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ABSTRACT
Network Function Virtualization (NFV) is an emerging technol-
ogy, which enables service agility, flexibility and cost reduction
by replacing traditional hardware middleboxes with Virtual Net-
work Functions (VNFs) running on general-purpose servers. Ser-
vice Function Chain (SFC) constitutes an end-to-end service by or-
ganizing a series of VNFs in a specific order. Particularly, hybrid
SFC (SFC with parallel VNFs) is proposed to much reduce the traf-
fic delay in sequential SFCs. Nevertheless, how to strategically se-
lect VNF instances and links in hybrid SFC embedding remains an
open problem. In this paper, we target at the cost minimization and
address the optimal hybrid SFC embedding problem. Specifically,
we first develop a novel abstraction model for the hybrid SFC with
Directed Acyclic Graph (DAG), which helps convert diverse hy-
brid SFCs to the standardized DAG-SFC form. Then, we formulate
the optimal DAG-SFC embedding problem as an integer optimiza-
tion model and propose a greedy method (called BBE) to solve the
NP-hard problem. MBBE method is developed upon BBE method
to further cut down the computation complexity in model solving.
Extensive simulation results demonstrate the effectiveness of our
approach for cost reduction in hybrid SFC embedding.

CCS CONCEPTS
• Networks→ Control path algorithms; Traffic engineering al-
gorithms; Network resources allocation;

∗Deke Guo and Yulong Shen are both corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPP 2018, August 13–16, 2018, Eugene, OR, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6510-9/18/08. . . $15.00
https://doi.org/10.1145/3225058.3225111

KEYWORDS
Network Function Virtualization, Network Function Parallelism,
Service Function Chain Embedding
ACM Reference Format:
Xu Lin, Deke Guo, Yulong Shen, Guoming Tang, and Bangbang Ren. 2018.
DAG-SFC: Minimize the Embedding Cost of SFC with Parallel VNFs. In
ICPP 2018: 47th International Conference on Parallel Processing, August 13–
16, 2018, Eugene, OR, USA. ACM, New York, NY, USA, 10 pages. https://doi.
org/10.1145/3225058.3225111

1 INTRODUCTION
Network Functions, such as firewall, deep packet inspections, are
frequently used in enterprise networks to ensure security, improve
performance, and provide other novel network functionalities [16].
However, the traditional deployment of these NFs depends on ex-
pensive special-purpose hardware-based appliances such as mid-
dleboxes [2].

On the contrary, Network Function Virtualization (NFV) [2], has
been proposed to replace special-purpose hardwares by hosting
virtual network function (VNF) softwares on general-purpose CPUs
or virtual machines. This could bring us rapid deployment, net-
work scalability [12], low-cost update and encourage innovation
on network [5]. To capture many known benefits of cloud comput-
ing such as decreased costs and easy management, VNFs could be
hosted in the public cloud or private clouds embedded within an
ISP infrastructure [16][10]. Furthermore, many efforts are token to
explore new models for NFV deployment. Telecom operator and
third-party providers would offer VNFs as commodity in public
clouds [14, 16] so that clients could establish their service by rent-
ing such VNFs. Also, large-scale enterprises could deploy VNFs in
their private clouds to meet their own requirements.

Typically, to get a specific and complete end-to-end service from
the source to the destination, network flow needs to pass through
several VNFs in a particular order, which is known as service func-
tion chain (SFC) [3, 11]. As shown in Fig. 1(a), a conventional SFC
consists of a set of sequential VNFs. In VNF enabled traffic engi-
neering, a fundamental problem is to find a routing path for a flow,
such that the flow can traverse a required SFC. This results in a
joint procedure of VNF assignment and path selection, which is
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Figure 1: Traditional sequential SFC v.s. hybrid SFC derived
from [17].

known as SFC embedding [8]. Recently, many researches focus on
this problem with different design goals, such as minimum cost
[4, 13, 20], maximum network throughput [7, 8, 18], delay reduc-
tion [1] or jointly considering of all the above [21, 23]. However,
current optimization on SFC embedding still could not achieve a
breakthrough on the total delay reduction due to the nature of the
sequential process between VNFs in traditional SFC.

Recently, some emerging researches show the possibility of VNF
parallelism [22] and propose a framework to enable parallelism
for those VNFs without ordering requirement [17]. As shown in
Fig. 1(b), the SFC can be deployed with the combination of sequen-
tial and parallel VNFs, which we called hybrid SFC in this pa-
per. With hybrid SFC, it has been validated that the traffic delivery
delay can be significant reduced [17]. Nevertheless, current work
only experiments hybrid SFC under the single server scenario. The
general deployment of hybrid SFC over a target network has not
been considered yet.

In this work, we consider the hybrid SFC embedding problem in
an emerging cloud network scenario from the perspective of con-
sumers. In a cloud network, there are many geo-dispersed cloud
nodes that are connected via network links. In each of such nodes,
there may exist multiple VNF instances, deployed by third party
providers or the network operators [24]. Additionally, each VNF
instance may have a rental price (corresponding to its deployment
cost and resource consuming [9, 15, 23]) and a traffic processing ca-
pacity, while each network link also has a link price and the band-
width capacity. More in detail, different VNF instances and links
may have different prices. From the perspective of consumers, how
to reduce the total cost when embedding a required hybrid SFC
into the network is important.

We aim to minimize the total cost when embedding a hybrid
SFCwithout exceeding the capacity constraints over a given priced
cloud network. Specifically, we take the efforts as follows. Firstly,
we propose a novel abstraction model, a kind of standardized Di-
rected Acyclic Graph (DAG), to clearly model the orchestration of
hybrid SFCs. Furthermore, we illustrate how a flow passes through

a hybrid SFC according to a DAG order. Then, we carefully formu-
late the optimal hybrid SFC embedding problemwith an integer op-
timization model and use a greedy method based on breadth-first
search (named BBE) to solve the problem. To further reduce the
computational complexity of BBEmethod, we propose a mini-path
breadth-first backtracking embeddingmethod (namedMBBE). The
results from our simulations demonstrate that the algorithms have
good performance in terms of the total cost reduction, and in par-
ticularly MBBE can cut down the computation complexity without
an apparent performance degradation.

2 RELATEDWORK
SFC embedding problem has attracted much attention. Many re-
searches focus on this problem with particular design goals, such
as minimum cost [4, 20], maximum network throughput [3, 7, 8,
18], delay reduction [1] or jointly considering of all the above [21,
23]. Nevertheless, most of the researches focused on the situation
of sequential SFCs and paid little attention to the VNF parallelism.
Thus, due to the nature of sequential traffic flow processing, few
of them achieved a breakthrough on the delay reduction.

Recently, some emerging researches showed the feasibility and
effectiveness of VNF parallelism for traffic latency reduction [17,
22]. The observation in [17] indicated that 53.8% network func-
tion pairs in enterprise networks could work in parallel. Moreover,
41.5%NF pairs could be parallelizedwithout causing extra resource
overhead in NFV-enabled traffic engineering. Due to the great ad-
vantage at traffic delay reduction, the parallel VNFs were preferred
to the traditional sequential ones when establishing SFCs [17, 22].
Nevertheless, all previous work considers the deployment of par-
allel VNFs upon one single server, and the general scenario where
parallel VNFs are deployed over a cloud network [14, 16] (i.e., hy-
brid SFC embedding) needs to be further explored.

When embedding a specific hybrid SFC within a network, rent-
ing VNF instances on different network nodes and selecting VNF
connections via different network links could result in dramati-
cally different instantiating costs. From the perspective of consumers,
how to cut down the total cost of SFC instantiating is a critical
problem. Therefore, we propose and solve the optimal hybrid SFC
embedding problem, i.e., how to orchestrate the embedding of a
hybrid SFC over a given cloud network, such that the total cost
can be minimized. To the best of our knowledge, this is the first work
dealing with the optimal hybrid SFC embedding problem.

3 HYBRID SFC EMBEDDINGWITH DAG
ABSTRACTION

In this section, we first present a novel abstraction model for the
hybrid SFC, which clearly discloses its inner structure, and convert
the hybrid SFC to a standardized DAG-SFC form. Then, we ana-
lyze the DAG-SFC embedding problem thoroughly and formulate
it with an integer programming.

3.1 DAG Abstraction for Hybrid SFCs
Based on the analysis of [17, 22], we propose a novel hybrid SFC
abstraction model utilizing a standardized directed acyclic graph
(DAG). DAG has been frequently utilized to depict parallel tasks
and the dependency between these tasks, in many fields such as
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Figure 2: The transformation of service chain from sequen-
tial form to a DAG.

big data processing [19] and data-parallel cluster scheduling [6],
while it has not been used for VNF parallelism.

As demonstrated in Fig. 2, a sequential service chain could be
transformed to a hybrid form by analyzing the parallelism in the
chain, so that we could abstract the hybrid form with a DAG. As
the middle graph in Fig. 2 shows, the service chain can be divided
into several VNF sets, each of which contains VNFs that can be
executed in parallel and is called a parallel VNF set. Then, the ser-
vice function chain can be converted to multiple layers, each with
a parallel VNF set. As illustrated by the bottom graph in Fig. 2, the
VNF set {2,3,4,5} is the parallel VNF set at layer 2 and the VNF set
{6,7} is the parallel VNF set at layer 3. The relation between layers
(i.e., parallel VNF sets) is still sequential due to the existence of
non-parallelizable VNF pairs in SFCs [17]. Notice that each layer
is usually followed by a merger that is responsible for integrating
the middle results from the parallel VNFs.

Generally speaking, for any service function chain, we can di-
vide it into one or multiple serial layers, each consisting of a single
VNF or a parallel VNF set (followed by a merger), as illustrated
by Fig. 2. Therefore, the above DAG abstraction can be a stan-
dardized procedure for hybrid SFC transformation. We name the
transformed form as DAG service function chain (DAG-SFC).With
the standardized form of DAG-SFC, we then turn to formulate and
solve the DAG-SFC embedding problem.

3.2 DAG-SFC Embedding: Representation &
Definition

We consider the cloud network as our target network, which is an
overlay network built upon the underlying fundamental network
(established by the telecom operators). The network nodes are con-
nected via the network links, and upon each network node, third
party VNF providers can supply customers with diverse VNF in-
stances. We then present the system models as follow:

Model of Target Network: The target network is modelled by
a graph G =(V , E). Each link e ∈ E is bi-directional and associated
with i) a link price ce for each unit of traffic delivery rate (e.g., 1
Gbps) and ii) a bandwidth capacity re . Each node v ∈ V contains
one or multiple VNFs (denoted by Fv ) which is a subset of the VNF
set (Fv ⊂ F ).

Model of VNF Deployment: Assume that there are n cate-
gories of VNFs available from the third party VNF provider. We
represent them with a VNF set F = { f (1), f (2), ..., f (n)} with the
ith category of VNF denoted by f (i). For VNF f (i) deployed on
node v , we denote it by fv (i) and assume that it is with i) a rental
price for each unit of traffic delivery rate (e.g., 1 Gbps) denoted by
cv ,f (i) and ii) a traffic processing capability denoted by rv ,f (i). For
all network nodes with VNF f (i), we include them in a node set
Vi ⊆ V . Besides the n regular VNFs, we introduce two more par-
ticular ones: i) f (0) denoting the dummy VNF (used to unify the
equations in later optimization model), and ii) f (n + 1) denoting
the merger for the parallel VNFs.

Model of DAG-SFC: Assume that a specific SFC can be stan-
dardized to an ω-layer DAG-SFC, denoted by S={L1, L2, ..., Lω }.
That is, there areω serial layers in the DAG, and each layer is com-
posed by a single VNF or a parallel VNF set (followed by a merger).
Let ϕl denote the number of parallel VNFs at layer Ll and f

γ
l de-

note the γ th VNF of this layer. The merger followed by layer Ll is
denoted by f

ϕl+1
l .

Model of DAG-SFC Path: The logic link connection between
any two VNFs in the DAG-SFC is defined as a meta-path, as illus-
trated by the colored directed lines in the bottom graph of Fig. 2.
The actual link path connecting any two network nodes is defined
as a real-path. Let the real-path set Pab denote the set of real-paths
between node va and node vb . Then, a specific real-path between
nodeva and nodevb can be denoted bypab ,ρ ∈ Pab , where ρ is a sub-
script to distinguish the real-path from others within the real-path
set Pab . Moreover, we use β to denote the length of a specific real-
path, e.g., a β-length real-pathpx0xβ ,ρ = {ex0,x1 , ex1,x2 , ..., ex(β−1),xβ }.
Note that a real-path which connects two nodes with VNFs is ac-
tually an implementation of corresponding meta-path. Moreover,
since overlaps may exist among real-paths, the network links can
be reused for multiple times during the traffic delivery.

Model of Traffic Flow: A traffic flow is with a size z and a
delivery rate R, and is delivered from the source node s ∈ V to the
destination node t ∈ V . The source node and the destination node
form the source-destination pair.

With the above system models, we formally define the optimal
DAG-SFC embedding problem as follow:
Definition 1 (Optimal DAG-SFC Embedding Problem) Given
the target network and a traffic flow with source-destination pair,
the problem is to strategically embed a specified DAG-SFC into the
target network. Thus, the total traffic delivery and processing cost
(including link cost and VNF rental cost) can be minimized, under
the constraints of the network link capacity and the VNF traffic
processing capability.
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3.3 Optimal DAG-SFC Embedding
The meta-paths in a DAG-SFC can be naturally classified into two
groups. The first group (denoted by P1) contains all the meta-paths
connecting two adjacent layers, which is called inter-layer meta-
path set. More in detail, a meta-path p ∈ P1 could connect the
merger or the single VNF of the former layer to current layer’s
VNFs, such as the black, red and dark green arrows shown in the
bottom of Fig. 2. The second group (denoted by P2) contains all
meta-paths from parallel VNFs to the merger at the same layer and
we call P2 as inner-layer meta-path set, e.g., the light green and blue
arrows in Fig. 2. Note that the inter-layer meta-paths of the same
layer use a multicast transfer (but not a straightforward combina-
tion of multiple unicast). However, the inner-layer meta-paths of
the same layer cannot use the multicast transfer, as the traffic flow
processed by the parallel VNFs could result in different versions.
Therefore, we treat the two meta-path groups separately.

Before formulating the optimal DAG-SFC embeddingmodel, we
give the definitions of different variables as follow.

• xv ,l ,γ : a binary variable, denoting whether or not the γ th

VNF at layer Ll (i.e., f
γ
l ) on the node v is rented.

• x il ,γ : a binary variable, denoting whether or not the equa-

tion f
γ
l = f (i) holds.

• αv ,i : an integer variable, denoting the reused times of VNF
f (i) on node v (i.e., fv (i)).

• xab ,ρ ,l ,ε : a binary variable, denoting whether or not the real-
path pab ,ρ is selected to implement the meta-path between

the (l −1)th merger f |L(l−1) |(l−1) (or the only VNF at the (l −1)th
layer) and f εl .

• y
a,l ,γ
b ,ρ : a binary variable, denoting whether or not real-path

pab ,ρ is selected to implement themeta-path between f
γ
l and

the lth merger f |Ll |l .
• x

a,д
b ,h,ρ : a binary variable, denoting whether or not the edge

eд,h is selected to constitute an instantiated real-path pab ,ρ .
• αд,h : an integer variable, denoting the reused times of edge
eд,h .

• ml ,γ : a binary variable, denoting whether or not VNF f
γ
l is

the merger of the lth layer.
• F (a,b, ρ) = ∏

eh,д ∈pab ,ρ x
a,д
b ,h,ρ . F (a,b, ρ): a function return-

ing binary results, indicating whether or not all the link
eh,д ∈ pab ,ρ are assigned to instantiate the real-path pab ,ρ .

With the above systemmodels and variables, the objective func-
tion of optimal DAG-SFC embedding problem can be defined as
follow.

min(
∑
v ∈V

∑
f (i)∈Fv

αv ,icv ,f (i)z +
∑

eд,h ∈E∧vд,vh
αд,hceд,hz) (1)

In the objective function, the first term is the total VNF rental cost
and the second term is the total link cost. Based on Definition 3.2,
we formulate the constraints in the optimal DAG-SFC embedding
problem.

3.3.1 Capacity Constraints. The following two constraints en-
sure that i) all VNF instances f (i) of the given network do not ex-
ceed their processing capability, and ii) all links in the network do
not exceed their bandwidth capacity, when embedding the DAG-
SFC.

αv ,iR ≤ rv ,f (i) ∀f (i) ∈ Fv ,v ∈ V (2)
αд,hR + αh,дR ≤ reд,h ∀vд,vh ∈ V ∧vд , vh (3)

3.3.2 Service Chain Enabling Constraints. To uniform themodel,
we use L0 = { f 10 } and L(ω+1) = { f 1(ω+1)} to denote additional lay-
ers for the source node and the destination node, respectively. Fur-
thermore, we assign the dummy VNF f (0) to the two additional
layers, i.e., f 10 = f 1(ω+1) = f (0). Thus we define the stretched SFC
as S+ = {L0, L1, ..., L(ω+1)} Then, the following three constraints
ensure the completeness of the DAG-SFC embedded in the target
network.∑

v ∈V
xv ,l ,γ = 1 ∀l ∈ {l | Ll ∈ S+},∀γ ∈ {γ | f γl ∈ Ll } (4)

∑
va ∈Vi

xva ,(l−1), |L(l−1) |
∑

vb ∈Vj
xvb ,l ,ε

|Pab |∑
ρ=1

xab ,ρ ,l ,ε F (a,b, ρ) ≥ 1

∀l ∈ {1, ...,ω + 1}, ∀ε ∈ {1, 2, ...,ϕl }

∀(i, j) ∈ {(i, j) | f (i) = f
|L(l−1) |
(l−1) ∧ f (j) = f εl } (5)∑

va ∈Vi
xva ,l ,γ

∑
vb ∈Vj

xvb ,l ,ϕl+1

|Pab |∑
ρ=1

y
a,l ,γ
b ,ρ F (a,b, ρ) ≥ 1

∀l ∈ {l | l ∈ {1, 2, ...,ω} ∧ |Sl | > 1},∀f γl ∈ Ll − { f ϕl+1l }

∀(i, j) ∈ {(i, j) | f (i) = f
γ
l ∧ f (j) = f

ϕl+1
l } (6)

In detail, constraint (4) ensures that each VNF in the DAG is only
assigned once. Constraints (5) and (6) ensure that all the inter-layer
and inner-layer meta-paths are implemented, respectively.

The situations of VNF and link reuses are depicted as follow:

αv ,i=

|S+ |∑
l=0

|Ll |∑
γ=1

x il ,γ xv ,l ,γ ∀v ∈ V ,∀f (i) ∈ F (7)

αд,h=αP1,д,h + αP2,д,h ∀vд,vh ∈ V ∧vд , vh (8)

where

αP1,д,h =
ω+1∑
l=1

min{
ϕl∑
ε=1

∑
va ∈V

xa,l−1, |L(l−1) |
∑

vb ∈V∧va,vb
xb ,l ,ε

|Pab |∑
ρ=1

xab ,ρ ,l ,ωx
a,д
b ,h,ρ , 1} (9)

αP2,д,h =
ω∑
l=1

ml , |Ll |

ϕl∑
γ=1

∑
va ∈V

xa,l ,γ
∑

vb ∈V−{va }
xb ,l ,(ϕl+1)

|Pab |∑
ρ=1

y
a,l ,γ
b ,ρ x

a,д
b ,h,ρ (10)

Formula (7) computes the value of reused times of all VNFs in
the network. Formula (8) computes the value of reused times of link
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eд,h , which is the sum of two parts: i) αP1,д,h in Formula (9) gives
the reused times of link eд,h caused by inter-layer meta-paths, and
ii) αP2,д,h in Formula (9) gives the reused times of link eд,h caused
by inner-layer meta-paths.

It can be proved that the optimal DAG-SFC embedding prob-
lem is NP-hard. Actually, under the condition that all VNFs of an
SFC have been assigned, selecting the optimal links to connect the
VNFs under bandwidth constraints is still NP-hard (with reduction
to the unsplittable flow problem [20]). Furthermore, this problem
is significantly different from the sequential SFC embedding prob-
lem, because of the transformation of inner-SFC structure. With
traditional methods for the sequential SFC embedding, the com-
pleteness of the DAG-SFC cannot be guaranteed.

4 SOLUTIONS TO OPTIMAL DAG-SFC
EMBEDDING

By analyzing the optimal DAG-SFC embedding problem, we first
give a simple initial solution to the problem. Then a Breadth-first
Backtracking Embedding method (BBE) and a Mini-path Breadth-
first Backtracking Embeddingmethod (MBBE) are developed to op-
timize the initial solution.

4.1 BBE Framework
A naive idea to tackle the optimal DAG-SFC embedding problem is
to select the cheapest VNFs to build the DAG-SFC in the network.
However, this idea omits the connection links in the target net-
work and may result in a huge link cost. To reduce the total cost of
embedding a DAG-SFC, we need to jointly consider the VNF cost
and the link cost.

It is intuitive to select VNFs on adjacent nodes, so that the link
cost can be reduced. Based on this principle, we propose the Breadth-
first Backtracking Embedding (BBE) method, which is inspired by
the breadth-first search idea. The basic idea of BBE is:

(1) Search for multiple feasible sub-solutions as the candidates
of embedding solution for one single layer;

(2) Repeat the above candidate searching process layer by layer,
until all layers of the DAG-SFC are traversed;

(3) Among the complete embedding solutions formed by series
of sub-solution candidates, select the cheapest one as the
final solution.

The pseudo-code of BBE is shown in Algorithm 1. In detail, to
generate the feasible sub-solution candidates of the lth layer based
on a specific sub-solution at the (l − 1)th layer, three steps need to
take, i) forward search, ii) backward search and iii) candidate sub-
solution generation, which are corresponding to lines (5-8) in Al-
gorithm 1. After obtaining the sub-solutions of all layers, for each
sub-solution at theωth , BBE connects theωth end node to the des-
tination node using minimum cost path. This leads to a complete
candidate solution, corresponding to lines (9-10) in Algorithm 1.
At last, the BBE will select the cheapest solution from the candi-
dates as the final solution, which is corresponding to line (11) in
Algorithm 1.

Algorithm 1: Breadth-first Backtracking Embedding Al-
gorithm (BBE)
Input: G(V , E): network topology with its capacity and

price information, S={L1, L2, ..., Lω }: the DAG-SFC,
the start node vs , and the destination node vt

Output: One of the local optimal solution
1 Let l be the current layer Ll ;
2 Get the real-time network graph G1;
3 for layer l from 1 to ω do
4 for each (l − 1)th layer sub-solution ss do
5 Forward search base on ss ;
6 for each probable merger node searched by the

forward search do
7 Backward search from the merger node;
8 Generate feasible sub-solutions at the lth ;

9 for each ωth sub-solution do
10 Generate a complete embedding solution candidate;
11 Select the cheapest solution candidate as the final solution.

4.2 Step 1: Forward Search
Generally speaking, the forward search process at the lth layer is
to find a set of adjacent nodes which includes all required VNFs (ac-
cording to the DAG-SFC) from the start node at the lth layer. Thus,
we can embed the lth layer of DAG-SFC into the target network
from the start node of this layer. At the same time, such forward
search process also instantiates the inter-layer meta-paths at the
lth layer. The detail of the forward process is as follow.

To ease the description, we first introduce some symbols applied
in later sections.

• Let vl denote the end node at the lth layer. Then, the start
node of the lth layer is v(l−1).

• Let I Fl denote the forward search process starting fromv(l−1),
which includes a series of iterations.

• Let V F ,l
v(l−1),q denote the forward search node set, which is

composed by nodes searched in the firstq forward iterations
(at layer l ) starting from node v(l−1).

• Let F F ,lv(l−1),q =
∪
v ∈V F ,l

v(l−1) ,q
Fv denote the VNF set that con-

tains all the VNFs deployed on the nodes of V F ,l
v(l−1),q .

4.2.1 Forward Search. Based on the breadth-first search, the
forward search may contain multiple iterations. We start the for-
ward search fromv(l−1) for all required VNFs at layer l . Specifically,
in the first iteration of I Fl ,V

F ,l
v(l−1),1 = {v(l−1)}; then, in the qth iter-

ation of I Fl , we can obtain the forward searching node setV F ,l
v(l−1),q

by extending the last forward searching node set V F ,l
v(l−1),(q−1)

and
adding the nodes which have direct connections with any node in
V F ,l
v(l−1),(q−1)

; until find all required VNFs at the lth layer of DAG-

SFC, we stop the lth forward search. In other words, we iterate the
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Figure 3: An example to illustrate how BBE works: forward search & backward search.

forward search until F F ,lv(l−1),q covers the VNFs set of the lth layer,

i.e., Ll ⊆ F F ,lv(l−1),q .
To clearly illustrate how BBE works, we give an example in

Fig. 3, which shows the VNFs embedding process of the second
layer of DAG-SFC in Fig. 2. With the example in Fig. 3, we as-
sume that the first layer with a single VNF (f (1)) is deployed on
node va . Then, Fig. 3(a), 3(b) and 3(c) show how I F2 instantiate the
meta-paths that connect f (1) and each of the parallel VNFs at the
second layer (as illustrated by the red arrows in Fig. 2). Moreover,
Fig. 3(a) shows the intermediate state of the first iteration of I F2 .
After the first iteration, V F ,l

v(l−1),ql = V F ,2
a,1 = {va }. Because the for-

ward searchingVNF set F F ,lv(l−1),ql = F F ,2a,1 = { f (1), f (6), f (7), f (8) =
merдer } does not cover the second layer VNF set L2 = { f (2), f (3),
f (4), f (5), f (8)}, the second iteration is executed and the second
intermediate state is shown by Fig. 3(b). After the second iteration,
V F ,2
a,2 ={va,vb ,vh } and F

F ,2
a,2 = { f (1), f (2), f (3), f (5), f (6), f (7), f (8)}.

Because it is still true that L2 ⊈ F F ,2a,2 , the third iteration is ex-
ecuted and the third intermediate state is shown by Fig. 3(c). At
this time, L2 ⊆ F F ,2a,3 is satisfied (V F ,2

a,3 = {va,vb ,vc ,ve ,vh,vi } and
F F ,2a,3 = { f (1), f (2), f (3), f (4), f (5), f (6), f (7), f (8)}), thus I F2 is ter-
minated. Fig. 3(f) gives the real-paths that I F2 has searched.

4.2.2 Forward Search Tree. Wedefine Forward Search Tree (FST),
which is a data structure based on the binary tree to store the result
of a specific I Fl . The left part of Fig. 4 gives the FST of the forward
search in Fig. 3. The solid arrow between any two FST nodes de-
notes the binary tree connection, while the dotted arrow denotes
the relationship of the corresponding network nodes. In each FST,
the left child of a node corresponds to a network node searched
in the next iteration, and the right child of a node corresponds to

Table 1: Elements of a search tree node

Number Elements Number Elements
1 Father pointer 5 Available VNF set
2 Left child pointer 6 Previous node list
3 Right child pointer 7 Next node list
4 Node ID

a network node searched in the same iteration. Therefore, when
traversing all the FST nodes in the ith iteration, we can easily find
the leftmost FST node of the ith layer in the FST (the root is in the
first layer), and then iterate to access the right child until no right
child is found. The root of the lth layer FST denotes the lth layer
start node, and the forward search starts from the root node.

More in detail, each node of the FST has seven elements as Ta-
ble 1 shows. The first three elements keep the logic of binary tree.
The fourth and the fifth record the information about the corre-
sponding network nodes. The last two elements are used to record
the link connection relationship between the current node and
other nodes in the network. Given a specific node in the FST, we
could simply instantiate an existing path to the root of the FST by
selecting a series of dotted arrows as Fig. 4 shows. As the forward
search guarantees that no less than one dotted arrow from a non-
root FST node to the FST nodes generated from previous iteration,
there always exist dotted paths between a non-root node and the
root node in the FST.

4.3 Step 2: Backward Search
After the forward search, for each node v in FST containing a
merger, we start a backward search process. The function of back-
ward search is two-fold: i) to further narrow the adjacent node set
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Figure 4: FST topoloby of Fig. 3(f) and BST topoloby of
Fig. 3(g).

obtained in previous forward search process and ii) to instantiate
the lth layer inner-layer meta-paths.

To ease the description, we introduce some symbols at first.
• Let IBl denote the set of backward search iterations starting
from vl to find all required VNFs at the lth layer.

• Let V B,l
vl ,w denote the backward search node set which is

composed by nodes searched in the firstw iterations (of IBl )
starting from node vl .

• Let FB,lvl ,w =
∪
v ∈V B ,l

vl ,w
Fv denote the VNF set that includes

all VNFs deployed on the nodes of V B,l
vl ,w .

4.3.1 Backward Search. For the lth layer, we start a backward
search from the end node of this layer and iterate searching until
find all required VNFs at the lth layer. In detail, in the first itera-
tion of IBl , V

B,l
vl ,1 = {vl }; then, in wth iteration of IBl we get the

backward search nodes set V B,l
vl ,w by extending the last backward

searching nodes set V B,l
vl ,(w−1) and adding the nodes which belong

to V F ,l
v(l−1),q and have a direct connection to any node in V B,l

vl ,(w−1);

we finish the iteration until Ll ⊆ FB,lvl ,w . As an example, Fig. 3(d)
and 3(e) show how the backward search IB2 instantiates the meta-
paths, which connects each real-world VNF of second layer and
the merger of second layer, illustrated by the green arrows in Fig. 2.
Moreover, Fig. 3(g) shows the real-paths that the backward search
IB2 has obtained.

4.3.2 Backward Search Tree. Similar to FST, we define Back-
ward Search Tree (BST), a data structure based on the binary tree,
to store the result of a specific IBl . The right part of Fig. 4 shows
the BST of the backward search in Fig. 3. Although the BST has
the same logical structure as FST, they store different information.
Note that, the root of a BST at the lth layer denotes the layer’s end
node, and the backward search starts from the root node.

4.4 Step 3: Candidate Sub-solutions Generation
With the FST and BST at each layer of a specific DAG-SFC, we
can generate a series of sub-solutions in form of FST-BST pairs. To
efficiently store the sub-solutions, we define the data structure of
the sub-solution tree.

1

a b

2,3,5

c

4

e

Merger

c

Figure 5: An example of the candidate sub-solution for Fig. 4.

4.4.1 Candidate sub-solutions generating. Given the FST-BST
pair at the lth layer, we generate a series of sub-solutions by travers-
ing all feasible sub-solutions of the lth layer. Based on the defini-
tion of FST and BST, we know that Ll ⊆ F F ,lv(l−1),q , Ll ⊆ FB,lvl ,w and

V B,l
vl ,w ⊆ V F ,l

v(l−1),q are always satisfied. Accordingly, we generate
candidate sub-solutions with four steps: i) for each possible combi-
nation of the lth layer parallel VNFs allocation in the BST, we gen-
erate a first-step candidate sub-solution, ii) based on each first-step
candidate sub-solution, we generate a set of second-step candidate
sub-solutions with different real-paths by traversing the BST, iii)
with each second-step candidate sub-solution, we can generate a
set of third-step candidate sub-solutions with different real-paths
by traversing the FST, and iv) check all the third-step candidate sub-
solutions and remove the infeasible ones. Fig. 5 gives an example
of candidate sub-solution generation based on the FST-BST pair in
Fig. 4 and the second layer of DAG-SFC in Fig. 2, when assigning
f (2), f (3), f (5) on node vc and assigning f (4) on node ve .

4.4.2 Sub-solution Tree. With the above operations, we can gen-
erate candidate sub-solutions for each FST-BST pair. Nevertheless,
each FST would be established based on a specific previous layer
sub-solution. Thus, how to accurately store the relation between
sub-solutions is a problem. We then propose the sub-solution tree,
a data structure based on tree topology, to tackle this problem.
The sub-solution tree is established accompanying with the whole
searching procedure. After generating the sub-solutions of a spe-
cific FST-BST pair, the BBE immediately inserts them into the sub-
solution tree as the children of the previous layer’s sub-solution,
which the FST is based on. For aω-layer SFC, the sub-solution tree
will have (ω + 2) layers, and the 0th layer stores the source node
without any cost. The 1th ∼ ωth layers store the sub-solutions of
corresponding SFC layers, and the (ω + 1)th layer stores the mini-
mum cost path between the ωth end node to the destination node.
Each (ω+1)th layer sub-solution tree node (i.e., the leaf node) indi-
cates a unique feasible solution, which is formed by connecting all
sub-solutions on the acyclic path from the leaf node to the root of
the sub-solution tree. Note that every link between a node and its
father node is a bi-directed link. The down links satisfy the need
of generating and traversing the sub-solution tree, while the up
links bring great convenience in finding the upstream path from
this sub-solution node to the root node by avoiding traversing the
sub-solution tree from the root in each iteration.

4.5 Solution Upgrading with MBBE
The computation complexity of the BBE could be estimated by
multiplying the computation complexity of each embedded layer.
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Assume that the maximum number of real-paths with the same
length between two network node is h and there are n node in the
network. The DAG-SFC contains ω layers, and each layer includes
at most ϕ parallel VNFs. In this case, the worst time complexity of
a single layer embedding is O(nϕhϕhϕ ), so the complexity of the
SFC embedding is not more than O(nωϕh2ωϕ ). Unfortunately, the
complexity increases significantly along with the growing of the
network size and the SFC length. The computation complexity of
solving the DAG-SFC embedding problemwould increase at an un-
acceptable rate. Thus, even no solution would be obtained due to
the memory overflow caused by the huge candidate solution stor-
age, when SFC length grows up.

Therefore, we further propose theMini-path BBEmethod (MBBE)
by adding the following complementary strategies upon the BBE:

(1) Set up an integer parameterXmax ≤ n, and in each forward
search we add a condition that the size of forward search
node set must not exceed Xmax (|V F ,l

v(l−1),q | ≤ Xmax ).
(2) When generating sub-solutions of an FST-BST pair, for each

first-step candidate sub-solutions, we generate a correspond-
ing final candidate sub-solution by instantiating the meta-
paths using the minimum cost paths referring to the real-
time network.

(3) Set up an integer parameter Xd . When generating the sub-
solutions of an FST-BST pair, we setup a limitation that only
the cheapest Xd sub-solutions can be inserted into the sub-
solution tree. In this way, the sub-solution tree changes to
an Xd -tree.

With strategies (1) and (2), the worst time complexity of a single
layer embedding in BBE is reduced toO(ϕn2Xϕ

max ). And due to the
applying of strategy (3), the upper bound of the worst time com-
plexity of the whole SFC embedding reduces to O(kϕn2Xϕ

max ), in
which k = (1 − (Xd )ω+1)/(1 −Xd ). The complementary strategies
cut down the time complexity by reducing the search space. Ac-
cording to the experimental results in section 5, MBBE has a much
lower time complexity than BBE while without any performance
degradation.

5 PERFORMANCE EVALUATION
In this section, we demonstrate the performance of our methods
by comparingwith benchmark algorithms under different network
conditions.

5.1 Evaluation with Simulated Networks
In order to clarify the illustration of our simulation, we give the
definitions of some terminology as follow:

• SFC size: the number of VNFs contained by an SFC.
• network size: the number of nodes contained by a network.
• network connectivity: the average number of the node de-
gree in a network.

• VNF deploying ratio: the percentage of the network nodes
on which a kind of VNFs are deployed.

• average price ratio: the ratio of the average link price over
the average VNF price.

• VNF price fluctuation ratio: the ratio of the half of the gap
between max-price and min-price over the average price of
VNFs.

Table 2: Basic configurations of simulation instances

Network size 500 Network
connectivity

6

VNF deploying ratio 50% Average price ratio 20%
VNF price fluctuation ratio 5% SFC size 5

We generate simulated network graphs with a random network
generator. Firstly, the generator generates new network nodes un-
til conforming the given network size. Secondly, the generator con-
nects all the nodes by a random tree to guarantee the network is a
connected graph and then loops to implement new random edges
until conforming the given network connectivity. Thirdly, the gen-
erator deploys VNFs on each node conforming the given VNF de-
ploying ratio and the given VNF price fluctuation ratio. Finally, the
generator sets the price of each link conforming the given average
price ratio.

Then, we generate DAG-SFCs with a random SFC generator. It
generates SFC by a specific rule in which every three VNFs can
be assigned in the same layer, in order to avoid generating serial
SFCs with little values for this simulation. However, each SFC is
generated using different VNF sets. This means the SFC genera-
tor generates SFCs with similar structures but different VNFs on
corresponding positions.

The performance of our proposed approaches is evaluated un-
der various simulation settings. Since this is the first work on op-
timal hybrid SFC embedding, few methods can be referred. Two
benchmark algorithms are implemented for purpose of compari-
son, denoted by RANV and MINV. RANV is a randomized algo-
rithm. For each VNF required by the SFC, RANV will randomly as-
sign this VNF on a node with enough traffic processing capability.
After assigning all the VNFs of the SFC, it implements the meta-
paths among those assigned VNFs by minimum cost path gener-
ated by the Dijkstra algorithm. MINV is a naive greedy algorithm.
For each VNF required by the SFC, MINV will find the cheapest
node with enough capacity, and assign this VNF on the node. Simi-
lar to RANV, MINV also uses the minimum cost path to implement
the meta-paths.

5.2 Simulation Results
The following simulation instances would base on the basic con-
figurations shows in Table 2. For each simulation instance, we run
100 times with different SFCs generated by SFC generator with the
same structure, then set the average cost of those embedding solu-
tions as the final result showed in the corresponding chart.

Compared with the two benchmark algorithms, we evaluate the
performance of BBE and MBBE from aspects of the network size,
the network connectivity, the VNF deploying ratio, the average
price ratio, the VNF price fluctuation ratio, and the SFC size.

5.2.1 Impact of the SFC size. We gradually change the SFC size
from 1 to 9while the network conditions are kept the same. Appar-
ently, the total cost of embedding the SFC exhibits an increasing
trend as Fig. 6(a) shows. However, we find that our approaches
have better performance, and when the SFC size is growing, the
cost gap between our approaches and the benchmark algorithms
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Figure 6: The results of simulations. The y axis of each graph represents the total cost of a solution, while the x axis of each
graph represents the corresponding argument of each simulation instance.

is expanding. Note that, because of the time complexity of BBE is
growing exponentially with the size of SFC, the inspection of BBE
in this simulation ends at 5. We can see the MBBE can reduce the
total cost of embedding a SFC comparing with the MINV by about
30% in those cases.

5.2.2 Impact of the network size. In this simulation, we set dif-
ferent network sizes as 10, 20, 50, 100, 200, 500, 1000 nodes, while
other configurations are the same with the basic configurations. In
Fig. 6(b), the result shows that the solutions from our algorithms
are stable, while the cost of solutions generated by benchmark al-
gorithms is rising, as the size of the network is expanding. Besides,
the average cost of our solutions is at least 14% lower than the so-
lutions obtained by the benchmark algorithms. Furthermore, the
cost gap between our solutions and the benchmark solutions is ex-
panding as the network size grows.

5.2.3 Impact of the network connectivity. We gradually change
the average connectivity from 2 to 14 while other configurations
are kept the same. In Fig. 6(c), the result shows that the cost of
our solution is about 30% less than that of the benchmark solu-
tions. Besides, when the average node degree is rising, the cost
of solutions is decreasing. With our analysis, such a trend is most
probably caused by the increase of real-paths length in benchmark
solutions.

5.2.4 Impact of the VNF deploying ratio. We gradually change
the VNF deploying ratio of all VNFs in the network from 10% to

70%. In Fig. 6(d), the result shows the cost of our solution is about
25% less than that of the benchmark solutions. When the VNF de-
ploying ratio is rising, the cost of our solutions is gradually decreas-
ing. This is because, when the VNF deploying ratio is rising, our
algorithms can find more adjacent VNFs to shorten the real-paths.

5.2.5 Impact of the price ratio (between links and VNFs). We
change the price ratio from 1% to 50% while keeping other con-
figurations the same as the basic configurations. When the price
ratio is rising, all the lines in Fig. 6(e) is grow up. The partial rea-
son of such a trend is that the average link price is increasing. More
in detail, the cost of benchmark solutions grow fast and the cost
gap between our solutions and the benchmark solutions expands,
when the link price is rising. Based on our analysis, our methods
could trade off the VNF cost reduction and the link cost reduction
in a proper way.

5.2.6 Impact of the VNF price fluctuation ratio. In this simula-
tion, we gradually change the VNF fluctuation ratio from 5% to
50% while keeping other configurations the same as the basic con-
figurations. In Fig. 6(f), the result shows that when the VNF price
fluctuation ratio is rising, the cost of solutions of MBBE, BBE and
MINV are gradually decreasing. The root cause is that three al-
gorithm will try to select VNFs with cheaper price. More in de-
tail, when the VNF price fluctuation ratio is rising, the cost gap
between the MINV and our algorithms becomes narrow. This is be-
cause MINV always selects the cheapest VNFs in SFC embedding.
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However, even the price fluctuation ratio of VNF reaches 50%, the
performance of our solutions is still no worse than the benchmark
solutions.

In all the above simulations, MBBE always results in a soluion
while the benchmark algorithms do not, which illustrates the sta-
bility and robustness of MBBE. Besides, we have found that MBBE
usually selects the same links to implement meta-paths as the BBE
does. This is because when connecting two allocated VNFs, the
mini-cost path is usually the same with the optimal path generated
by traversing searching trees. Thus, MBBE lowers the computation
complexity of BBE without an apparent performance degradation.

In summary of the evaluations with the six aforementioned fac-
tors, MBBE always results in a better solution than that of any
benchmark algorithm. Moreover, MBBE shows a quite stable per-
formance.

6 CONCLUSIONS
In this work, we studied the embedding problem of hybrid SFC,
which aimed to jointly minimize the total VNF rental cost and link
cost in SFC embedding. Firstly, we proposed an explicit DAG ab-
straction model to simplify and standardize the description of the
hybrid SFC. Then, we formulated the optimal DAG-SFC embed-
ding problem into an integer optimization model and proposed a
breadth-first based greedy method (called BBE) to tackle the NP-
hard problem. To further cut down the computation complexity,
we proposed theMBBEmethod by simplifying the routing step and
narrowing the scope of the searching process in BBE. Our experi-
ments results show that, the MBBE can significantly cut down the
computational complexity without an obvious performance degra-
dation and our approach can much reduce the hybrid SFC embed-
ding cost.
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