
1

When Deduplication Meets Migration: An
Efficient and Adaptive Strategy in Distributed

Storage Systems

Geyao Cheng, Lailong Luo∗, Junxu Xia, Deke Guo, Senior Member, IEEE , Yuchen Sun

Abstract—The traditional migration methods are confronted with formidable challenges when data deduplication technologies are
incorporated. Firstly, the deduplication creates data-sharing dependencies in the stored files; breaking such dependencies in migration
may attach extra space overhead. Secondly, the redundancy elimination makes the storage system reserves only one copy for each
storage file, and heightens the risk of data unavailability. The existing methods fail to tackle them in one shot. To this end, we propose
Jingwei, an efficient and adaptive data migration strategy for deduplicated storage systems. To be specific, Jingwei tries to minimize the
extra space cost in migration for space efficiency. Meanwhile, Jingwei realizes the service adaptability by encouraging replicas of hot
files to spread out their data access requirements. We first model such a problem as an integer linear programming (ILP) and solve it
with a commercial solver when only one empty migration target server is allowed. We then extend this problem to a scenario wherein
multiple non-empty target servers are available for migration. We solve it by effective heuristic algorithms based on the Bloom
Filter-based data sketches. The Jingwei strategy can suffer from performance degradation when the heat degree varies significantly.
Therefore, we further present incremental adjustment strategies for the two scenarios, which adjust the number of block replicas and
their locations in an incremental manner. The mathematical analyses and trace-driven experiments show the effectiveness of our
Jingwei strategy. To be specific, Jingwei fortifies the file replicas by 25% with only 5.7% of the extra storage space, compared with the
latest “Goseed” method. With the small extra space cost, the file retrieval throughput of Jingwei can reach up to 333.5Mbps, which is
12.3% higher than that of the Random method.

Index Terms—data migration, data deduplication, replica storage, heat variation

F

1 INTRODUCTION

The data volume surges exponentially in the “big data” era.

This brings a serious impact on the network system and has

become a nonnegligible hot issue. To handle the “big data” chal-

lenge, current storage systems mainly adopt the data deduplication

technologies [2], [3] to save space. It has been reported that,

for some multimedia and IoT storing data, up to 70% storage

space can be released when deduplication technologies are assem-

bled [4]. A common practice for data deduplication is to split files

into multiple fixed- [2], [5] or variable-size [6] blocks. By doing

so, the data-sharing dependencies among the files are established,

and only one copy of each block is maintained in a storage server.

When a server is overloaded, part of its files must be migrated

out to another server [7], [8]. However, the traditional migration

methods are confronted with formidable challenges when data

deduplication is incorporated to economize the scarce storage

resource. First, the deduplication creates data-sharing dependen-

cies between the stored files; breaking such dependencies may

attach additional space overhead to the system. The reason is that,

the shared blocks must be copied at both the source server and

the migration target server to maintain the file integrity. Second,

• A preliminary version of this paper was accepted in INFOCOM 2022 [1].
This version further considered the heat variation, and innovatively pro-
posed adjustment strategies to alleviate performance degradation caused
by heat changes. More contents were fortified to the mathematical analysis,
evaluation, discussion, etc.

• The authors are with the Science and Technology on Information Sys-
tems Engineering Laboratory, National University of Defense Technology,
Changsha Hunan 410073, China. E-mail: {chenggeyao13, luolailong09,
sunyuchen18}@nudt.edu.cn; {junxuxia, guodeke}@gmail.com

• Lailong Luo is also with the National Laboratory for Parallel and Dis-
tributed Processing, National University of Defense Technology, Changsha
Hunan 410073, China. Lailong Luo is the corresponding author.

redundancy elimination makes the storage system reserves only

one copy for each storage file. Then, the file retrieval performance

may deteriorate when files become hot, because the frequent

requests of such hot files may overwhelm their stored servers,

heightening the risk of data unavailability.

Therefore, in this paper, we envision the following two ra-

tionales for data migration in the deduplicated storage systems:

1) Space Efficiency – the introduced extra space overhead is

minimized; 2) Service Adaptability – files are allowed to have

multiple replicas to avoid data unavailability, like Ceph [9] and

Google [10] file systems. These two rationales, if both are realized,

will bring unprecedented benefits to the storage systems. To be

specific, the scarce storage resources can be economized, and

in the meanwhile, the concentrated data requirements of hot

files can be spread to alleviate the potential request congestion.

Furthermore, the replica generation may attach only a tiny or even

non-amount of extra space overhead when the two rationales are

integrated.

The existing data migration strategies, however, fail to con-

sider these two rationales jointly. The intrinsic reason is that,

these two rationales are mutually exclusive. Eliminating all re-

dundancies would impact the service adaptability, but too many

replicas would bring unnecessary space spending. The current data

migration strategies coupled with data deduplication mainly focus

on the capacity measurement [11], the space reduction [7], [12],

etc. However, they are oblivious to the impact of data replicas.

The storage system without replicas, especially for hot files, may

impact the service adaptability significantly in practice [2]. On the

other hand, the popularity-aware replication managements [13]–

[16] or file assignments [17] improve the service performance un-

doubtedly. However, they are currently not incorporated with the

2

space reduction technologies in the deduplicated storage systems.

Inspired by these observations, in this paper, we propose

Jingwei1, an efficient and adaptive data migration strategy for

deduplicated storage systems. Jingwei realizes a proper trade-off

between the space efficiency (minimizing data replication in the

migration process) and the service adaptability (building replicas

of hot files to spread the frequent data access requirements). These

two optimization aspects are traditionally carried out separately,

yet it is pathbreaking to realize and couple these two rationales

jointly so as to yield rational data migration strategies.

An example of the Jingwei strategy is illustrated in Fig. 1. The

ambition is to migrate a portion of files from the overloaded Server

1 to the under-utilized Server 2. Scheme (a) [7] minimizes the

amount of replicated data by allocating files with more common

blocks to one server. Nevertheless, there are no file copies to

guarantee the service adaptability. Furthermore, the aggregation of

hot files f3 and f4 may overwhelm Server 2 with the accumulated

data access requirements. Scheme (b) [16], by contrast, satisfies

the service adaptability through replicating f2 at the two servers.

However, the data deduplication is not incorporated, leading to

much more space occupation for redundancies. Scheme (c) (i.e.,

Jingwei), fortunately, is a relatively optimal solution. It detects

the file similarity to realize the space efficiency. Meanwhile, it

replicates the hot file f3 to permit the service adaptability rationale

with little extra space, i.e., one more block than that of Scheme (a).

Furthermore, Jingwei should be able to handle dynamic

changes in file heat. Otherwise, the original file allocation strate-

gies can experience performance degradation. Taking Fig. 1 as

an example, Server 1 in Scheme (c) might suffer from potential

request congestion when files’ heat degrees vary, i.e., the heat

degree of file f1 increases from 1 to 10, while that of file f3

decreases from 6 to 2. Then, we can allocate all requests for file

f3 to Server 2 and release its occupied space (b4) from Server 1.

Furthermore, file f1 can be replicated at Server 2 with one more

block b1, as shown in Fig. 1(d). After this incremental adjustment,

the concentrated file requests can be apportioned to the two servers

evenly, thereby avoiding the appearance of access hotspots.

The major contributions are summarized as follows.

• We design two heterogeneous migration scenarios for Jing-

wei to improve the strategy applicability. The first scenario

is migrating files to an empty server. We model such a

problem as an integer linear programming (ILP) and solve

the NP-hard problem with the ILP solver. The problem

is also addressed in a more general scenario wherein

multiple non-empty target servers are available. We solve

it by effective heuristic algorithms, i.e., space-saving data

migration and heat-aware data replication, based on the

Bloom Filter (BF)-based data sketches.

• To alleviate the performance degradation caused by files’

heat variation, we further provide incremental adjust-

ment techniques that perform additional block dele-

tion/migration/replication operations at a reasonable cost

for both of the two heterogeneous scenarios.

• We also attach the mathematical analyses to guarantee the

theoretical effectiveness of the BF-based data migration

strategies. The analyses theoretically highlight the effec-

tiveness of our Jingwei strategy.

1. Jingwei is a famous fictional character in Chinese folklore, who carries
pebbles and branches from the land to the sea for her revenge, meaning
migrating files from one server to others in this paper.

b1 b3

f3 (6)

b2 b4

f2 (8)f1 (1)

Server 1 Server 2

Extra space cost: 3+3-5=1

Shared amount of data access: 0

Extra space cost : 12-9=3

Shared amount of data access: 8

Extra space cost : 4+3-5=2

Shared amount of data access: 6

Space efficiency (b)

Service adaptability

Space efficiency (a)

Service adaptability

Space efficiency (c)

Service adaptability

f2 (4)f3 (6)

b5

f4 (7)

b1 b3b2

f2 (8)f1 (1) f3 (6)

b3 b4

f4 (7)

b4b3 b5

f4 (7)f3 (3)f2 (8)

b2 b3

f3 (3)

b1

f1 (1)

b5

b4

Data-sharing dependencies before migration

f2 (4) f1 (1) f4 (7)

b4 b5b1 b3b1 b2 b3
b3 b4 b1 b2 b3

migrate

Strategy adjustments when file’s heat degrees change(d)

b4b3 b5

f3 (2) f4 ()f2 ()

b2 b3b1

f1 (5) f1 (5)

b1

Fig. 1. The illustrative examples of the Jingwei strategy and some
existing methods [7], [17]. Four files (f1 ∼ f4), which are attached with
heat degrees (1, 8, 6, 7), are partitioned into five blocks (b1 ∼ b5). The
ambition is to migrate a part of the four files from server 1 to server 2.

• Trace-driven experiments show that our Jingwei strategy

fortifies the file replicas by 25%, while only 5.7% ex-

tra storage space is occupied compared with the latest

“Goseed” scheme. With the small extra space cost, the file

retrieval throughput of Jingwei can reach up to 333.5Mbps,

which is 12.3% higher than that of the Random method.

The rest of this paper is organized as follows. Section 2 in-

troduces the related works. Section 3 states the Jingwei overview.

Section 4 presents the problem formulation for the first migration

scenario. Section 5 exhibits the heuristic algorithms for general

migration scenario. Section 6 discusses the incremental adjust-

ment techniques to deal with files’ heat variation. Section 7

demonstrates the performance analyses. Section 8 reports our

experimental results. Section 9 provides some discussions. Finally,

Section 10 concludes this paper.

2 RELATED WORK

Data migration in deduplicated storage systems has attracted more

attention in recent years with different concerns. Harnik et al. [11]

provide sketch-based estimations of the reclaimable/attributed

capacity when a group of volumes is removed from/added into the

deduplicated storage system. Duggal et al. [12] deploy cloud-tier

systems to decrease the cost of copy forward in deduplicated data

migration. Goseed [7] minimizes the extra space occupation for

data migration based on the data-sharing dependencies. However,

these works mainly focus on the space occupation, but do not

take the data popularity into account. In the worst cases, the

frequent data access for hot data would exhaust the limited service

capability of the server, resulting in significant degradation of user

experience.

3

TABLE 1
Comparison of Related Works.

Literature Space efficiency Service adaptability
[2], [7], [11], [12] X ×

[14]–[16], [21] × X

This paper X X

Besides, the data popularity plays a vital role in optimizing

the file assignment [17], replication management [13]–[15], and

load balancing [18] in the intelligent data management systems.

It measures the frequency of data access and correlates closely

with service-related objectives, such as the hit ratio and the

request throughput [19], [20]. A highlighted solution to avoid

service overload is replication management [13]–[16]. Hamdeni

et al. [13] provide a comprehensive survey on the data popularity

and emphasize the importance of data replicas. Literature [14]

increases the replicas for hot data and allocates them evenly across

the storage system for convenient data retrieval. Wei et al. [15]

deploy a minimal number of replicas and place them separately

on those servers with the most service abilities. Shen et al. [16]

utilize file replication technologies to reduce hot spots and improve

file query efficiency. However, these solutions are not incorporated

with deduplication technologies, which is crucial to enhance the

space efficiency for storage systems, especially for the successive

backups with a high deduplication ratio [24].

The previous works have investigated the data migration

strategies integrated with data deduplication technologies, or how

to place the replicas of hot data rationally, but not both. Note

that, optimizing on any one dimension alone is too restrictive.

Literature [2] caches hot data at edge with data deduplication,

which considers the data popularity as well as the space occupa-

tion in deduplicated storage systems. However, it only works in

the granularity of storing files at data centers or edge coarsely.

In addition, the method does not elevate the system’s service

adaptability by adding data replicas in response to the network’s

unstable situations. Literature [21], by contrast, permits data

redundancies in the deduplicated storage system. It builds a two-

tier storage hierarchy, where the Primary cluster is responsible for

storing full file replicas, and the Deduplication cluster stores the

unique blocks. This strategy implements the prefetch/pre-construct

cache algorithm based on the user’s access patterns, but is still not

space-efficient for storing replicas of all involved files.

Unlike the existing strategies, It is path-breaking for our

Jingwei to highlight the importance of data replicas in the

space-efficient deduplicated storage systems. In addition, Jingwei

achieves an elegant trade-off between the proposed space effi-

ciency and service adaptability rationales.

3 THE OVERVIEW OF JINGWEI

The “big data” era has put forward a tough challenge for the

server’s storage and service capacity. When a server is overloaded,

data migration provides an effective way to alleviate the load bur-

den in the storage systems. Data deduplication further economizes

the scarce space resources by splitting files as blocks and removing

duplicated ones. Two design rationales are required when the data

deduplication is incorporated into the migration strategy:

• Space efficiency: the data migration strategy should de-

crease the extra space cost caused by breaking the data-

sharing dependencies in the migration process.

Design rationales for migration
Source server

First scenario Second scenario

b1 b2 b1 b4 b5 b6

b1 b3

f3 (2)

b2 b4

f2 (8)f1 (7)

b5

f4 (3)
• space efficiency

• service adaptability

ILP solver
Bloom Filter-based data sketches

Space-saving migration Heat-ware replication

ILP solver

Incremental data allocations for heat variation

Counting Bloom Filter-based data sketches

Fig. 2. The overview of Jingwei.

• Service adaptability: the data migration strategy should

maintain some replicas of hot files to amortize the frequent

file requests and improve the service quality.

Migration Mode: Some deduplicated systems split the incom-

ing files into blocks, and store the blocks dispersedly without the

constraint of file integrity [22], [23]. Another emerging dedupli-

cation model supports storing all blocks of the original file at one

server, so that accessing a file will not require excessive rounds of

communications to multiple servers [3], [5], [7]. We track the latter

mode in this paper, where a file’s partitioned blocks are stored on

one server, and the migration scheme is conducted at the file layer.

Each storage server manages its own local fingerprint index and

identifies deduplicate blocks by looking up this index table.

Jingwei overview: The overview of our Jingwei strategy

is exhibited in Fig. 2. The data deduplication is conducted at

each involved server, wherein only one copy of each block

can be maintained, and the duplicated blocks are replaced with

pointers. Thus, the data-sharing dependencies are established. To

comprehensively conduct the efficient and adaptive data migration

strategy, we design two scenarios when migrating out a part of files

from the overloaded source server. Specifically, when only one

empty server acts as the migration target, we model the problem

as an integer linear programming (ILP) and solve this NP-hard

problem with the ILP solver. The specific problem formulation is

exhibited in Section 4.

To adapt to more migration situations and requirements, we

extend the problem into a more general scenario, where any empty

or non-empty server can act as the candidate for the migration

targets. We leverage the space-saving migration algorithm to

determine the migrated files and their migration targets in priority

of low extra space cost. Thereafter, we present the heat-aware

data replication algorithm to replicate hot files with only limited

extra space overhead, which achieves the service adaptability.

The BF-based data sketches assist the above two algorithms by

detecting the content similarity with low computational overhead.

The specific algorithms are exploited in Section 5.

To ascertain the system performance with heat variation, we

further design the incremental adjustment techniques for the two

scenarios in Section 6. Based on the current storage state, these

techniques perform additional block deletion/migration/replication

operations according to the varied file’s heat degree, but do not

resort to entire reallocating. Thus, the adjustment cost, such as

the extra space cost and bandwidth consumption, can be reduced.

Specifically, the ILP solver is still adopted for the first scenario. As

4

for the second scenario, we upgrade the BF-based data sketches

with the Counting Bloom Filter, which facilitates the item deletion

operations when files become cold. The ambition for the incremen-

tal adjustment is to mitigate the performance degradation caused

by heat variation, while reducing the adjustment cost.

4 MIGRATING FILES TO A SINGLE EMPTY SERVER

In this section, we model the migration problem when only one

empty target server is allowed. Specifically, we first provide the

problem definition in Section 4.1. Thereafter, we formulate this

migration problem in section 4.2.

4.1 Problem Definition

In the initial storage state, the source server Ss stores a set of

files Fs = { f1, f2, ...} with heat degrees Hs = {h1,h2, ...}. These

files are partitioned into blocks, and only the unique blocks (after

data deduplication) can be contained, which are represented by

Bs = {b1,b2, ...}. Let size(b) denote the size of block b, then the

storage cost of server Ss is the total size of the blocks stored

on it, i.e., size(Ss)=∑b j∈Bs
size(b j). Note that, this size function

generates a constant value for fixed-size block chunking [2], and

varies for the variable-size block chunking algorithms [6]. Let

Is =Fs×Bs indicate an inclusion relation, where (fi,b j)∈ Is means

that block b j is included in file fi.

Currently, the source server Ss is overloaded, i.e., the storage

capacity Cs cannot afford the stored data size size(Ss). Thus, a

part of files in Fs should be migrated from the source server

Ss to the empty target server St . The ambition is to realize the

two proposed rationales simultaneously, i.e., space efficiency and

service adaptability. The critical point lies in how should we

choose the files to migrate in Fs? To do this, we first categorize

the possible states of each candidate file fi ∈ Fs. Then, we deeply

analyze the introduced extra space overhead in breaking the data-

sharing dependencies, and the apportioned access requests for the

file replicas. To be specific, the file states would be in one of the

following three states as follow when enough amount of data is

migrated out from the source server Ss:

• migrated, i.e., fi is migrated to the target server St ,

while the space occupied at the source server is re-

leased. We introduce the following Boolean state variable

xi ∈ {0,1}, ∀ fi ∈ Fs, to represent this state, such that:

xi =

{
1 i f fi is migrated to the target server;

0 otherwise.
(1)

• replicated, i.e., the source server sends a copy of fi to

the target server. This usually appears for hot files, where

the data access requirements may overwhelm the capacity

of the source server. We introduce the following binary

Boolean state variable yi ∈ {0,1},∀ fi ∈ Fs, to express this

state, such that:

yi =

{
1 i f fi is replicated to the target server;

0 otherwise.
(2)

• unaltered, i.e., fi remains at the source server without

being migrated or replicated, meaning xi = 0 and yi = 0.

Based on the file states indicated by the above Boolean vari-

ables, the deeply-associated state of their partitioned blocks can

also be mathematically expressed by Boolean variable definitions.

b1 b3

f3 (8)

b2

f2 (3)f1 (5)

b4 b1 b3

f3 (4)

b2

f1 (5) f3 (4)

b2

f2 (3)

b4b3

(a) Initial state (b) Storage state after migration

Fig. 3. An illustrative example of data migration from the source server
Ss to the empty target server St .

To denote the migrated state of a block, we define a Boolean

variable (m j ∈ {0,1},∀b j ∈ Bs), where

m j =

{
1 i f block b j is migrated;

0 otherwise.
(3)

When m j = 1, the block b j should be migrated out from the source

server Ss to the target server St . This state can only be caused by

the migration of its subordinated file fi, where xi = 1 & (fi,b j) ∈
Is. We further define a Boolean variable r j ∈ {0,1},∀b j ∈ Bs, as:

r j =

{
1 i f block b j is replicated;

0 otherwise.
(4)

When r j = 1, the block b j would appear at both the source and the

target server. If any of its affiliated files (the files that contain

b j) is replicated during the migration process, the state of b j

would be labeled as replicated. Furthermore, breaking the data-

sharing dependencies of two files (one is migrated, and the other

is unaltered) would also attach block replications in the shared

part. Note that, r j also relates to the extra space cost caused by

file migration, which can be represented as ∑b j∈Bs
size(b j)×r j. If

both m j = 0 and r j = 0, it means that b j remains unaltered.

To conclude, the state interrelations between files and their

partitioned blocks in Is can be dissected and denoted as one of

the following three cases. Fig. 3 takes intelligible examples to

illustrate these unique instances.

• Case 1: One file remains at the source server Ss, i.e., xi=0,

yi= 0, like file f1 in Fig. 3. In this case, all blocks included

in the file are either unaltered (like block b1) or replicated

(like block b3), hinging on the block sharing dependencies

between the unaltered file and the migrated/replicated files.

• Case 2: One file is migrated to the target server St , i.e.,

xi=1, like file f2 in Fig. 3. In this case, all blocks included

in the file would be either migrated (like block b4) or

replicated (like block b2).

• Case 3: One file is replicated at both the source and the

target server, such as file f3 in Fig. 3. In this case, all

involved blocks of file f3, i.e., ∀b j ∈ Bs & (f3,b j) ∈ Is,

would be replicated. Besides, the access requirements of

this file would be spread by its replications with a distribu-

tion parameter γ ∈ [0,1] (γ = 0.5 in the example of Fig. 3).

This parameter can be adjusted by the widely utilized load

balancer in the network [25], which is responsible for load

balancing across servers in the storage systems.

4.2 Problem Formulation

With the aforementioned Boolean variables about files and blocks,

we can formulate the migration problem with an empty target

server as follows.

• When block b j is migrated, i.e., m j = 1, then all files that

contain the block would be migrated to the target server:

m j ≤ xi, ∀ fi ∈ Fs, b j ∈ Bs & (fi,b j) ∈ Is. (5)

5

• When file fi is migrated, i.e., xi = 1, then all of its

contained blocks would be either migrated or replicated:

xi ≤ m j + r j, ∀ fi ∈ Fs, b j ∈ Bs & (fi,b j) ∈ Is. (6)

• When file fi is replicated at both server Ss and St , i.e., yi =
1, then all of its involved blocks should also be replicated:

yi ≤ r j, ∀ fi ∈ Fs, b j ∈ Bs & (fi,b j) ∈ Is. (7)

• The states of files, i.e., xi and yi, and the states of blocks,

i.e., m j and r j, are mutually exclusive:

xi + yi ≤ 1, m j + r j ≤ 1, ∀ fi ∈ Fs, b j ∈ Bs. (8)

• The migrated block volume, i.e., ∑b j∈Bs
size(b j) · m j,

∀b j ∈ Bs should meet the pre-defined migration percentage

(M) of the server load in Ss (Cs). This percentage can

be determined by the joint considerations of the storage

burden of server Ss and the actual storage situations in the

deduplicated storage systems.

∑
b j∈Bs

size(b j)×m j ≥ M ·Cs. (9)

• The final space (C)/service (T) overhead of both the source

and target server should not exceed the corresponding

capacities for ∀ fi ∈ Fs,b j ∈ Bs & (fi,b j) ∈ Is.

∑
b j∈Bs

size(b j)× (1−m j)≤Cs. (10)

∑
b j∈Bs

size(b j)× (m j + r j)≤Ct . (11)

∑
fi∈Fs

hi × (1− xi − γi · yi))≤ Ts. (12)

∑
fi∈Fs

hi × (xi + γi · yi)≤ Tt . (13)

• The state variables are all Boolean: xi,yi,m j,r j ∈
{0,1}, ∀ fi ∈ Fs, b j ∈ Bs.

We develop the objectives of our Jingwei scheme, i.e., re-

alizing an elegant trade-off between the space efficiency and

the service adaptability. The space efficiency is described by

minimizing the extra space cost caused by block replication,

i.e., ∑b j∈Bs
size(b j)× r j. The service adaptability can be repre-

sented by maximizing the amount of share data requirements, i.e.,

∑ fi∈Fs
hi × yi. These two rationales are normalized as follows.

min
∑b j∈Bs

size(b j)× r j

∑b j∈Bs
size(b j)

−λ
∑ fi∈Fs

hi × yi

∑ fi∈Fs
hi

, (14)

where the parameter λ can be adjusted to adapt to different

optimization tendencies for these two rationales. To be spe-

cific, with the increase of parameter λ , the derived block mi-

gration/replication schemes would tend to enhance the service

adaptability rationale.

With Equ. (14) as the migration objective and Equ. (5)∼(13)

as the constraints, the problem can be formulated as an Integer

Linear Programming (ILP). The ILP problem is known to be

NP-hard [26], and there is currently no known efficient solving

algorithm in polynomial time complexity. In particular, when the

variables are restricted to Boolean assignments (0 or 1), then

merely deciding whether the problem has an optimal solution has

been known to be NP-Complete [27]. Fortunately, commercial

optimizers, like CPLEX [28], lp solve [29], and Gurobi opti-

mizer [30], can solve this kind of problems efficiently for instances

with hundreds of thousands of variables. Therefore, we exploit

these highly-optimized solvers to search out the optimal migration

plan directly.

5 MIGRATING FILES TO MULTIPLE NON-EMPTY

SERVERS

The scenario with only one empty target migration server may

not be applicable for large-scale storage systems, where it is not

common for a server to join with an empty state. In addition,

the constraint of migrating all files to one server may limit

performance improvement. Therefore, we design a more general

scenario, where multiple non-empty servers rather than one empty

server can accept the migrated files from an overloaded server.

As a consequence, the above formulation will not be applicable.

Therefore, in this section, we further propose efficient heuristic

algorithms for the general migration scenario based on the Bloom

filter-based data sketches.

5.1 Bloom Filter-based Data Sketch

To find the optimal target server for each file to migrate, an

intuitive method is to compare the fingerprints (using MD5 [31]

or SHA-1 [32] coding) of blocks contained by the file and that

stored by the candidate servers. The files prefer to be migrated to

the server with more common blocks. However, the information

comparisons would consume non-trivial computation resources

and lead to unbearable processing latency. For example, for a file

with n blocks, it takes O(n× |Bt |) time-complexity to determine

whether the server contains such blocks or not, where |Bt | is the

total number of blocks in a candidate server. In order to decrease

the computation complexity, we adopt Bloom Filter (BF) [33],

[34], a hashing mapping method that has been widely utilized in

networking and distributed systems, to represent the blocks on

each candidate server. This facilitates data similarity detection

from pair-wise fingerprint checking to the membership queries

on the data sketches. Then the time-complexity of determining

whether a server contains the n blocks in a file can be decreased

as O(n · kBF), where kBF indicates the number of utilized hash

functions in BF.

B =

= 2

= 19

0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0

b
1

b
2

b
3

Fig. 4. An illustrative example of the BF-based data sketch. Note that
the 8th bit of the sketch suffers from the hash collisions.

Fig. 4 provides an illustrative example for a BF-based data

sketch. Given the block set B with three partitioned blocks b1, b2,

and b3, the BF represents B with a bit vector of length d = 19. All

d bits in the vector are initially set as 0. The kBF = 2 independent

hash functions are employed to map each block into kBF positions

in the bit vector. Those hit positions would be all set to 1. The

binary string derived from the hash functions is exactly the BF-

based data sketch.

Each server would maintain a bit vector, with the same kBF

functions and vector length, to record the membership information

at the block level. According to the bit vector and the kBF used

hash functions, we can realize the membership queries against any

data block. To be specific, when a file fi in the source server tries

to select its optimal target server from all available candidates, it

would first require the BF vector of each candidate. For any block

b j in file fi, the BF judges that this block does not belong to the

candidate server, if any bit at the kBF hashed positions in the BF

vector is 0. Otherwise, the BF believes that the queried block b j

belongs to the candidate target server with a rate of false positives.

6

5.2 The Effective Heuristic Migration Algorithms

The BF-based data sketch elaborates a feasible and effective

method to detect data similarity through membership queries.

According to the data sketches, we propose effective heuristic

algorithms for migrating files to multiple non-empty servers. The

heuristic algorithms are composed of two parts, i.e., the space-

saving data migration in Section 5.2.1 and the heat-aware data

replication in Section 5.2.2.

Note that, the prerequisite of this general data migration

is that the candidate targets are all underloaded and have the

potential to accommodate more data blocks. However, as data

accumulate, some underloaded servers would gradually approach

their storage capacities, and have no extra space to receive new

files. In this case, these high-loaded servers would be kicked out

of our migration/replication candidates. Other candidates would

be selected as the migration/replication targets, even though they

may contain fewer common blocks and occupy more extra space

to accommodate the selected file. One extreme situation, although

unlikely to appear, is that all servers in the storage systems

are overloaded. To counter this special case, we would suggest

adding some empty servers to our storage systems. Then, this

general migration scheme can be transferred to the first scenario

(expressed in Section 4), where the new-added empty servers act

as the migration targets.

5.2.1 Space-saving Data Migration

The space-saving data migration determines which files to migrate

and where they should be directed to, with the ambition of less

extra space cost. To achieve this, we rank the migration sequence

of files according to a space-saving index. We define this index

as the amount of saved storage resource when a file migrates to

a candidate target server. The index can be represented by the

deviation between the data amount that is freed from the source

server and the increased space on the migration target. We prefer

the data migration in priority of the high space-saving index. This

plays a vital role in improving the systems’ space efficiency.

The specific steps are detailed in Algorithm 1. The input

includes the BF-based data sketches and file sets for the source

server Ss and all target candidates S̃t , where S̃t = {S1,S2, . . . ,Sn}.

The file set of the candidate server Sk is denoted by Fk. To derive

the migration variable xi and the corresponding migration target

St(i), we elaborate a space-saving index to inspire the migration

sequence. The function is shown in Lines 10-14. Let ϕ(i,k)
represent the data volume of shared blocks between fi and Sk ∈ S̃t ,

which can be derived from the BF-based membership queries of

blocks in fi on the Sk’ data sketch (Ψk). Then, the function returns

the index I(i,k) according to the deviation between ϕ(i,k) and

ϕ(i,s), which reflects the saved space resources through migrating

file fi from Ss to the Sk. Note that, the value of ϕ(i,s) is calculated

based on the sketch without fi, which can actually reflect the space

overlapping between fi and others in Ss.

With the space-saving index for each file-server matching,

we can determine the files to migrate and their target servers

by calculating the maximum I(i,k), if the storage capacity of

the candidate target server Sk̂ is available. This step would be

processed iteratively until M percentage of the storage volume in

Ss has been migrated (Lines 3-9). Note that, each migration would

release or add blocks on the source server and the target server.

Thus, the data sketches should be locally updated. Furthermore,

the ranking index should also be updated on the related servers

accordingly (Lines 7-9).

Algorithm 1: Space-saving Data Migration

Input: Data sketch (Ψ) and file set (F) for Ss and S̃t ; the

target migration percentage M.

Output: The migration variable xi and the target server

St(i) for each file fi in Fs.

1 F ′
s=Fs; xi = 0, St(i) = Ss, ∀ fi ∈ F ′

s .

2 Generate the global space-saving indexes through

INDEX CALCU(F ′
s ,Sk), ∀Sk ∈ S̃t .

3 while M is not reached do

4 Get I(i,k), ∀ fi ∈ F ′
s , Sk ∈ S̃t ;

5 Determine the file to migrate and its target [fî,Sk̂] in

max
|Fs|
i=1 max

|S̃t |
k=1 I(i,k), if the capacities are available;

6 Migrate file fî to Sk̂, where xî = 1 and St(î) = Sk̂;

7 Updated the file set F ′
s : F ′

s =F ′
s \{ fî};

8 Updated Ψk̂ with the new-added file fî;

9 Update I(i, k̂) with INDEX CALCU(F ′
s ,Sk̂).

10 function INDEX CALCU(Fs,Sk)

11 for i=1 → |Fs| do

12 Calculate ϕ(i,k) based on data sketch Ψk;

13 Define the ranking index of file fi and server Sk by

I(i,k) = ϕ(i,k)−ϕ(i,s).

14 return I(i,k), ∀ fi ∈ Ss

b1 b3

f3 (5)

b2

f2 (3)f1 (8)

b4 b1 b7

f5 (4)

b2

f4 (2) f7 (5)

b3

f6 (1)

b6b4

b3

f3 (5)

b2

f2 (3) f1 (8)

b4 b1 b7

f5 (4)

b2

f4 (2) f7 (5)

b3

f6 (1)

b5b4b3

b3

f3 (5)

b2

f2 (3) f1 (4)

b4 b1 b7

f5 (4)

b2

f4 (2) f7 (5)

b3

f6 (1)

b5b4b3 b1

f1 (4)

b5

b5

b5

(a) Initial storage states

(b) States after the space-saving data migration

(c) States after the heat-aware data replication

Fig. 5. An illustrative example of the space-saving data migration and the
heat-aware data replication. There are one source server (Ss) and two
target servers (St1 and St2) in this example. All servers can accommodate
at most four blocks and serve 10 requests per unit of time.

Fig. 5 gives an illustrative example of our space-saving

data migration process. When the source server Ss becomes

overloaded in the initial storage states, we first calculate the

space-saving index (I) for all its contained files (f1, f2, and

f3) to inspire the migration sequence. To be specific, ϕ(i,k) =
1, ∀ fi ∈ { f1, f2, f3}, Sk ∈ {St1,St2}, while ϕ(1,s) = 1, ϕ(2,s) = 2,

ϕ(3,s) = 3. Therefore, we can get one minimum space-saving

index, i.e., I(1,1)=ϕ(1,1)−ϕ(1,s)=0, which reflects that no more

extra space would be occupied for migrating file f1 from Ss to St1.

We select this migration, with block b1 being released from Ss

and block b3 being attached to St1. Then, the load burden of Ss is

alleviated, and the migration algorithm would stop.

5.2.2 Heat-aware Data Replication

After determining the migrated files and their destinations, the

next step is to adjust this migration plan considering the files’

heat degree. Overheated files should have multiple replicas in the

system for apportioning the frequent file requests. We present a

7

Algorithm 2: Heat-aware Data Replication

Input: Heat degree Hs of file set Fs; available service

capacities (ASC) of S̃t ; the unit-heat value κ .

Output: The replica locations repeat set(i) and the heat

allocation γi for each file fi in Fs.

1 for i = 1 → |Fs| do

2 repeat set(i) = {St(i)};

3 Get ϕ(i,k), ∀Sk ∈ S̃t & Sk 6= St(i);
4 Build Qi by sorting ϕ(i,k) in descending order, if the

capacities are available;

5 for k = 1 → |Qi| do

6 Calculate AFR(i) = hi/(|repeat set(i)|+1);
7 if AFR(i)/(size(fi)−ϕ(i,k))>= κ then

8 repeat set(i)=repeat set(i)∪{Sk};

9 Updated the sketch Ψk with file fi;

10 else

11 break;

12 Adjust γi by HEAT ALLOCATION(fi,repeat set(i)).

13 function HEAT ALLOCATION(fi, repeat set(i))
14 Derive ASC for all servers in repeat set(i);

15 Compute γi(j) = ASC(j)/∑
|repeat set(i)|
j=1 ASC(j);

16 Update ASC(j)=ASC(j)−γi(j)hi, ∀S j ∈ repeat set(i).
17 return γi, ASC

unit-heat value (κ) to exploit the necessity of file replication. The

value of κ can adjust the number of generated file replicas. With a

smaller κ , there can be more file replicas to amortize the frequent

data accesses, thereby enhancing the service quality in the storage

system. We also calculate the quotient between the apportioned

file requests (AFR) and the extra space the replica requires. The

AFR(i) is defined as the evenly apportioned file requests that each

replica of file fi undertakes. Any replication is executed if the

quotient value exceeds the unit-heat value. This ensures the replica

generation of hot files with little extra space cost.

The specific algorithm is expressed in Algorithm 2. For any

file fi with its current storage server St(i), we get ϕ(i,k),∀Sk ∈
S̃t & Sk 6= St(i). The value of ϕ(i,k) is thereafter sorted in descend-

ing order to construct the server queue Qi, when the capacities are

under the constraints (Lines 1-4). The server ranking at the front

of Qi contains more similar content with file fi. For each server

in queue Qi, we calculate the apportioned file requests AFR(i)
and the extra space cost size(fi)−ϕ(i,k). If the quotient between

these two parameters is larger than κ , then the file fi would be

replicated to Sk, i.e., the kth server in Qi. Then, the data sketch Ψk

would be updated with this new-added replica of file fi (Lines 5-9).

After determining the replica locations repeat set(i) for file fi, we

further leverage function HEAT ALLOCATION(fi,repeat set(i))
(Lines 13-17) to adjust the allocated amount of data access for

each server in repeat set(i). This function takes over the role of

the load scheduler, which balances the service load according to

the available service capabilities (ASC) of the involved servers.

To be specific, the server with more available service capability

would undertake more potential data access requirements.

Fig. 5 further illustrates the example for our heat-aware data

replication process. For all files, we calculate the extra space cost

with one more file replica (size(fi)−ϕ(i,k)) as well as their split

data access AFR(i). We find the hot file f1 can be replicated to

St2 with one more block, where AFR(1)/(size(f1)−ϕ(1,2)) =

4/1 = 4. When setting κ ≤ 4, file f1 would be replicated to St2,

with its data access requirements being distributed to the two

affiliated servers (St1 and St2). The HEAT ALLOCATION function

further balances the service load according to the available service

capabilities of the involved servers.

6 INCREMENTAL DATA ALLOCATION ADJUSTMENT

STRATEGIES WITH HEAT VARIANCE

Data popularity (heat degree) measures the frequency of data

access requirements. One non-negligible feature of data popularity

is its variation, which indicates file’ heat degree varies over time.

This feature is more pronounced for time-sensitive data, such as

hot news and real-time weather.

When files’ heat degrees change significantly, the original

data allocation strategy can suffer from performance degradation.

This can break the service balancing maintained by the original

allocation strategies and lead to the emergence of new access

hotspots. To be specific, for the first scenario wherein only

one server is allowed for migration, the one-side optimization

objective of maximizing the shared amount of data requirements

∑ fi∈Fs
hi × yi may be inconsistent with the actual requirements

when any heat value hi ∈ H varies. In the same manner, for the

second scenario wherein multiple non-empty target servers are

allowed for migration, the updated heat degree of any file may

inconsistent with the original heat-aware data replications. The

magnitude of performance degradation grows with the increase of

heat variance.

To this end, we present an adjustment strategy that performs

block deletion/migration/replication according to the varied files’

heat degrees. The core idea is to adjust a part of files in an

incremental manner when the heat variation reaches a threshold,

instead of recomputing the entire data allocation scheme. Such an

incremental adjustment technique is more practical and efficient,

since it can respond to frequent changes in file heat at a reason-

able cost. To be specific, our proposed incremental adjustment

technique monitors the heat changes at regular intervals. The

extra block deletion/migration/replication is triggered whenever

the file’s heat change (∆ = ∑ |∆hi|/∑hi) crosses a certain thresh-

old. This threshold (T∆) is a system parameter, and can be set

according to the sensitivity requirements for heat variance. When

the heat change exceeds this threshold, our adjustment policy

would conduct based on the current storage states.

6.1 Incremental Adjustment for the First Scenario

The incremental adjustment for the first scenario is detailed

in Algorithm 3. When the heat variance (∆) exceeds a given

threshold (T∆), the allocation scheme would be recomputed with

the optimization objective expressed in Equ. 14. The updated

decision variables are denoted by x′i, y′i, m′
j, r′j. To alleviate the

performance degradation caused by heat changes, we should adjust

the storage state from xi, yi, m j, r j to x′i, y′i, m′
j, r′j.

The puzzle is that there may be two adjusted states based

on our problem formulation in Section 4.2, when the migration

percentage is satisfied. Different mappings from the original states

to the adjusted states would lead to diverse adjustment costs, such

as the extra space cost and the transmission bandwidth. The reason

is that the number of block migration/replication/deletion opera-

tions is different in the two mappings. To reduce these resource-

consuming operations, we compare the different mappings from

the original states to the adjusted states. We refer the space min-

imization as our main optimization objective, and try to decrease

8

(a) Different mappings

b2b1 b3

f2 (7)f1 (3) f3 (2)

b3 b4

f4 (2)

b1

f2 (7)

b5

b4b3 b5

f4 (3 2)f3 (8 2)f2 (2 7)

b2 b3

f3 (8 2)

b1

f1 (1 3)

b5

Source Server (Ss) Target Server (St)

(b) Adjustment cost

Adjusted States

O
ri

g
in

al
 S

ta
te

s

S
t

S
s

Ss St

(-1, 1) (0, 2)

(0, 1) (1, 0)

Fig. 6. Different mappings from the original states to the adjusted states,
when heat degrees are changed from (1, 2, 8, 3) to (3, 7, 2, 4). The
adjustment cost is divided into two categories: the extra space cost and
the bandwidth consumption.

the extra space cost caused by the replication/deletion operations.

When the two mappings lead to the same extra space, we consider

bandwidth minimization as our secondary optimization objective,

where the number of migration operations should be reduced.

Take Fig. 6 as an example, in the original file states, there

are f1, f2, f3 in the source server, and f3, f4 in the target server.

The adjusted states separate the files into two parts: f1, f2, and

f2, f3, f4. When choosing the mapping denoted by the orange

arrows, the original state of Ss would be mapped to the adjusted

state of Ss exactly. In this case, block b5 should be deleted directly

from server Ss, while b1 should be replicated to St with its copy

migrating between the two servers. We assume that the size of all

partitioned blocks (b1 ∼ b5) is 1. Then, server Ss reduces its space

cost by one block deletion (b5), and Server St increases its space

cost with one block replication (b1). The conducted migration be-

tween these two servers occupies one unit of bandwidth resources

(b1). Otherwise, for the mapping represented by the blue arrows,

there are in total three block migrations, i.e., b1, b2, and b4, while

the space cost remains unchanged for the two servers. Therefore,

we would select the state mapping denoted by the orange arrows,

because the two mappings lead to the same extra space, but the

former causes less bandwidth consumption.

When the heat variance (∆) exceeds the threshold (T∆), our

adjustment algorithm would first recompute the files’ and blocks’

states, and derive the adjustment cost in different mappings. Our

algorithm would map the states with less adjustment cost, where

the recomputed Boolean variables are denoted by x′i, y′i, m′
j, r′j.

The adjustment process after the state mapping is listed as follows.

• For each block bi ∈ Bs, if m′
j = 1, block b j should be

migrated from Ss to St when u j = 1, and be deleted from

Ss when it has been replicated at both Ss and St (r j = 1).

• When r′j = 1, block b j would be first replicated, and then

its copy should be migrated to the other server when u j = 1

or m j = 1.

• When u′i = 1, the unaltered block b j should be migrated

back to the source server Ss when the original state is

migrated (m j = 1). Otherwise, if r j = 1, the replicated

block b j should be deleted from the target server St .

• In the remaining cases, the block states remain unchanged.

6.2 Incremental Adjustment for the Second Scenario

6.2.1 Data Sketches based on Counting Bloom filters

When a file gets cold, fewer replicas are sufficient to meet the

potential access requirements. Thus, part of its replicas should

be deleted from the storage system for the space-saving purpose.

However, the traditional Bloom filter used in our previous algo-

rithms cannot support the item deletion function. The reason is that

resetting the corresponding 1s to 0s may lead to false-negative

Algorithm 3: Incremental Adjustment Strategy for the

first Scenario

Input: The heat variance ∆; the variance threshold T∆, the

current variables for files and blocks xi, yi, m j, r j.

Output: The update storage state for all files in Fs.

1 while ∆ > T∆ do

2 Recompute the Boolean variables x′i, y′i, m′
j, r′j based

on the state mapping;

3 for j = 1 to |Bs| do

4 Compute the unultered state of block b j with

u j = 1−m j−r j and u′j = 1−m′
j−r′j;

5 if m′
j = 1 then

6 if u j = 1 then

7 Migrate block b j from Ss to St ;

8 if r j = 1 then

9 Delete block b j from Ss;

10 if r′j = 1 then

11 if u j = 1 then

12 Replicate block b j from Ss to St ;

13 if m j = 1 then

14 Replicate block b j from St to Ss;

15 if u′j = 1 then

16 if m j = 1 then

17 Migrate block b j from St to Ss;

18 if r j = 1 then

19 Delete block b j from St ;

results for other elements. Therefore, we employ the Counting

Bloom Filter (CBF) [35] instead in this section to support deletion

operations.

The CBF extends the BF by replacing each bit as a counter.

In the framework of CBF, when inserting an element, the corre-

sponding kCBF counters in the vector increment by 1. In contrast,

the deletion of an element will be supported via decreasing the

corresponding counters by 1. In this way, the deletion of an

element will not affect the membership queries of other elements.

It has been proved that 4 bits for a counter are enough to achieve

eligible overflow probability [33]. CBF also supports constant-

time membership queries. To answer a membership query, the

CBF checks the kCBF corresponding counters. If all of them are

non-zero, CBF judges that the queried element is a member;

otherwise, negative.

We employ CBF to construct the data sketches for each

candidate server in our incremental adjustments for the second

scenario. We use CΨ to denote the CBF-based data sketches.

According to the CBF-based server sketches, we can realize the

membership queries against any data block. In addition, the update

operations, especially element deletions, can be realized.

6.2.2 CBF-based Incremental Data Allocations

The incremental adjustment strategy for the second scenario is

expressed in Algorithm 4. We first build an adjustment sequence

HQ by sorting |∆hi| in a descending order (Line 1). We adjust

the data allocation for files in HQ, until the variance percentage

∆ is below the threshold T∆. For the file with the maximum

heat variance (fq), we judge whether the variance is positive

9

Algorithm 4: Incremental Adjustment Strategy for the

Second Scenario

Input: The heat variance ∆; the variance threshold T∆;

CBF-based data sketches CΨ .

Output: The updated repeat set(i) and the heat

allocation γi for file fi ∈ Fs.

1 Build HQ by sorting |∆hi| in descending order;

2 while ∆ > T∆ do

3 Denote the first file in HQ as fq;

4 if ∆hq > 0 then

5 Get ϕ(q,k), ∀Sk ∈ S̃t & Sk 6= repeat set(q);
6 Build Qq by sorting ϕ(q,k) descendingly;

7 for k = 1 → |Qq| do

8 k′=repeat set(q)[k], if the capacities are

under the constraints;

9 Calculate AFR(q) = hq/(|repeat set(q)|+1);
10 if AFR(q)/(size(fq)−ϕ(q,k′))>= κ then

11 repeat set(q)=repeat set(q)∪{Sk′};

12 Updated sketch CΨk′ with added file fq;

13 else

14 break;

15 if ∆hq < 0 then

16 Get ϕ(q,k), ∀Sk ∈ repeat set(q);
17 for k = 1 → |repeat set(q)| do

18 k′ = repeat set(q)[k];
19 if hq/|repeat set(q)|(size(fq)−ϕ(q,k′))< κ

then

20 repeat set(q)=repeat set(q)\{Sk′};

21 Updated sketch CΨk′ with deleted file fq;

22 Adjust γq by HEAT ALLOCATION(fq,repeat set(q)).

23 ∆ = ∆−|∆hq|/∑
|H|
i=1 hi;

24 HQ = HQ\{ fq};

or negative. If the file is getting hot, i.e., positive variance,

we would find several additional candidate target servers for

file replicas to alleviate the request congestion. Specifically, we

get ϕ(q,k),∀Sk ∈ S̃t & Sk 6= repeat set(q), and sort the val-

ues descendingly to construct the server queue Qq (Lines 5-6).

Thereafter, we calculate the division between the split data access

AFR(q) and the extra space cost size(fq)−ϕ(q,k′). If the division

between these two parameters is larger than κ , then the file fq

would be replicated to the underloaded Sk′ , i.e., the kth server in

Qq, with the data sketch CΨk′ being updated (Lines 7-14). The

new replicas support data access requests for the hotter file fq.

This process is the supplementary operation for Algorithm 2.

In contrast, when the file fq is getting cold, some replicas

would be removed from the systems for the space-saving purpose.

Specifically, for all servers that store the file replicas of fq,

i.e., repeat set(q), we would recalculate whether or not they

meet the criteria for storing replicas (Lines 18-19). If not, the

occupied space would be released from the server, with sketch

CΨk′ being updated (Lines 20-21). After updating the replica

locations repeat set(q) for file fq, we further leverage function

HEAT ALLOCATION(fq,repeat set(q)) (Line 22) to adjust the

allocated percentage (γq) for each server in repeat set(q). The

heat variance ∆ and the adjustment sequence HQ would also be

updated (Line 23-24).

7 PERFORMANCE ANALYSIS

In this section, we perform mathematical analyses to guarantee the

theoretical effectiveness of our BF-based data migration strategies.

We first prove that the BF-based data sketch would negligibly

impact the similarity detection through Theorem 1. After that,

we demonstrate the rationality of utilizing the space-saving index

through Theorem 2. At last, we analyze the time and space

complexities of the provided algorithms.

7.1 Impact on Data Similarity due to Data Sketching

Theorem 1. Given a block b that does not exist in server SA, and

the data sketch ΨA of SA with length d, the probability that judging

the block b belongs to server SA through indexing the server sketch

ΨA is negligible.

Proof. We assume there are ε blocks stored at server SA, and these

blocks are sketched into a d-bit string (ΨA) by kBF BF-based hash

functions. When inquiring whether server SA contains the block b,

the corresponding kBF positions of sketch ΨA would be checked.

The sketch judges that this block does not belong to server SA, if

any bit at the kBF hashed positions is 0. Otherwise, the BF believes

that the queried block b belongs to SA with a rate of false positives.

The false positives are caused by hash conflicts, as the 8th bit in

Fig. 4. For block b, all of its kBF hash positions in the bit vector

may be set as 1 when representing other blocks in server SA. The

probability that a bit in ΨA is not set to 1 by the kBF independent

hash function is (1−1/d)kBF . When inserting the ε blocks into the

sketch, the probability becomes (1−1/d)ε·kBF . Then, for block b,

all of its kBF hash positions are projected by other blocks with

a probability p = [1−(1−1/d)ε·kBF]kBF . This probability is also

called the false-positive rate [33].

When the sketch length d is set with a large value, for example,

d=100000 in experiments in Section 8, the false-positive rate

tends to zero. Therefore, the impact of sketch-based data similarity

mining is negligible, which validates the rationality of our heuris-

tic algorithms using Bloom filters or Counting Bloom filters.

7.2 Accuracy of File Ranking on Space Efficiency

Theorem 2. Given two files (f1 and f2) in the source server

with their maximum ranking index I(1,k1) and Is(2,k2), where

I(1,k1) > I(2,k2), then the migration of file f1 is more space-

efficient than that of file f2 in the current step.

Proof. We assume that the data sketches for all involved servers

are set with a fixed length d. The chosen migration target for

file f1 is server Sk1
, and that for file f2 is server Sk2

. I(1,k1) =
ϕ(1,k1)−ϕ(1,s), where ϕ(1,k1) represents the data volume of

shared blocks between f1 and Fk1
, and ϕ(1,s) expresses the data

volume of shared blocks between f1 and Fs\{ f1}.

Let ϕ(i,k) denote the data volume of shared blocks between fi

and Sk ∈ S̃t . This can be derived from the BF-based membership

queries of blocks in fi on data sketch Ψk. Then, the function returns

the index I(i,k) according to the deviation between ϕ(i,k) and

ϕ(i,s), which reflects the saved space resources through migrating

file fi from Ss to the Sk. However, these values contain false

positive results caused by hashing conflicts. We let ϕ̂(i,k) and

ϕ̂(i,s) represent the real values of the estimated ϕ(i,k) and ϕ(i,s).
Then ϕ̂(i,k) = (ϕ(i,k)− pkVi)/(1− pk), where Vi represents the

data volume of file fi, and pk indicates the false positive ratio of

membership queries on the sketch of server Sk. The aim is to prove

10

ϕ̂(1,k1)− ϕ̂(1,s)> ϕ̂(2,k2)− ϕ̂(2,s) when I(1,k1)> I(2,k2). We

rewrite the space-saving ranking indexes as follows:

I(1,k1)− I(2,k2)

= (1− pk1
)ϕ̂(1,k1)−(1− pk2

)ϕ̂(2,k2)+(1− ps)[ϕ̂(2,s)− ϕ̂(1,s)]

+(pk1
− ps)V1 − (pk2

− ps)V2 > 0.
(15)

Based on this inequation, the real saved storage space between file

f1 and f2 can be represented as follows:

[ϕ̂(1,k1)−ϕ̂(1,s)]− [ϕ̂(2,k2)−ϕ̂(2,s)]

> pk1
ϕ̂(1,k1)− pk2

ϕ̂(2,k2)+ ps[ϕ̂(1,s)− ϕ̂(2,s)]

+ ps(V2 −V1)+ pk1
V1 − pk2

V2.

(16)

When the data sketches for all involved servers (Ss, Sk1
, and

Sk2
) are set with a fixed and large length d, the false positive

ratios (ps, pk1
, and pk2

) are all tend to zero. With this premise,

ϕ̂(1,k1)− ϕ̂(1,s)> ϕ̂(2,k2)− ϕ̂(2,s) with a high probability, and

then Theorem 2 can be verified.

Theorem 2 can also be applied for the heat-aware file replica-

tion algorithm, where the server queue Qi is sequenced by index

ϕ(i,k) for file fi. The server with a higher ϕ(i,k) is more space-

efficient to store a replica of file fi under the same conditions.

To conclude, Section 7.1 and Section 7.2 together indicate that

our Jingwei method picks up a rational sketching method to reduce

the computation overhead, and ranks the file migration/replication

sequence rationally based on data sketching. These guarantee the

theoretical effectiveness of our Jingwei in the general scenario.

7.3 Time and Space Complexity Analysis

We analyze the time and space complexity of our proposed data

allocation strategies in this subsection, including the BF-based

data sketch, space-saving data migration, and heat-aware data

replication. The specific comparisons are shown in Table 2.

The time complexity of the BF-based data sketch is O(|Bt |max ·
kBF), where kBF indicates the number of utilized hash functions

and |Bt |max represents the maximum number of blocks at any

candidate server. Note that, the sampling technologies can be

assembled to reduce the time complexity by a factor of the sample

ratio. The space complexity of the BF-based data sketch is O(d),
where d expresses the BF length.

The time complexity of the space-saving data migration is

O(|Fs|
2 · |S̃t |

2 ·nmaxkBF), where nmax indicates the maximum num-

ber of blocks in any file. In addition, the space complexity is

O(d|S̃t |+ |Fs||S̃t |), where d|S̃t | records the server sketches and

|Fs||S̃t | records the space-saving indexes.

As for the heat-aware data replication algorithm, the time

complexity is O(|Fs| · |S̃t |
2 · log2 |S̃t |). Here, O(|S̃t | · log2 |S̃t |) is

caused by ordering the target servers based on the shared block

volume. The complexities |Fs| and |S̃t | are caused by the maximum

migration times and the maximum replication times for each file in

Fs. The space complexity is O(|Fs||S̃t |). Note that, our incremental

adjustment strategies incrementally conduct the update operations

on only a part of the original blocks. Thus, their complexities

would be lower than these two algorithms.

In the case of having a great number of servers in a large

storage system, both the time and space complexities would

increase linearly or even quadratically. It is unavoidable that our

Jingwei would require more time to conduct a feasible migration

strategy. However, it may be unnecessary to incorporate all servers

TABLE 2
Time and space complexity analysis.

Algorithm Time complexity Space complexity
BF-based Data Sketch O(|Bt |max · kBF) O(d)
Space-saving Data Migration O(|Fs|

2 · |S̃t |
2 ·nmaxkBF O(d|S̃t |+ |Fs||S̃t |

Heat-aware Data Replication O(|Fs| · |S̃t |
2 · log2 |S̃t |) O(|Fs||S̃t |)

as our migration candidates. The reason is that the data migration

between the two remote servers would involve significant network

transferring cost. The common solution [36], [37] is partitioning

the storage servers into smaller clusters to confine the transmission

distance. Then, we can perform our data migration schemes within

each cluster, which reduces the network cost and decreases the

algorithm complexities significantly.

8 PERFORMANCE EVALUATION

In this section, we empirically evaluate the performance of our

Jingwei strategy using a real-world dataset. We describe our

experimental settings and then present the experimental results,

which show the efficiency of our proposed data migration strategy

over other comparison methods.

8.1 Experimental Settings

We implement a prototype system of Jingwei, which includes 11

virtual machines (VMs) to evaluate the system performance. Ten

VMs represent the storage servers, which store the allocated data

blocks in schemes derived from different comparison methods.

One VM acts as a file requester, which sends file retrieval requests

to the storage servers according to the files’ heat degrees. This

VM is also a management node, which maintains the affiliation

information between files and blocks, as well as the mappings

from each block and to their storage servers. In our prototype

system, the VMs are deployed on a Desktop PC, equipped with

a 3.50GHz Intel(R) Core(TM) i9-11900K CPU with 8 cores and

64GB RAM using 500GB SSD. Each VM is allocated 4GB of

RAM and 30GB virtual disk drive, running Ubuntu Linux 20.04

x64. The CPU cores are shared by all VMs.

Datasets. We use the real-world dataset [38] for the evaluation

to demonstrate the universality of our Jingwei strategy. The dataset

is downloaded from the GitHub website, which consists of the

zip-compressed source codes of 403 randomly selected projects

on some hot topics, such as Atom [39] and Azure [40]. Each

project contains several historical versions of the source code file,

with a great number of duplicate chunks between them. There

are in total 55,797 files in this dataset, with a maximum size of

30.65MB and a minimum size of 1B. We partition the files using

the variable-size chunking approaches [6]. The average block size

is 3.87KB, and the global deduplication ratio (the ratio of saved

space after data deduplication to the original space) is 55.79%.

Comparison methods. To illustrate the performance of Jing-

wei more comprehensively, we consider three other comparison

methods in this paper.

• Goseed [7], which provides an optimal solution with

the commercial optimizer to minimize the extra space

occupation in the migration process. However, it can only

be applied to migrate files to a single empty server.

• SARA (Service-Aware Replication Allocation scheme),

where replicas are generated for hotter files [14] and

are allocated to the servers with more available service

11

0.05 0.15 0.25 0.35
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
D
at
a
R
ep
li
ca
ti
o
n
R
at
io

Migration percentage

Goseed Jingwei_ILP Jingwei_opt

Jingwei SARA Random

(a) The Data Replication Ratio.

0.05 0.15 0.25 0.35
0

20

40

60

80

100

120

140

160

R
ep
li
ca
H
ea
t

Migration percentage

Jingwei_ILP Jingwei_opt

Jingwei SARA Random

(b) The Replica Heat.

0.05 0.15 0.25 0.35
-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

lo
g
1
0
(R
S
-r
at
io
)

Migration percentage

Jingwei_ILP Jingwei_opt

Jingwei SARA Random

(c) The RS-ratio. (d) The MC and RC.

Fig. 7. The performance with different migration percentages in the first scenario.

capabilities [15]. We assign the migration status of Jingwei

to SARA directly to compare its performance in the file

replication stage.

• Random, which is the baseline of all these comparisons.

In the Random method, files are ranked randomly and then

migrated/replicated to a randomly chosen server.

We also compare Jingwei ILP for the first scenario, which ex-

hibits the optimal migration strategy derived from the ILP solver.

In addition, the optimal result of our heuristic algorithms, Jing-

wei opt, is also compared. It detects content similarity through

pair-wise fingerprint checking, but not membership queries on the

bit arrays. Thus, Jingwei opt avoids the false positives caused by

the BF-based hash mappings.

Metrics. Firstly, we verify the performance of space efficiency

rationale with the Data Replication Ratio (DRR), which is defined

as the ratio between the extra space cost attached by file moves

and the initial space occupation at the source server. The second

comparison metric is the Replica Heat (RH), which indicates the

total heat degree of the file replicas. A high value of RH indicates

that more replicas are generated for hot files, which is vital for

the service adaptability. Furthermore, RS-ratio is a comprehensive

index of the DRR and RH, which reflects the amount of RH per

extra storage unit in the file replication stage. This quantifies

the performance balance between the space efficiency and the

service adaptability. The Migration Count (MC) and Replication

Count (RC) are also considered for counting the file migration

and replication when a certain amount of data has been migrated

from the overload source server.

To evaluate the performance of our incremental adjustment

strategies, we consider the Data Unavailable Ratio (DUR), which

is triggered by the heat variance, so that the total available

service capacities cannot meet the frequent file requests. We also

emphasize the adjustment cost, which is mainly composed of

the extra space cost and bandwidth consumption. We continue

to utilize the DRR metric to represent the extra space cost, and

we newly define Extra Migration Volume (EMV) to represent the

bandwidth consumption.

For our prototype system, we evaluate the file retrieval behav-

iors. The file requests are sent with different frequencies based

on their heat degrees. Using the iPerf and ping tools, we test

the bandwidth between these VMs is 543Mbps, and the network

latency is 0.275ms on average over ten rounds. Then, we evaluate

the file Retrieval Throughput and Retrieval Delay for different

comparison methods.

Parameter setting. We first unzip and partition the files in

the dataset into variable-size blocks. Each block is represented by

its fingerprint using MD5 [31]. We sketch the data blocks at each

involved server using Bloom filters with kBF = 2 and d = 100000

by default. We employ the widely utilized Zipf distribution to

govern the file popularity in heat degree generation [41], where

the concentration degree of data access is set as 1. We randomly

allocate the files to 10 servers. The storage and service capacities

of the migration targets are set to twice the initial usage. We set

λ = 0.4 and κ = 0.02 to unify the RC value as 4 for all comparison

methods in the first scenario. For the second scenario, we set κ = 5

by default, and the replication count (RC) follows that of Jingwei

for other comparison methods. The unity of RC facilitates the

performance comparisons at the file replication stage.

8.2 Numerical Results

We conduct large-scale experiments to test the respective perfor-

mance of Jingwei and its competitors in two migration scenarios,

separately. The performance with heat variation is also exhibited.

8.2.1 Performance in the first scenario

For the first scenario, we only utilize one project in the dataset.

The reason is that the performance advantages of Jingwei and its

competitors are more significant for a dataset wherein the files

are pretty similar with numerous shared blocks. Otherwise, the

migration can be viewed as separating the two irrelevant sub-

datasets without data-sharing dependencies. We utilize the Azure

project [40], there are 20 files with 16,328 unique blocks, where

each file contains a maximum of 3,635 blocks and a minimum of

18 blocks.

Fig. 7 depicts the performance of Jingwei and its competitors

in the first scenario. The performance of data replication ratio

(DRR) is exhibited in Fig. 7(a). The data volume when DRR=1

represents the original file volume in the source server without

data deduplication. Jingwei consistently achieves a similar DRR

compared with Jingwei ILP and Jingwei opt, while only about

6% extra DRR is triggered compared with the Goseed method.

This verifies the space efficiency of Jingwei, which does not

cause much additional space overhead during data replications.

By contrast, SARA and Random, which construct file replicas

without consideration of data deduplication, lead to 2× and even

3× space occupation in the worst cases.

Fig. 7(b) reflects the replica heat (RH) and Fig. 7(c) exhibits

the RS-ratio. The Jingweis perform well in both of these two

metrics. The reason is that, Jingweis prefer to replicate files

with a relatively high heat degree, and allocate the replicas to

the server with high similarity. The SARA method, although

achieving higher RH through replicating the hottest files, performs

unsatisfactorily in terms of the RS-ratio (around 101.7 times lower

than that of Jingwei). It is because the replica allocation of SARA

12

0.05 0.15 0.25 0.35 0.45

0

2

4

6

8

10

12

14
D
at
a
R
ep
li
ca
ti
o
n
R
at
io

Migration percentage

Jingwei_opt Jingwei

SARA Random

(a) The Data Replication Ratio.

0.05 0.15 0.25 0.35 0.45
0

50

100

150

200

250

300

350

400

R
ep
li
ca
H
ea
t
(1
0
3
)

Migration percentage

Jingwei_opt Jingwei

SARA Random

(b) The Replica Heat.

0.05 0.15 0.25 0.35 0.45
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

lo
g
1
0
(R
S
-r
at
io
)

Migration percentage

Jingwei_opt Jingwei

SARA Random

(c) The RS-ratio.

0.05 0.15 0.25 0.35 0.45
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

lo
g
1
0
(M
C
)

Migration percentage

Jingwei_opt Jingwei

SARA Random

(d) The Migration Count.

Fig. 8. The performance with different migration percentages in the general scenario.

TABLE 3
The performance of Jingwei with different λ (the adjusting parameter in

the optimization objective).

λ
0.1 0.4 0.7 1 1.3 1.6 1.9

DRR 0.471 0.500 0.689 0.689 0.730 0.730 0.747

RH 162.64 126.60 328.97 328.97 343.50 343.50 347.30

RS-ratio 0.1245 0.0882 0.1724 0.1724 0.1697 0.1697 0.1678

MC 12 10 10 9 9 9 8

RC 3 5 10 10 11 11 12

considers just the available service capacities, but ignores the

potential space reduction with deduplication technologies.

The migration and replication times are finally counted in

Fig. 7(d). The migration count (MC) is represented by histograms

with patterns, while the replication count (RC) is not. The Goseed

method only considers the migration stage, thus with the RH

always being zero. We adjust parameters λ and κ to align the

RC of the comparison methods as 4, which avoids the performance

impact caused by the RC variance. When the migration percentage

is 25%, about 25% (5/20) file replicas are extra generated in

Jingwei ILP, with only 5.7% of the extra space cost compared

with Goseed (as shown in Fig. 7(a)). This exhibits that Jingweis

conduct space-saving file replications. The MCs of our heuristic

methods (Jingwei and Jingwei opt) are sometimes higher than the

optimal Jingwei ILP. The reason is that the space-efficient data

migration of the heuristic methods may not be globally optimal.

Some extra migration of similar files may increment the migration

count, but fortunately, it has little benefit on other metrics. It is

because the extra migrated files may have numerous shared blocks

with their targets.

Table 3 shows the performance of Jingwei with different

λ when the migration percentage is fixed as 0.35. Note that,

λ is an adjusting parameter to adapt to different optimization

tendencies for the space efficiency and the service adaptability

rationales. With the increase of parameter λ , the derived data

migration schemes would tend to enhance the service adaptability

rationale. To be specific, the RC and DRR increase gradually,

which indicates that more file replicas are generated to apportion

the file requests.

8.2.2 Performance in the second scenario

For the general migration scenario, all files in the dataset are

initially randomly allocated to ten servers to construct the original

storage states. Goseed and Jingwei ILP are not compared in this

subsection, because they are only applicable to the first migration

scenario. The migration count (MC) of SARA follows that of

Jingwei. The reason is that the SARA method does not involve

the migration stage. We assign the migration states of Jingwei to

SARA directly, so as to test its performance in replica generation.

TABLE 4
The performance of Jingwei with different κ (the unit-heat value that

controls the necessity of file replication).

κ
7 6 5 4 3

DRR -0.2235 -0.2233 -0.2229 -0.2228 -0.2223

RH(103) 303.04 306.64 310.25 315.23 321.17

RS-ratio 463.31 416.52 370.82 316.26 256.89

MC 36 36 36 36 36

RC 16,474 16,648 16,899 17,243 17,822

Fig. 8 illustrates the evaluation performance for the general

scenario. Specifically, in Fig. 8(a), Jingwei opt and Jingwei

achieve the DRR with a negative value, which means that the total

space occupation dramatically decreases after data migration and

replication. This benefits from the similarity-aware file allocation

and verifies the space efficiency of our Jingweis. Furthermore, the

saved space progressively increases as the migration percentage

grows up. When 45% of data migrates, about 26.3% of the

occupied space can be freed from the source server. However,

the methods without deduplication incorporated, i.e., SARA and

Random, lead to several times storage occupation. Fig. 8(b) illus-

trates that SARA outperforms others in terms of the replica heat

(RH). The reason is that it chooses the hottest files to replicate,

which rises the average RH for each replica. Jingwei’s RH follows

that of SARA because it considers both the heat degree and the

extra space cost that each replica requires.

Jingwei achieves absolute advantages in RS-ratio, as shown

in Fig. 8(c). Specifically, the RS-ratio of Jingwei is around 104

times higher than that of SARA and Random. The reason is that

the replica allocations of the latter two methods fail to realize the

space reduction through similarity detection between the migrated

files and data in the candidate targets. Fig. 8(d) further illustrates

the MC performance in the general scenario. When M=5%, the

migration task of Jingweis can be accomplished by migrating four

files (log10 4=0.6), while the Random method requires more than

400 times. The reason is that Jingweis tend to migrate files that

release more space from the source server, which accelerates the

migration process. The MC of Jingwei is slightly higher than

that of Jingwei opt. This phenomenon is caused by the potential

false positives of Bloom filters. Such false positives may disorder

the file ranking in Algorithm 1. We do not compare the RC

performance in the general scenario. The reason is that the RCs

are all kept as a constant value for these comparison methods.

The performance of Jingwei with different κ values is ex-

hibited in Table 4. The value of κ exploits the necessity of

file replication. With a smaller κ , more file replicas would be

generated to amortize the frequent file requests. As κ decreases

13

TABLE 5
The performance of Jingwei with different sample ratios.

Method
Sample ratio

1 1/4 1/16 1/64 1/256

DRR
Jingwei opt -0.2239 -0.2198 -0.1837 -0.1553 -0.1184

Jingwei -0.2229 -0.2196 -0.1813 -0.1544 -0.1098

RH(103)
Jingwei opt 310.25 310.24 309.94 309.62 309.24

Jingwei 310.25 310.24 309.94 309.62 309.24

RS-ratio
Jingwei opt 370.82 368.81 358.68 351.86 349.80

Jingwei 370.82 368.81 360.44 350.44 346.84

MC
Jingwei opt 35 52 88 103 183

Jingwei 36 52 91 104 219

RC
Jingwei opt 168,96 168,93 168,53 168,38 166,84

Jingwei 168,99 168,93 168,48 168,33 165,91

TABLE 6
The performance of Jingwei with different BF lengths.

BF length

12500 25000 50000 100000 200000 400000

DRR -0.1323 -0.1355 -0.2228 -0.2229 -0.2237 -0.2239

RH(103) 298.04 308.19 310.25 310.25 310.25 310.25

RS-ratio 354.14 368.49 370.82 370.82 370.82 370.82

MC 1232 599 38 36 36 35

RC 15,834 16,410 16,899 16,899 16,899 16,896

from 7 to 3, the RC grows up from 16,474 to 17,822, and the

RH increases from 303.04× 103 to 321.17× 103. These indicate

that more replicas are generated with a small κ , especially for

hot files. The smallest DRR and largest RS-ratio are achieved

when κ = 7. The reason is that files are replicated in a priority of

high heat degree and less extra space cost. The first few generated

replicas provide the highest efficiency in space saving and request

apportionment.

Table 5 shows the performance of Jingwei with different

sample ratios when the migration percentage is fixed at 0.35.

Note that, the sampling technologies can be further assembled

to alleviate the computational overhead, especially for real-world

storage systems with a large number of variables and constraints.

One notable change is that the MC increases gradually with fewer

blocks being sampled for similarity detection. The leading cause is

that the sampling technologies would weaken the accuracy in file

rankings. To be specific, the sampled blocks in files and servers

are chosen randomly, and the chosen blocks in files may not be

sampled at their optimal targets. This retards the migration process

with less space being freed from the source in each migration.

Thereafter, the performance of Jingwei with different BF

lengths is exhibited in Table 6, with the migration percentage

being fixed as 0.35. As the BF length grows from 12,500 to

400,000, the MC is abbreviated from 1232 to 35. Note that, the

MC of Jingwei opt is exactly 35 under the same conditions. This

declares that the impact of false positives can be alleviated with

a larger bit array. The metrics are impacted seriously when the

BF length is set as 12,500. The reason is that a large number of

false positives appear in similarity detection, when data blocks are

mapped to a Bloom filter with this short length.

8.2.3 Performance with heat varies

To test the performance with heat varies, we fix the migration

percentage as 0.35 and change the heat degree up or down by

[1.2, 1.5, 2, 2.5, 3, 3.5, 4, 5] times randomly. We evaluate the

data unavailable ratio (DUR) against heat variation to illustrate its

impact on file access. Note that, we do not exhibit the DUR value

for the first scenario, because the ILP formulation constraints the

100% 150% 200% 250% 300%
0.00

0.03

0.06

0.09

0.12

D
at
a
R
ep
li
ca
ti
o
n
R
at
io

Change of heat

T

=100% T

=150%

T

=200% T

=250%

T

=300%

(a) The data replication ratio.

100% 150% 200% 250% 300%
0

2000

4000

6000

8000

E
x
tr
a
M
ig
ra
ti
o
n
V
o
lu
m
e
(K
B
)

Change of heat

T

=100% T

=150%

T

=200% T

=250%

T

=300%

(b) The extra migration volume.

Fig. 9. The adjustment cost in the first scenario.

200% 225% 250% 275% 300%
0

1

2

3

4

5

6

!
"
!
#
$
%
!
&
!
'
(
!
)
(
*
#
+
!
"
'
,
#
-
.
/

Change of heat

T

=100% T

=150% T

=200%

T

=250% T

=300% No_incre

Fig. 10. The data unavailable ratio in the second scenario.

occupation of the service capacities. Then, all file requests can be

responded to within the service capabilities. We also present the

adjustment cost (DRR and EMV) to ascertain the effectiveness

of our adjustment strategies. The comparison methods include:

1) the Jingwei method without incremental adjustments, which is

denoted by No incre; 2) the Jingwei method integrated with the

incremental adjustments, and the variance threshold T∆ varies from

100% to 300%. For the incremental adjustments, no action will be

taken until the heat change (∆) reaches its threshold T∆, and the

adjusting stops when the heat variance falls below the threshold.

Fig. 9 illustrates the data replication ratio (DRR) and extra

migration volume (EMV) of our incremental adjustments for

the first scenario. We can observe that when the storage system

suffers from a drastic heat change, for example, with 250% or

300%, the incremental method with a larger T∆ would incur more

block replication and migration per time. The reason is that the

significant heat variance would widen the gap between the original

allocation scheme and the recomputed scheme. One noticeable

point lies in that the system storage volume maintains unchanged

when hundreds of data blocks are migrated. It may be because the

extra occupied volume taken up at the migration target is the same

as the released volume from the migration source.

The data unavailable ratio (DUR) in the second scenario is

exhibited in Fig. 10. All methods experience gradual increments

in DUR when the heat change grows up. This reflects the severe

impact of heat variance on the system performance. The DUR

of the methods with incremental adjustments (T∆) follows that

of No incre until the heat change reaches their corresponding

variance threshold. Then our incremental adjustments are em-

ployed to add or delete file replicas adaptively. The method with

T∆ = 100% generates the lowest DUR (always less than 0.3‰)

compared to other methods. The reason is that this method adjusts

the file allocations more promptly and thoroughly with a small

variance threshold. On the contrary, when the threshold is large,

e.g., T∆ = 300%, the DUR value is close to that of No incre.

The reason is that this incremental method works when the heat

14

200% 225% 250% 275% 300%
0.0

0.1

0.2

0.3

0.4

D
at
a
R
ep
li
ca
ti
o
n
R
at
io
(1
0
-3
)

Change of heat

T

=100% T

=150%

T

=200% T

=250%

T

=300%

(a) The data replication ratio.

200% 225% 250% 275% 300%
0

4

8

12

16

20

24

E
x
tr
a
M
ig
ra
ti
o
n
V
o
lu
m
e
(M
B
)

Change of heat

T

=100% T

=150%

T

=200% T

=250%

T

=300%

(b) The extra migration volume.

Fig. 11. The adjustment cost in the second scenario.

60 120 180 240 300
0

100

200

300

400

500

R
et
ri
ev
al
th
ro
u
g
h
p
u
t
(M
b
p
s)

Request rate

Jingwei_opt Jingwei

SARA Random

(a) The file retrieval throughput.

60 120 180 240 300
0

30

60

90

120

150

R
et
ri
ev
al
d
el
ay
(m
s)

Request rate

Jingwei_opt Jingwei

SARA Random

(b) The file retrieval delay.

Fig. 12. The file retrieval throughput and delay.

variance reaches ∆ = 300%, and stops adjusting when the heat

change falls below the threshold. Therefore, the storage system

still undertakes significant heat variance, which is not conducive

to data availability.

Fig. 11 thereafter highlights the adjustment cost for the second

scenario. The DRR for all methods is below 0.3×10−3, which is

relatively smaller than that of the first scenario. The reason is that

more similar files and candidate servers are involved in the second

scenario, where the adjustment on a small part of data blocks can

change the state of a large number of files. The values of DRR and

EMV are relatively similar in different methods, and the advantage

in methods with a small threshold (T∆) is less obvious than that

in the first scenario. The intrinsic reason is that the adjusted

schemes are recomputed based on the ILP technologies for the

first scenario, where all methods share the same recomputed states.

A large heat variance would widen the gap between the original

scheme and the recomputed scheme. However, the adjustments

in the second scenario only deal with the newly appeared heat

variance incrementally, leading to indistinctive adjustment cost for

methods with different thresholds.

8.2.4 Performance of the prototype system

Finally, Fig. 12 reports the average file retrieval throughput and

delay for the comparison methods. With the request rate increas-

ing from 60 to 300 per minute, the retrieval throughput of all

methods decreases, while the retrieval delay grows up gradually.

The reason is that the frequent file requests may congest the

transmission links to servers with limited service capacities. The

rational file replication schemes can apportion the requests to

different servers, so that the congestion can be alleviated. To

be specific, the retrieval throughput of our Jingwei strategy can

reach up to 333.5Mbps when the arrival rate is 180 per minute.

It is 12.3% higher than that of the Random method, and 5.2%

higher than that of the SARA method. Furthermore, the rational

file replication of Jingwei decreases the retrieval delay by 5.1%

compared with SARA, and 11.2% compared with Random. Note

that, the performance improvement is realized when the occupied

storage space of our Jingwei is far below that of others, as shown in

Fig. 8(a). This strongly demonstrates that our Jingwei can retrieve

files effectively, even though its storage space is limited.

In summary, Jingwei realizes an effective combination of

space efficiency and service adaptability, enabling it to generate

replicas for hot files with less extra space cost. To be specific,

Jingwei generates 25% replicas with only 5.7% of the extra space

utilization compared with Goseed. The incremental adjustments

can handle up to a 250% of heat variance by replicating around

7% of the original data volume. With the small extra space cost,

the file retrieval throughput of Jingwei can reach up to 333.5Mbps,

which is 12.3% higher than that of the Random method.

9 DISCUSSION

Several uninvolved aspects of our Jingwei strategy warrant further

discussion. We introduce them from two design standpoints, which

also suggest avenues for future work.

Diverse migration policies. we carry out in-depth literature

collection and policy classification on the migration policies in

deduplicated storage systems, including replication cost [7], [12],

fault tolerance [42], [43], migration traffic [44], load balance [7],

[44], [45], and energy consumption [43], [46].

The replication cost is the total size of duplicated blocks that

are created as a result of migrating or replicating files [7], [12].

The energy consumption is considered to be saved by reducing

data volumes for running large storage systems [43], [46]. These

two policies are in reality the same as our emphasized space

efficiency rationale. As for migration traffic [44], i.e., the amount

of data that is moved across servers, we think it is implicitly

consistent with our space efficiency rationale. The intrinsic reason

is that replicating a block means transmitting this replica across

the network, leading to more migration traffic.

The fault tolerance policy [42], [43] can be enhanced by

generating data replicas, which has some parallels with our service

adaptability rationale. It is because the generated data replicas

in our work provide the opportunity for block copies to work

when a block suffers from hardware failure or software crash.

Load balance [7], [44], [45] is a major concentration in distributed

storage systems, which often conflicts with our space efficiency

rationale. To be specific, the system’s space cost can be minimized

by mapping all files to a single server, which enables detection and

deletion of all duplicate blocks. However, this approach results in

poor load balancing as only one server is utilized while others

remain under-utilized. We only confine the server load below the

capacity constraints in this paper. The reason is that the strictly

balanced server load may miss the opportunity of generating file

replicas with less extra space cost.

These guideline policies more or less provide insight to

improve the system performance for the deduplicated storage

systems. We believe the incorporation or trade-off of these policies

provides an exciting avenue for future work.

Extended Scenarios. In this paper, we focus on a class of

deduplication storage systems that holds all blocks of a file on one

server [3], [5], [7], [24]. In such a distributed setting with multiple

storage servers, every incoming file is allocated to a single storage

server only. This enables a single disk access for block lookup

per file instead of per block. Jingwei can also be extended to

handle the scenarios where blocks of a file are distributed across

servers. In such a scenario, the shared blocks are not necessary to

be copied at both the source server and the target server during data

15

migration. The reason is that these shared blocks can be retrieved

from any server in the system, without the constraint of the server-

level file integrity. This is essentially a special case of the problem

presented in our work, which can be solved by releasing some

constraints of Jingwei.

Specifically, we can modify the Jingwei strategy by ignoring

the affiliation relationships between files and blocks, and each

block is set as the unit of migration and replication. Specifically,

in the first-phase data migration process, when the source server

is overloaded, the blocks in the source server can be migrated

out to the underweighted servers until the pre-defined migration

percentage is reached. For the second-phase data replication, we

first calculate the heat degree of each block, which is the heat sum

of all its affiliated files. Then, we can directly replicate the popular

blocks to the underweighted servers. Which blocks to replicate and

how many replicas for each chosen block can refer to Algorithm 2,

i.e., the heat-aware data replication.

10 CONCLUSION

In this paper, we report Jingwei, an efficient and adaptive data

migration strategy to migrate and replicate files to the proper

servers. This contributes to the space efficiency and service

adaptability rationales simultaneously in the deduplicated stor-

age systems. We first design the migration strategy based on

the ILP technologies when only one empty migration target is

allowed. We further extend the problem into the general scenario,

wherein multiple non-empty servers are available for migration.

We solve the general migration using effective heuristics based on

Bloom filters. To alleviate performance degradation caused by heat

variance, we further propose incremental adjustment strategies

to adjust the number of file replicas and their locations in an

incremental manner. The trace-driven experiments show that our

solution can significantly lessen the extra space cost in migration

while increasing the replicas for hot files. When heat varies, our

adjustment strategies can guarantee data availability with a small

adjusting cost.

ACKNOWLEDGMENT

This work is partially supported by National Natural Science

Foundation of China under Grant No. U19B2024 and No.

62002378.

REFERENCES

[1] G. Cheng, D. Guo, L. Luo, J. Xia, and Y. Sun, “Jingwei: An efficient and
adaptable data migration strategy for deduplicated storage systems,” in
Proc.of IEEE INFOCOM 2022, London, United Kingdom. IEEE, pp.
1659–1668.

[2] S. Li and T. Lan, “Hotdedup: Managing hot data storage at network
edge through optimal distributed deduplication,” in Proc.of 39th IEEE
INFOCOM 2020, ON, Canada. IEEE, pp. 247–256.

[3] G. Cheng, D. Guo, L. Luo, J. Xia, and S. Gu, “Lofs: A lightweight
online file storage strategy for effective data deduplication at network
edge,” IEEE Transactions on Parallel & Distributed Systems, vol. 33,
no. 10, pp. 2263–2276, 2022.

[4] Y. Zhang, Y. Wu, and G. Yang, “Droplet: A distributed solution of data
deduplication,” in Proc.of 13th ACM/IEEE GRID 2012, Beijing, China.
IEEE Computer Society, pp. 114–121.

[5] B. Balasubramanian, T. Lan, and M. Chiang, “SAP: similarity-aware
partitioning for efficient cloud storage,” in Proc.of IEEE INFOCOM
2014, Toronto, Canada. IEEE, pp. 592–600.

[6] W. Xia, Y. Zhou, H. Jiang, D. Feng, Y. Hua, Y. Hu, Q. Liu, and Y. Zhang,
“Fastcdc: a fast and efficient content-defined chunking approach for data
deduplication,” in Proc.of USENIX ATC 2016, CO, USA. USENIX
Association, pp. 101–114.

[7] A. Nachman, G. Yadgar, and S. Sheinvald, “Goseed: Generating an
optimal seeding plan for deduplicated storage,” in Proc.of 18th USENIX
FAST 2020, CA, USA. USENIX Association, pp. 193–207.

[8] T. Qu, D. Guo, Y. Shen, X. Zhu, L. Luo, and Z. Liu, “Minimizing traffic
migration during network update in iaas datacenters,” IEEE Transactions
on Services Computing, vol. 12, no. 4, pp. 577–589, 2019.

[9] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and C. Maltzahn,
“Ceph: A scalable, high-performance distributed file system,” in Proc.of
OSDI 2006, WA, USA. USENIX Association, pp. 307–320.

[10] S. Ghemawat, H. Gobioff, and S. Leung, “The google file system,” in
Proc.of the 19th ACM SOSP 2003, NY, USA. ACM, pp. 29–43.

[11] D. Harnik, M. Hershcovitch, Y. Shatsky, A. Epstein, and R. I. Kat,
“Sketching volume capacities in deduplicated storage,” in Proc.of 17th
USENIX FAST 2019, Boston, MA. USENIX Association, pp. 107–119.

[12] A. Duggal, F. Jenkins, P. Shilane, R. Chinthekindi, R. Shah, and M. Ka-
mat, “Data domain cloud tier: Backup here, backup there, deduplicated
everywhere!” in Proc.of USENIX ATC 2019, WA, USA. USENIX
Association, pp. 647–660.

[13] C. Hamdeni, T. Hamrouni, and F. B. Charrada, “Data popularity mea-
surements in distributed systems: Survey and design directions,” Journal
of Network and Computer Applications, vol. 72, pp. 150–161, 2016.

[14] X. Wei and Y. Wang, “Popularity-based data placement with load
balancing in edge computing,” IEEE Transactions on Cloud Computing,
vol. 11, no. 1, pp. 397–411, 2023.

[15] Q. Wei, B. Veeravalli, B. Gong, L. Zeng, and D. Feng, “CDRM: A cost-
effective dynamic replication management scheme for cloud storage clus-
ter,” in Proc.of the IEEE International Conference on Cluster Computing,
Crete, Greece. IEEE Computer Society, 2010, pp. 188–196.

[16] H. Shen, “An efficient and adaptive decentralized file replication al-
gorithm in P2P file sharing systems,” IEEE Transactions on Parallel
Distributed Systems, vol. 21, no. 6, pp. 827–840, 2010.

[17] L. Lee, P. Scheuermann, and R. Vingralek, “File assignment in parallel
I/O systems with minimal variance of service time,” IEEE Transactions
on Computers, vol. 49, no. 2, pp. 127–140, 2000.

[18] T. Janaszka, D. Bursztynowski, and M. Dzida, “On popularity-based load
balancing in content networks,” in Proc.of 24th International Teletraffic
Congress, ITC, Kraków, Poland. IEEE, 2012, pp. 1–8.

[19] K. Zhou, Y. Zhang, P. Huang, H. Wang, Y. Ji, B. Cheng, and Y. Liu,
“LEA: A lazy eviction algorithm for SSD cache in cloud block storage,”
in Proc.of 36th IEEE ICCD 2018, FL, USA. IEEE Computer Society,
2018, pp. 569–572.

[20] M. Ma and V. W. S. Wong, “An optimal peak hour content server cache
update scheduling algorithm for 5g hetnets,” in Proc.of 2019 IEEE ICC
2019, Shanghai, China. IEEE, pp. 1–6.

[21] N. Zhao, H. Albahar, S. Abraham, K. Chen, V. Tarasov, D. Skourtis,
L. Rupprecht, A. Anwar, and A. R. Butt, “Duphunter: Flexible high-
performance deduplication for docker registries,” in Proc.of USENIX
ATC 2020. USENIX Association, pp. 769–783.

[22] Z. Cao, S. Liu, F. Wu, G. Wang, B. Li, and D. H. C. Du, “Sliding look-
back window assisted data chunk rewriting for improving deduplication
restore performance,” in Proc.of 17th USENIX FAST 2019, Boston, MA.
USENIX Association, pp. 129–142.

[23] M. Lillibridge, K. Eshghi, D. Bhagwat, V. Deolalikar, G. Trezis, and
P. Camble, “Sparse indexing: Large scale, inline deduplication using
sampling and locality,” in Proc.of 7th USENIX FAST 2009, CA, USA.
USENIX, pp. 111–123.

[24] D. Bhagwat, K. Eshghi, D. D. E. Long, and M. Lillibridge, “Extreme
binning: Scalable, parallel deduplication for chunk-based file backup,” in
Proc.of 17th IEEE/ACM MASCOTS 2009, London, UK. IEEE Computer
Society, pp. 1–9.

[25] D. Huang, D. Han, J. Wang, J. Yin, X. Chen, X. Zhang, J. Zhou, and
M. Ye, “Achieving load balance for parallel data access on distributed
file systems,” IEEE Transactions on Computers, vol. 67, no. 3, pp. 388–
402, 2018.

[26] W. Zhong, S. Xie, K. Xie, Q. Yang, and L. Xie, “Cooperative P2P energy
trading in active distribution networks: An milp-based nash bargaining
solution,” IEEE Transactions on Smart Grid, vol. 12, no. 2, pp. 1264–
1276, 2021.

[27] R. M. Karp, “Reducibility among combinatorial problems,” in Proc.of 50
Years of Integer Programming 1958-2008 - From the Early Years to the
State-of-the-Art, 2010. Springer, pp. 219–241.

[28] Cplex optimizer. [Online]. Available:
https://www.ibm.com/analytics/cplex-optimizer

[29] Introduction to lp solve 5.5.2.11. [Online]. Available:
http://lpsolve.sourceforge.net/5.5/

[30] The fastest mathematical programming solver. [Online]. Available:
http://www.gurobi.com/

[31] R. L. Rivest, “The MD5 message-digest algorithm,” RFC, vol. 1321, pp.
1–21, 1992.

[32] D. E. E. III and P. E. Jones, “US secure hash algorithm 1 (SHA1),” RFC,
vol. 3174, pp. 1–22, 2001.

16

[33] L. Luo, D. Guo, R. T. B. Ma, O. Rottenstreich, and X. Luo, “Optimizing
bloom filter: Challenges, solutions, and comparisons,” IEEE Communi-
cations Surveys & Tutorials, vol. 21, no. 2, pp. 1912–1949, 2019.

[34] L. Luo, D. Guo, J. Wu, O. Rottenstreich, Q. He, Y. Qin, and X. Luo, “Effi-
cient multiset synchronization,” IEEE/ACM Transactions on Networking,
vol. 25, no. 2, pp. 1190–1205, 2017.

[35] L. Fan, P. Cao, J. M. Almeida, and A. Z. Broder, “Summary cache: a
scalable wide-area web cache sharing protocol,” IEEE/ACM transactions
on networking, vol. 8, no. 3, pp. 281–293, 2000.

[36] S. Li, T. Lan, B. Balasubramanian, M. Ra, H. W. Lee, and R. K. Panta,
“Ef-dedup: Enabling collaborative data deduplication at the network
edge,” in Proc.of 39th IEEE ICDCS 2019, TX, USA. IEEE, pp. 986–996.

[37] S. Li, T. Lan, B. Balasubramanian, H. W. Lee, M. Ra, and R. K.
Panta, “Pushing collaborative data deduplication to the network edge:
An optimization framework and system design,” IEEE Transactions on
Network Science and Engineering, vol. 9, no. 4, pp. 2110–2122, 2022.

[38] “Popular topics on github.” https://github.com/topics.
[39] “Public repositories on atom.” https://github.com/topics/atom.
[40] “Public repositories on azure.” https://github.com/topics/azure.
[41] J. Li, H. Wu, B. Liu, J. Lu, Y. Wang, X. Wang, Y. Zhang, and L. Dong,

“Popularity-driven coordinated caching in named data networking,” in
Proc.of ANCS 2012, TX, USA. ACM, pp. 15–26.

[42] W. Leesakul, P. Townend, P. Garraghan, and J. Xu, “Fault-tolerant
dynamic deduplication for utility computing,” in Proc.of 17th IEEE
ISORC 2014, NV, USA. IEEE Computer Society, pp. 397–404.

[43] W. Leesakul, P. Townend, and J. Xu, “Dynamic data deduplication
in cloud storage,” in Proc.of 8th IEEE SOSE 2014, Oxford, United
Kingdom. IEEE Computer Society, pp. 320–325.

[44] R. Kisous, A. Kolikant, A. Duggal, S. Sheinvald, and G. Yadgar, “The
what, the from, and the to: The migration games in deduplicated systems,”
ACM Transactions on Storage, vol. 18, no. 4, pp. 31:1–31:29, 2022.

[45] S. A. Weil, S. A. Brandt, E. L. Miller, and C. Maltzahn, “Grid resource
management - CRUSH: controlled, scalable, decentralized placement
of replicated data,” in Proc.of the ACM/IEEE Conference on High
Performance Networking and Computing, Tampa, FL, USA. ACM Press,
2006, p. 122.

[46] H. Li, M. Dong, X. Liao, and H. Jin, “Deduplication-based energy effi-
cient storage system in cloud environment,” Computer Journal, vol. 58,
no. 6, pp. 1373–1383, 2015.

Geyao Cheng received her BS and MS degrees
in management science and engineering in 2017
and 2019, respectively, from the National Univer-
sity of Defense Technology, Changsha, China,
where she is currently working toward the Ph.D.
degree with the College of Systems Engineering.
Her research interests include edge computing,
deduplicated storage, and distributed system.

Lailong Luo received his Ph.D. degree, Bache-
lor’s and Master’s degrees from the National Uni-
versity of Defense Technology, China, in 2019,
2013, and 2015, respectively. He was also a
visiting research scholar at the National Univer-
sity of Singapore, Singapore, in 2018. His re-
search interests include probabilistic data struc-
tures and data analysis.

Junxu Xia received the BS and MS degrees in
management science and engineering in 2018
and 2020, respectively, from the National Univer-
sity of Defense Technology, Changsha, where he
is currently working toward the Ph.D. degree with
the College of Systems Engineering. His main
research interests include data centers, cloud
computing, and distributed storage systems.

Deke Guo received the B.S. degree in indus-
trial engineering from the Beijing University of
Aeronautics and Astronautics, Beijing, China,
in 2001, and the Ph.D. degree in manage-
ment science and engineering from the Na-
tional University of Defense Technology, Chang-
sha, China, in 2008. He is currently a Profes-
sor with the College of System Engineering,
National University of Defense Technology. His
research interests include distributed systems,
software-defined networking, data center net-

working, wireless and mobile systems, and interconnection networks.
He is a senior member of the IEEE and a member of the ACM.

Yuchen Sun received the B.S. degree
in Telecommunication Engineering from
the Huazhong University of Science and
Technology, Wuhan, China, in 2018. He has
been with the School of System Engineering,
National University of Defense Technology,
Changsha, since 2018, where he is currently a
Ph.D. candidate. His research interests include
Mobile Edge Computing, Dynamic Neural
Network, and Wireless Indoor Localization.

