicates that each link in the network is congestion-
free after the network accommodates the entire flow set F'.

Definition 1 (Migration of existing flows for a new flow):
Consider a new flow f, that is inserted into the network
containing an existing flow set /. When flow f, traverses a
path peP(f,), it may cause congestion on some links. We
define the set of congested links caused by flow f; as EY,
ie.: Ve; jep, if dflf>c,j7 then e,jEEf
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We then define a set of all existing flows, each of which
passes at least one congested link in E¢ 7. as F,. That is:
VfEF, He,jeE/ Jif dfii5£0, then f€Fy.

So far, we try to find a subset F, of F; for a new flow f,
with the bandwidth requirement @/«. Thus, flow £, could be
accommodated by the network, if all flows in the set F, are
migrated to other parts of the network. That is,

3F,CFy Ve j€ES, Y d+ci; >dla. (1)

Definition 2 (Event-level abstraction of network update):
We abstract an update event U as a set of involved flows,
denoted as U={f1, f2,..., fw }. Any flow f,€U would cause the
migration of existing flows in set F;, as shown in Definition

1. The sum of traffic migration of all flows in these sets is
defined as the cost of an update event U. That is,

2 sum

where sum(F,) denotes the sum of traffic mlgration of all flows
in the set F, for each flow f,€U. The reason is also explained
in our previous work [14].

B. Cost optimization of an update event

Cost(U

Consider the negative impact of traffic migration on the
network application. In this paper, we try to minimize the
amount of migrated traffic caused by an update event U
containing w flows. To tackle this problem, we need to find the
minimum subset F, in set F; for each flow f,€U. At the same
time, flow f, can be served by the network if all flows in set
F, are migrated to other parts of the network. Thus, the sum
of residual link bandwidth and the amount of migrated traffic
on each congested link in £ should exceed the requirement
of flow f;, as shown in Formula (D).

The cost optimization problem of any update event U
containing w flows can be formed as

min 2 sum(F; 2)

s.t. Ve,jeEf, Z d’ii +c,,>dfa 3)
JEF,

F, C F4 for each flow f,,1 <a<w. 4)

In addition, the migration of any flow in set F, along another
path p will not lead to congestion on other links, i.e.,
VfeF,, Ve cp, d’ <ci; %)
It is hard to calculate such a set F, for any flow f,cU.
Thus, we design a novel strategy to reduce the migration of
existing flows, and any flow f,€U will get enough bandwidth
after migrating these existing flows.

C. Inter-event scheduling models among update events

A shared network usually needs to tackle a series update
events that form a queue according to their arrival order.
Simple scheduling mechanisms like FIFO [10] do not perform
well in this environment. The head-event may be heavy and
have a long execution time. It would block many smaller
events that arrive later and increase the average and tail ECTs.
In this paper, we study inter-event scheduling among multiple
update events. Design goals focus on decreasing the average
and tail ECTs and preserving update efficiency and fairness.
To this end, we design two scheduling models.



Fine-tuning the order of update events. We utilize the cost
of an update event in Definition 2 as the metric to schedule
all update events in a queue. A simple way is to reorder all
queued events based on their update costs and choose the
smallest event to execute firstly. Note that the update queue is
in flux due to the changed network traffic. Consequently, we
have to reorder all queued events frequently. This causes non-
trivial computation and time overhead, especially for large-
scale networks and events. Moreover, the entire reordering
fully breaks the order of the queue and destroys fairness among
update events.

In this paper, we prefer to schedule update events based on
their arrival order, but dynamically fine-tune the execution se-
quence to tackle the head-of-line blocking problem. Consider
a set of n update events Uj,Us,...,U,. We randomly choose
two update events U, and U,, which contain v and w flows,
respectively. Let F, and F. denote the set of existing flows,
which need to be migrated for any flow f; in U, and any flow
fe in U, respectively. We then calculate the update cost of the
two update events as follows:

4

Cost(Up) = Y, sum(Fy) and Cost(U.) = isum(Fc). 6)

Finally, to gﬁz}antee fairness to some CXLEl!lt, we compare
the head-event with the two selected update events and execute
the one with the smallest update cost first.

Opportunistic updating. The aforementioned scheduling
model can decrease the average and tail ECTs at the cost of
relaxing the fairness slightly. To improve the fairness level,
we propose the opportunistic updating model based on the
fine-tuning model. The basic idea is to find the first event that
should be executed via the fine-tuning model and to perform
other events which can be updated with the first event together.
A heavy update event, which arrives earlier but is delayed
by the fine-tuning model, thus has the chance to be quickly
executed in the process of opportunistic updating. This model
increases scheduling efficiency and improves fairness to some
extent.

IV. EFFICIENT METHODS FOR INTER-EVENT SCHEDULING

In this section, we propose an approximation method to
reduce the update cost of any single update event and reduce
the ECT. Then, we design two inter-event scheduling methods,
LMTF and P-LMTF, to guarantee the fairness and efficiency
of a set of network update events.

A. Cost optimization method for any update event

For any update event, the following two issues dominate the
event completion time. First, is it necessary to reroute some
existing flows if desired paths lack sufficient bandwidth to
transmit flows of an update event? If some existing flows need
to be migrated, which paths should be reallocated to ensure
sufficient bandwidth for migrated flows? Second, if needed,
which existing flows should be migrated so that the network
resource becomes just enough to accommodate the flow of an
update event? This problem is NP-complete. Thus, we aim to
design an approximation algorithm to determine the minimum
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Fig. 3. Our LMTF can reduce the average ECT against the FIFO. U;,U,,Us
stand for three update events with various event durations.
set of migrated flows while providing sufficient bandwidth for
flows in the update event and for those migrated existing flows.
Any migrated flow for an update event competes for network
resources, such as link bandwidth and switches with other traf-
fic during the rerouting process. This behavior further affects
the network ability to handle more update events. Migrating
existing flows would take non-trivial time and decrease the
completion process of the update event. Thus, it is crucial to
reduce the update cost, i.e., the amount of migrated existing
flows, so as to reduce the ECT for each update event. However,
for a waited event in a queue of update events, its update cost
usually changes due to the dynamics of network traffic. This

brings more challenges to reduce the update cost.

B. Fine-tuning the order of update events

The aforementioned optimization method can effectively
decrease the completion time of a single update event. It is
unknown how to schedule multiple update events that form a
queue according to their arrival order. The scheduling order
determines not only the average and tail ECTs ( two metrics
about the efficiency), but also the fairness among such update
events. In this environment, FIFO is attractive because it
is simple to implement and guarantee strict fairness. If the
durations of such update events are similar, FIFO is proven
to be optimal for minimizing the tail ECT and achieving tight
fairness [15]. If the duration exhibits heavy-tailed distribution,
FIFO usually leads to the head-of-line blocking of heavy
update events arriving earlier and increases the average and
tail ECTs. In this scenario, FIFO guarantees the strict fairness,
but fails to supply efficiency to update events. For a queue of
update events, we first focus on decreasing the average and tail
ECTs at the cost of slightly relaxing the fairness requirement.

An intrinsic method is to reorder all queued events based
on their update costs and choose the lowest-cost event to
execute firstly. Fig. 3 gives an example of scheduling three
update events. The execution time of each update event is
1 second. The update cost is 4 seconds for event U; and 1
second for events U, and Us, respectively. The average ECT
of such update events is (5+749)/3=7 seconds, and the tail
ECT is 9 seconds under the FIFO method, as shown in Fig.
3(a). If we order those update events according to their update
costs, the ideal sequence is shown in Fig. 3(b). The average
ECT is reduced to (2+4+9)/3=5 seconds and the tail ECT
is the same. Theoretically, such a reordering of all update
events could tackle the head-of-line blocking problem, and
hence, reduce the wait time of the lower-cost events that arrive
later. As discussed in Section IV, this method suffers huge
computation and time overhead, the loss of fairness, and other
issues.



In this paper, we propose the least migration traffic first
(LMTF), a lightweight but effective scheduling method. It
prefers to schedule update events based on their arrival order,
but dynamically fine-tunes the execution sequence of a few
selected events to tackle the head-of-line blocking problem.
The basic idea is to randomly sample o > 1 update events
except for the head-event from the queue to find the one
with the lowest update cost. At the same time, we compare
the chosen event with the head-event to guarantee fairness
in some degree. Finally, the update event with the lowest
cost among the a+1 candidates is identified to be performed
first. If the initial head-event is selected, the FIFO fairness is
guaranteed in this round. Otherwise, it is a heavy event and
will initially block all of the o candidates. The head-of-line
blocking problem, however, is well-tackled by selecting the
update event with the lowest cost among o+1 events.

Note that LMTF does not persist in sampling o update
events when the queue contains less than o + 1 update events.
The evaluation results indicate that our LMTF method effec-
tively decreases the average and tail ECTs for any queue of
update events even when the sampling number o is set as 2.
This is a regular pattern explained in load-balance theory of
the power of two random choices [16].

It is worth noting that our LMTF method improves schedul-
ing efficiency by relaxing fairness. That is, the fine-tuning of
a few update events may delay the execution of heavy update
events which arrive earlier. There is room for further improve-
ment of the fairness level, while decreasing the average and
tail ECTs. To this end, we propose the opportunistic updating
method based on our fine-tuning method.

C. Opportunistic updating

A common feature of the simple FIFO method, the intrinsic
recording method, and our fine-tuning method is the sequential
update. That is, the network only executes one update event in
each round, which could be either the current head-event or a
selected event from the queue. We concentrate on identifying
multiple update events from the queue that can be executed in
the same round if they exist.

To this end, we present the opportunistic updating method, a
general inter-event scheduling policy to improve fairness. The
basic idea is to find the first event that should be executed
via the fine-tuning policy and to perform other update events
together with the first event if possible. A heavy update event
that arrives earlier would be scheduled later by the fine-tuning
method. In the opportunistic updating process, it, however,
would be checked whether it can be updated with the selected
event together. If yes, it has a chance to be quickly executed.
Obviously, the level of fairness among update events can be
improved to some extent. Moreover, the updating efficiency
can also be improved due to the chance of parallel update.

A heuristic schedule method, parallel-LMTF (P-LMTF), is
proposed to realize the design. In the first step, we form a
candidate set, consisting of the initial head-event and other o
update events randomly sampled from the queue. The one with
the lowest update cost among the a+1 candidates is selected

as the new head-event that will be executed first, just like the
LMTF does. In the second step, the other o candidates would
be checked if it is feasible to be performed with the new head-
event together, according to their arrival orders. That is, the
second step offers priority to update events that have arrived
earlier, and hence, effectively improves fairness.

Note that P-LMTF does not check the entire queue to
search for events that can be executed at the same time as
the new head-event. The reason is that this behavior causes
huge computation and time overhead, especially for large-scale
networks and update events.

V. EXPERIMENTAL EVALUATION

We start with the settings of our trace-driven evaluations
in an 8-pod Fat-Tree datacenter network. We then compare
the performance of our event-level and flow-level abstractions
about network update. Finally, we evaluate our LMTF and P-
LMTF scheduling methods over a real data-set from Yahoo!’s
data center [11], against the FIFO method.

A. Evaluation settings

Topology. We consider an 8-pod Fat-Tree [17] datacenter
network where the bandwidth of each link is fixed as 1 Gbps.
In a Fat-Tree data center, the number of servers and switches is
determined by the setting of parameter k. A Fat-Tree topology
accommodates 5k* /4 switches and k> /4 servers, which form
k pods. The parameter k is set to 8 in our experiments.

Workloads. To enable the trace-driven evaluation of our
methods and related work, we inject a large amount traffic
into the Fat-tree datacenter as background traffic, so that the
network utilization grows up to 70%. All injected flows are
generated from a real traffic data-set from Yahoo!’s data center
[11]. This trace records the basic information of each flow,
including IP addresses of both source and destination servers,
the size and duration of each flow, etc. Note that the real IP
addresses in the trace are anonymous. We use a hash function
to map the IP addresses of the source and destination of each
flow into our datacenter network.

We further generate a set of heterogeneous network update
events which differ in the number of flows, flow sizes, and
flow durations. We set the average number of flows caused by
each update event as a random integer ranging from 10 to 100.
We then generate new flows for each update event according
to the characteristics of network traffic mentioned in [12]. For
a generated flow, the IP addresses of its source and destination
are selected randomly over the entire data center.

Metrics. For a queue of network update events, we evaluate
the benefits of event-level abstraction by comparing five met-
rics of the flow-level scheduling method, our LMTF method,
P-LMTF method. They are the total update cost of all update
events, the average ECT, the tail ECT, the total plan time, and
the event queuing delay. The update cost of an update event
means the amount of migrated traffic of existing flows. The
average and tail ECTs indicate average and tail completion
times of all events in the queue. The total plan time indicates
the duration of making the update plan for all queued events.
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The event queuing delay is the time from the moment an event
gets placed in an update queue until its execution starts.

We first compare the flow-level and event-level scheduling
methods for a queue of update events. We then regulate several
essential factors to evaluate their impacts on the performance
metrics. They are the number of queued events, the type of
queued events, and the event queueing delay.

B.  Flow-level vs. Event-level scheduling methods

To evaluate the effectiveness of our event-level abstraction,
we compare it with the flow-level method for any queue of
update events. We construct a set of update events, each of
which has 10 to 100 flows. The duration of each flow is set
according to the characteristics of trace data. We report only
the normalized results of each metric, which are achieved by
dividing the maximum value of the flow-level method.

Fig. 4 plots the average and tail ECTs of 10 update events,
when the average number of flows in each event varies from
15 to 75. The average and tail ECTs of our event-level method
are, respectively, up to 10x and 6x faster than the flow-
level method. Additionally, the growth of the average ECT
is relatively smooth at the beginning of the two methods. In
this stage, each update event contains only a few flows and
consequently, has less probability meeting heavy flows. Thus,
the last flow of an update event will not be delayed too long
by other events. After the average number of flows in an event
exceeds 35, the two metrics of the flow-level method increase
notably. In this scenario, there must exist several heavy flows
that block the later events in the queue. The metrics of our
event-level scheduling maintain a relative and stable increase.

We can infer from Fig. 5 that more events in the queue
would lead to larger average and tail ECTs for both methods.
More precisely, the event-level scheduling elevates the average
and tail ECTs by 5x and 2x, respectively, over the flow-
level method on average. The two metrics of the flow-level
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method exhibit sudden increases when the number of events
reaches 30. Thus, some heavy flows that block the latter flows
in update events must exist. Our method can effectively solve
this problem because later events with lower update costs may
achieve high priority and be executed first.

In summary, the flow-level scheduling method processes
flows according to their arrival order, no matter which event
they belong to. However, all flows in an update event are
grouped and scheduled together. Thus, our event-level schedul-
ing method can significantly reduce the average and tail ECTs.

C. Impact of the number of update events

We evaluate our LMTF and P-LMTF scheduling methods
against the fairness scheduling method FIFO as we vary the
number of update events in the queue. The parameter o is
set as 4, which means we chose 4 events randomly from
the update queue to compare update cost with the head-event
chosen by our two methods. The network utilization varies
from 50% and 70% while each update event has 10 to 100
flows. Fig. 6 plots the evaluation results.

Fig. 6(a) reports reduction in the total update cost of our
method against the FIFO method. P-LMTF achieves a stable
reduction by 34% —45% as the number of queued events varies
from 10 to 50. In this setting, LMTF also reduces the total
update cost, but its achievement is always smaller than P-
LMTE. As expected, the changing trends of average and tail
ECTs are similar to the total update cost. For example, in the
setting of 20 update events, the reduction in the update cost by
LMTF descends a lot. At the same time, the average and tail
ECTs also decrease to some extent, especially the tail ECT.
That is to say, there must exist multiple heavy update events in
the update queue that perform before light events. Such heavy
events arrive earlier, and therefore, block later events; hence,
they increase the ECT of some latter events. This scenario,
however, will not affect the performance of P-LMTF. As the
analysis in Section IV-C shows, P-LMTF improves LMTF by
appending an opportunistic updating process and has a better
performance.

Fig. 6(b) indicates that P-LMTF achieves 69% — 80% re-
duction in the average ECT compared with FIFO and LMTF
achieves 22% — 36% reduction. This significant improvement
of P-LMTF comes from the introduction of opportunistic up-
dating. It permits multiple events to be updated simultaneously
if possible, i.e, queued events that arrive earlier have a chance
to be executed at the same time as the head-event. Thus, P-
LMTF further decreases the average ECT and simultaneously
guarantees fairness among update events. On the other hand, P-
LMTF reduces the tail ECT by 35% —48% and LMTF reduces
5% — 26% against with FIFO, as shown in Fig. 6(c).

Finally, we measure the total plan time for all queued update
events, as shown in Fig. 6(d). As expected, FIFO takes the
least time since it does not conduct other actions during the
decision process. Our LMTF and P-LMTF methods cause
longer plan time because LMTF calculates the update costs
for ot + 1 update events to find the new head-event with lowest
update cost. However, LMTF and P-LMTF take about 4.5
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Fig. 8. Reduction in average event queuing delay with our methods against
FIFO under different number of events where the network utilization fluctuates
from 50% to 70% and a=4.

times and 2 times more plan time than FIFO, respectively,
regardless of the number of update events. P-LMTF takes less
plan time than LMTF since it has a chance to make an update
plan for multiple events simultaneously in one round. It is
an acceptable tradeoff to achieve significant reductions in the
other three metrics at the cost of taking some extra plan time.
D. Impact of the type of events

50

10

20 30 40 50

We now observe the performance of our methods under
different type of events. In particular, we examine two events:
(1) heterogeneous events, each of which contains 10 to 100
flows; (2) synchronous events, each of which consists of 50
to 60 flows. For this set of experiments, our focus is on the
different events, so we keep the background traffic static. As
shown in Fig. 7, P-LMTF provides 60% — 70% reduction in
average ECT and 40% — 60% reduction in tail ECT for hetero-
geneous events and 40% — 50% and 30% — 50%, respectively,
for synchronous events when the network utilization fluctuates
from 50% to 90%. As the figure shows, P-LMTF supports
both heterogeneous event and isomorphic event update and is
almost not affected by the network utilization.

E. Event queuing delay

We first study the average event queuing delay during a
network update with multiple events. Then, we observe the
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Fig. 9. Reduction in event queuing delay with our methods against FIFO
where the network utilization fluctuates from 50% to 70% and o=4. Note
that the number of update events is 30 and the number of flows in each update
event ranges from 10 to 100.

queuing delay of 30 events in the update queue. Our results
are depicted in Fig. 8 and Fig. 9.

Fig. 8 plots the reduction in the event queuing delay
with LMTF and P-LMTF compared with FIFO for the het-
erogeneous events. As expected, with the increase of event
number, the benefits have a stable fluctuation. LMTF provides
20% —40% and 10% — 30% reduction in average and worst-
case event queuing delay. With P-LMTF, the worst case event
queuing delay reduces by 60% — 74% and the average by
67% — 83%. We can infer that the event queuing delay in
P-LMTF mainly depends on the executed events, network
utilization, etc., not on the number of queued events. Further,
in Fig. 9, we can clearly see a reduction in the queuing delay of
each event with LMTF and P-LMTF against FIFO. Because of
the fine-tuning of the execution sequence, LMTF leads to the
delay of several update events. P-LMTF, based on the LMTF,
provides more opportunities for events with a high update cost
to be executed earlier, and thus, reduces the queuing delay of
an update event and guarantees fairness during network update.

VI. RELATED WORK

Consistent update. Reitblatt et al. present the concept of
per-packet/per-flow consistent network update [2]. This means
that a packet/flow traverses the network according to either
the old network configuration or the new configuration. In
addition, they propose a two-phase method to guarantee a
consistent update with a version tag at each packet or flow.
Katta et al. try to reduce the overhead of keeping new and
old configurations at related switches at the cost of increasing
the overall update duration [3]. Dionysus finds a consistent
migration sequence by searching through a dependency graph
of possible migrated steps [9]. Moreover, the timed-based
update methods [4], [5] aim to achieve consistent update using
the accurate time to trigger a network update at each phase.



Such methods effectively reduce the duration of flow rules on
the switches and the update duration. In addition, the authors
in [8] propose an effective method to decide if a consistent
update is possible. Foerster et al. study the power of two
random choices in consistent network update for updating
forwarding rules in a loop-free manner and migrating flows
without congestion [18]. They propose an effective algorithm
to migrate two-splittable flows and an alternative when no
consistent migration exists.

Congestion-free update. zUpdate [1], SWAN [6], and
Caesar [19] try to make a congestion-free update plan in
advance for any update event. This plan contains a sequence
of intermediate states from an initial network state to the
final network state, such that the transition across any pair of
adjacent states is lossless. However, this strategy has several
drawbacks. First, achieving such an update plan means solving
a series of LPs. The time complexity is very high for large-
scale network and update events. Second, to guarantee a series
of congestion-free transitions, a portion (10% — 15%) of link
capacity has to be left in advance, which decreases the network
utilization [6]. Cupid locally constructs a dependency graph
among key-nodes for congested links to avoid high overhead
among updates guarantee congestion-free data plane update.
This work also proposes a heuristic algorithm to update flow
table consistently and effectively [20].

Accelerate the update process. B4 speeds up the update
process, using the custom hardware [21]. The work in [7]
speeds the update process at the cost of incurring a given
level of congestion. The basic idea is to minimize the transient
congestion during the network update and achieve a better
tradeoff between the update speed and the transient congestion.

For any update event, the aforementioned updating schemes
focus on optimizing flow-level metrics and do not perform
well in optimizing event-level metrics. Moreover, they cannot
capture the inter-event requirements in a queue of update
events. In summary, prior updating schemes do not provide an
abstraction to represent event-level update semantics. Event-
level abstract, expressing the semantics of a collection of flows
caused by an update event, is different from the network
abstract Coflow [22], each of which is a collection of flows
between two groups of machines with associated semantics
and a collective objective.

VII. CONCLUSION

The network condition is constantly in flux, due to updating
issues. Prior updating schemes tackle all flows caused by
such updating issues individually, but ignore the event-level
update requirements. In this paper, we propose an event-level
abstraction of network update which groups flows of an update
event and schedules them together. It can considerably reduce
the update cost and completion time of any update event. We
further propose two efficient approaches, LMTF and P-LMTF,
to schedule multiple update events while improving update
efficiency and preserving fairness. The trace-driven evaluations
indicate that our event-level LMTF method achieves 10x and
6x speed-up in average and tail ECTs, respectively, than flow-
level method. Our P-LMTF method reduces average ECT by
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75% and tail ECT by 42% compared with FIFO, when the
network utilization exceeds 70%.
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