
Jingwei: An Efficient and Adaptable Data Migration
Strategy for Deduplicated Storage Systems

Geyao Cheng, Deke Guo, Senior Member, IEEE, Lailong Luo, Junxu Xia, Yuchen Sun
Science and Technology on Information Systems Engineering Laboratory, National University of Defense Technology

{chenggeyao13, luolialaong09, junxuxia14, sunyuchen18}@nudt.edu.cn, guodeke@gmail.com

Abstract—The traditional migration methods are confronted
with formidable challenges when data deduplication technologies
are incorporated. Firstly, the deduplication creates data-sharing
dependencies in the stored files; breaking such dependencies
in migration would attach extra space overhead. Secondly, the
redundancy elimination heightens the risk of data unavailability
during server crashes. The existing methods fail to tackle them
at one shot. To this end, we propose Jingwei, an efficient
and adaptable data migration strategy for deduplicated storage
systems. To be specific, Jingwei tries to minimize the extra space
cost in migration for space efficiency. Meanwhile, Jingwei realizes
the service adaptability by encouraging replicas of hot data to
spread out their data access requirements. We first model such a
problem as an integer linear programming (ILP) and solve it with
a commercial solver when only one empty migration target server
is allowed. We then extend this problem to a scenario wherein
multiple non-empty target servers are available for migration.
We solve it by effective heuristic algorithms based on the Bloom
Filter-based data sketches. Trace-driven experiments show that
Jingwei fortifies the file replicas by 25%, while only 5.7% of
the extra storage space is occupied compared with the latest
“Goseed” method.

I. INTRODUCTION

The data volume surges exponentially in the “big data” era.
To handle the “big data” challenge, current storage systems
mainly adopt the data deduplication technologies [1] to save
space. It has been reported that, for some multimedia and IoT
storing data, up to 70% storage space can be released when
deduplication technologies are assembled [2]. A common
practice for data deduplication is to split files into multiple
blocks with either fixed size [1], [3] or varied sizes [4].
By doing so, a data-sharing dependency among the files is
established, and only one copy of each block is maintained in
the storage system.

When a server is overloaded, part of its files must be
migrated out to another server [5]. However, the traditional
migration methods are confronted with formidable challenges
when data deduplication is incorporated to economize the
scarce storage resource. First, the deduplication creates data-
sharing dependencies between the stored files; breaking such
dependencies may attach additional space overhead to the
system. The reason is that, the shared blocks must be copied in
both the source server and the migration target server. Second,
redundancy elimination ensures the space efficiency but makes
the storage system not failure-tolerant during server crashes,
rendering data unreliable and unavailable. This situation may
further deteriorate when part of the files become hot. The
frequent requests of such hot files may overwhelm the stored
server.

Therefore, in this paper, we envision the following two
rationales for data migration in deduplicated storage systems:
1) Space Efficiency – the introduced extra space overhead is
minimized; 2) Service Adaptability – files are allowed to have
multiple replicas for fault-tolerance, like Ceph [6] and Google
[7] file systems. These two rationales, if both realized, will
bring unprecedented benefits for the storage systems. To be
specific, the scarce storage resources can be economized, and
in the meanwhile, the concentrated data requirements of hot
data can be spread to alleviate the potential request congestion.
Furthermore, the replica generation may attach only a tiny
or even non-amount of extra space overhead when the two
rationales are integrated.

The existing data migration strategies, however, fail to
consider these two rationales jointly. The intrinsic reason is
that, these two rationales are mutually exclusive. Eliminating
all redundancies would impact the service adaptability, but
too many replicas would bring unnecessary space spending.
The current data migration strategies coupled with data dedu-
plication mainly focus on the capacity measurement [8], the
space reduction [5], [9], etc. However, they are oblivious of the
impact of data replicas. The storage system without replicas,
especially for hot files, may impact the service adaptability
significantly in practice [1]. On the other hand, the popularity-
aware replication managements [10]–[13] or file assignments
[14] improve the service performance undoubtedly. However,
they are currently not incorporated with the space reduction
technologies in the deduplicated storage systems.

Inspired by these observations, in this paper, we propose
Jingwei 1, an efficient and adaptable data migration strategy
for deduplicated storage systems. Jingwei realizes a proper
trade-off between the space efficiency (minimizing data repli-
cation in the migration process) and the service adaptability
(building replicas of hot data to spread the frequent data access
requirements). These two optimization aspects are traditionally
carried out separately, yet it is pathbreaking to realize and
couple these two rationales jointly so as to yield rational data
migration strategies.

An example of the Jingwei strategy is illustrated in Fig. 1.
The ambition is to migrate a portion of data from the over-
loaded Server 1 to the under-utilized Server 2. Scheme (a) [5]
minimizes the amount of replicated data through allocating

1Jingwei is a famous fictional character in Chinese folklore, who carries
pebbles and branches from the land to the sea for her revenge, meaning
migrating files from one server to others in this paper.

files with more common blocks to one server. Nevertheless,
there are no data copies to guarantee the service adaptability.
Furthermore, the aggregation of hot files f3 and f4 may
overwhelm Server 2 with the accumulated data access re-
quirements. Scheme (b) [13], by contrast, satisfies the service
adaptability through replicating f2 at the two servers. However,
the data deduplication is not incorporated, leading to much
more space occupation for redundancies. Scheme (c) (i.e.,
Jingwei), fortunately, is a relatively optimal solution. It detects
the file similarity to realize the space efficiency. Meanwhile,
it replicates the hot file f3 to permit the service adaptability
rationale with little extra space, i.e., one more block than that
of Scheme (a).

The major contributions are summarized as follows.
• We report Jingwei, an effective and adaptable data mi-

gration strategy in the deduplicated storage systems. As
far as we know, this is the first work to jointly consider
the space efficiency and the service adaptability simulta-
neously and realize an elegant trade-off between them.

• We design two heterogeneous migration scenarios for
Jingwei to improve the strategy applicability. When an
empty migration target server is allowed, we model such
a problem as an integer linear programming (ILP) and
solve the NP-hard problem with the ILP solver.

• We also extend this problem to a more general scenario
wherein multiple non-empty target servers are available
for migration. We solve it by effective heuristic algo-
rithms based on the Bloom Filter-based data sketches.
To be specific, we leverage the space-saving migration
algorithm and heat-aware data replication algorithm sepa-
rately to determine the proper files to migrate or replicate.
We also attach mathematical analyses on the algorithm
complexity.

• Trace-driven experiments show that our Jingwei strategy
fortifies the file replicas by 25%, while only 5.7% ex-
tra storage space is occupied compared with the latest
“Goseed” migration scheme.

The rest of this paper is organized as follows. Section II
introduces the related works. Section III states the Jingwei
overview. Section IV presents the problem formulation for
the first migration scenario. Section V exhibits the heuristic
algorithms for the more general migration scenario with com-
plexity analyses. Section VI reports our experimental results,
and finally, Section VII concludes this paper.

II. RELATED WORK

Data migration in deduplicated storage systems has at-
tracted more attention in recent years with different concerns.
Harnik et al. [8] provide sketch-based estimations of the
reclaimable/attributed capacity when a group of volumes is
removed from/added into the deduplicated storage system.
Duggal et al. [9] deploy cloud tier systems to decrease the
cost of copy forward in deduplicated data migration. Nachman
et al. [5] propose “Goseed” to generate an optimal plan by
minimizing the extra space occupation for data migration,
based on the data-sharing dependencies. However, these works

b1 b3

f3 (6)

b2 b4

f2 (8)f1 (1)

Server 1 Server 2

Extra space cost: 3+3-5=1
Shared amount of data access: 0

Extra space cost : 3 (f2)
Shared amount of data access: 8

Extra space cost : 4+3-5=2
Shared amount of data access: 6

Space efficiency ×(b)
Service adaptability √

Space efficiency √(a)
Service adaptability ×

Space efficiency √(c)
Service adaptability √

f2 (4)f3 (6)

b5

f4 (7)

b1 b3b2

f2 (8)f1 (1) f3 (6)

b3 b4

f4 (7)

b4b3 b5

f4 (7)f3 (3)f2 (8)

b2 b3

f3 (3)

b1

f1 (1)

b5

b4

Data-sharing dependencies before migration

f2 (4) f1 (1) f4 (7)

b4 b5b1 b3b1 b2 b3 b3 b4 b1 b2 b3

migrate

Fig. 1. The illustrative examples of the Jingwei strategy and some existing
methods [5], [14]. Four files (f1 ∼ f4), which are attached with heat degrees
(1, 8, 6, 7), separately, are partitioned into five blocks (b1 ∼ b5). The ambition
is migrating a part of the four files from server 1 to server 2.

mainly focus on the space occupation, while not taking the
data popularity into account. In the worst cases, the frequent
data access for hot data would exhaust the limited service
capability of the server, resulting in significant degradation of
user experience.

Besides, the data popularity plays a vital role for optimizing
the file assignment [14], replication management [10]–[12],
and load balancing [15] in the intelligent data management
systems. It measures the frequency of data access and corre-
lates closely with service-related objectives, such as the hit
ratio and the request throughput [16], [17]. A highlighted
solution to avoid service-overload is replication management
[10]–[13]. Hamdeni et al. [10] provide a comprehensive survey
on the data popularity and emphasize the importance of data
replicas. Literature [11] increases the replicas for hot data
and allocates them evenly across the storage system for a
convenient retrieve. Wei et al. [12] deploy a minimal number
of replicas and place them separately to those servers with
the most available service capacities. Shen et al. [13] utilize
file replication technology to reduce hot spots and improve file
query efficiency. However, these solutions are not incorporated
with deduplication technologies, which is crucial to realize the
space efficiency rationale for the data storage, especially for
the real-time big data with a high deduplication ratio [2].

The previous work has investigated the data migration for
the space efficiency rationale through data deduplication, or
how to place the replicas of hot data rationally, but not
both. Note that, optimizing on any one dimension alone is
too restrictive. Literature [1] caches hot data at edge with
data deduplication, which considers the data popularity as
well as the space occupation in deduplicated storage sys-

TABLE I
COMPARISON OF RELATED WORKS.

Literature Space efficiency Service adaptability
[1], [5], [8], [9] X ×
[11]–[13], [18] × X

this paper X X

tems. However, this work only deals with the file distribution
in the granularity of storing files at data centers or edge
coarsely. In addition, the method does not elevate the system’s
service adaptability by adding data replicas in response to
the network’s unstable situations. Literature [18], by contrast,
permits data redundancies in the deduplicated storage system.
It builds a two-tier storage hierarchy, where the Primary
cluster is responsible for storing full file tarball replicas,
and the Deduplication cluster stores the unique deduplicated
blocks from the file tarballs. This strategy implements the
prefetch/pre-construct cache algorithm based on user’s access
patterns, but is still not space-efficient for storing replicas of
all involved files.

Unlike the existing strategies, our proposed Jingwei scheme
is path-breaking to highlight the importance of data replicas in
the space-efficient deduplicated storage systems. In addition,
Jingwei achieves an elegant trade-off between the proposed
space efficiency and service adaptability rationales.

III. OVERVIEW OF THE JINGWEI

The “big data” era has put forward a tough challenge
for the server’s storage and service capacity. When a server
is overloaded, data migration provides an effective way to
alleviate the load burden in the storage systems. Data dedupli-
cation further economizes the scarce space resources through
splitting files as blocks and removing duplicated ones. Two
design rationales are required when the data deduplication is
incorporated into the migration strategy:
• Space efficiency: the data migration strategy should de-

crease the extra space cost caused by breaking the data-
sharing dependencies in the migration process.

• Service adaptability: the data migration strategy should
maintain some replicas of hot files for fault-tolerance and
better user experience.

Migration Mode: Some deduplicated systems split the
incoming data into blocks, and store the blocks dispersedly
without the constraint of file unit [19], [20]. Another emerging
deduplication model supports storing all blocks of the original
file at one server, so that accessing a file will not require
excessive rounds of communications to multiple servers [3],
[5]. We track the latter mode in this paper, where a files’
partitioned blocks are stored at one server, and then the data
deduplication is executed at the server level. In this mode, the
migration scheme should be conducted at the file layer.

Jingwei overview: The overview of our Jingwei strategy
is exhibited in Fig. 2. The data deduplication is conducted at
each involved server, wherein only one copy of each block can
be maintained, and the duplicated blocks are replaced with
pointers. Thus, the data-sharing dependencies are generated
at the source server. To conduct the efficient and adaptive

Design rationales for migrationSource server

Migration targets
First scenario Second scenario

b1 b2 b1 b4 b5 b6

b1 b3

f3 (2)

b2 b4

f2 (8)f1 (7)

b5

f4 (3)
• space efficiency
• service adaptability

ILP solver
Bloom Filter-based data sketches

Space-saving
migration algorithm

Heat-ware replication
algorithm

Fig. 2. The overview of the Jingwei strategy.

data migration strategy more comprehensively, we design
two scenarios when migrating out a part of files from the
overloaded source server. Specifically, when only one empty
migration target server is allowed, we model such a problem
as an integer linear programming (ILP) and solve this NP-hard
problem with the ILP solver. The specific problem formulation
is exhibited in Section IV. To adapt to more migration situ-
ations and requirements, we extend the problem into a more
general scenario, where any server, whether empty or non-
empty, can act as the candidate for the migration targets. We
leverage the space-saving migration algorithm to determine the
migrated files and their migration targets in priority of low
extra space cost. Thereafter, we present the heat-aware data
replication algorithm to replicate hot files with only limited
extra space overhead, which achieves the service adaptability.
The BF-based data sketches assist the above two algorithms
by detecting the content similarity with a low computational
overhead. The specific algorithms are exploited in Section V.

IV. MIGRATING FILES TO A SINGLE EMPTY SERVER

We first model the migration problem when only one empty
target server is allowed. Specifically, we present the problem
definitions in Section IV-A. With the problem being analyzed,
we formulate the data migration with one single empty target
server in section IV-B.

A. Problem Definition

In the overloaded source server Ss, there is a set of files
Fs = { f1, f2, ...} with heat degrees Hs = {h1,h2, ...}. Let Bs =
{b1,b2, ...} be the set of unique blocks that partitioned from
files in Fs. Let size(b) denote the size of block b, then the
storage cost of server Ss is the total size of the blocks stored on
it, i.e., size(Ss) = ∑b j∈Bs size(b j). Note that, this size function
generates a constant value for fixed-size block chunking [1],
and varies for the variable-sized block chunking algorithms
[4]. Let Is = Fs × Bs indicate an inclusion relation, where
(fi,b j) ∈ Is means that block b j is included in file fi. We
do not consider the case that a file is replicated several times
at one server, because it has no effect on the access shunt but
only aggravates data redundancies.

The initial state of the source server Ss before data migration
can be defined as a quintuple < Fs,Hs,Bs,Cs,Ts >, where
Cs and Ts represent the space and service constraints of Ss,
respectively. With this initial state, each candidate migration

file fi in the source server Ss would be in one of the following
three states after data migration:
• migrated, i.e., fi is migrated to the target server St ,

while the space occupied at the source server is released.
We introduce the following Boolean state variable xi ∈
{0,1}, ∀ fi ∈ Fs to represent this state, such that:

xi =

{
1 i f fi is migrated to the target server.
0 otherwise.

(1)

• replicated, i.e., the source server sends a copy of fi to
the target server. This usually appears for hot files, where
the data access requirements may overwhelm the capacity
of the source server. We introduce the following binary
Boolean state variable yi ∈ {0,1}, ∀ fi ∈ Fs to express this
state, such that:

yi =

{
1 i f fi is replicated to the target server.
0 otherwise.

(2)

• unaltered, i.e., fi remains at the source server without
being migrated or replicated, meaning xi = 0 and yi = 0.

Based on the file states indicated by the above Boolean vari-
ables, the deeply-associated state of their partitioned blocks
can also be mathematically expressed. To be specific, a block
can also be migrated, replicated or unaltered, with their states
being expressed by Boolean variable definitions. To denote
the migrated state of a block, we define a Boolean variable
(m j ∈ {0,1}, ∀b j ∈ Bs), where

m j =

{
1 i f block b j is migrated.
0 otherwise.

(3)

When m j = 1, the block b j should be migrated out from the
source server Ss to the target server St . This state can only
be caused by the migration of its subordinated file fi, where
xi = 1 & (fi,b j) ∈ Is. We further define a Boolean variable
r j ∈ {0,1}, ∀b j ∈ Bs, such that:

r j =

{
1 i f block b j is replicated.
0 otherwise.

(4)

When r j = 1, the block b j would appear at both the source
and the target server. If any of its affiliated files (the files that
contain b j) is replicated during the migration process, the state
of b j would be labeled as replicated. Furthermore, breaking the
data-sharing dependencies of two files (one is migrated, and
the other is unaltered) would also attach block replications in
the shared part. Note that, r j also relates to the extra space
cost caused by file movements, which can be represented as
∑b j∈Bs size(b j)×r j. If both m j = 0 and r j = 0, it means that
b j remains unaltered.

To conclude, the state interrelations between files and their
partitioned blocks in Is can be dissected and denoted as one
of the following three cases. Fig. 3 takes intelligible examples
to illustrate these unique instances.
• Case 1: One file remains at the source server, i.e.,

xi=0, yi= 0, like file f1 in Fig. 3. In this case, all
blocks included in the file are either unaltered (like block

b1 b3

f3 (8)

b2

f2 (3)f1 (5)

b4

SA

b1 b3

f3 (4)

b2

f1 (5)

SA

f3 (4)

b2

f2 (3)

b4

SB

b3

(a) Initial storage state (b) Storage state after migration

Fig. 3. An illustrative example of data migration from SA to SB.

b1) or replicated (like block b3), hinging on the block
sharing dependencies between the unaltered file and the
migrated/replicated files.

• Case 2: One file is migrated to the target server, i.e., xi=1,
like file f2 in Fig. 3. In this case, all blocks included in the
file would be either migrated (like block b4) or replicated
(like block b2).

• Case 3: One file is replicated such that both the source
and the target server have one copy of it, such as file f3
in Fig. 3. In this case, all involved blocks of file f3, i.e.,
∀b j ∈ Bs for (f3,b j) ∈ Is, would be replicated. Besides,
the access requirements of the file would be spread by its
replications with a distribution parameter γ ∈ [0,1] (γ =
0.5 in the example of Fig. 3). This parameter is adjusted
by the widely utilized load balancer in the network [21],
which is responsible for load balancing in the storage
systems according to the actual server load.

B. Problem Formulation

With the aforementioned Boolean variables about files and
blocks, we can formulate the migration problem with an empty
target server as follows.
• When block b j is migrated, i.e., m j = 1, then all files that

contains the block would be migrated to the target server:

m j ≤ xi, ∀ fi ∈ Fs, b j ∈ Bs & (fi,b j) ∈ Is. (5)
• When file fi is migrated, i.e., xi = 1, then all of its

contained blocks would be either migrated or replicated:

xi ≤ m j + r j, ∀ fi ∈ Fs, b j ∈ Bs & (fi,b j) ∈ Is. (6)
• When file fi is replicated at both server Ss and St , i.e., yi =

1, then all of its involved blocks should also be replicated:

yi ≤ r j, ∀ fi ∈ Fs, b j ∈ Bs & (fi,b j) ∈ Is. (7)

• The states of files, i.e., xi and yi, and the states of blocks,
i.e., m j and r j, are mutually exclusive:

xi + yi ≤ 1, mi + r j ≤ 1 ∀ fi ∈ Fs, b j ∈ Bs. (8)
• The migrated data volume, i.e., ∑b j∈Bs size(b j) ·m j, ∀ b j ∈

Bs should meet the pre-defined migration percentage M.
This percentage can be determined by the joint consider-
ations of the storage burden of server Ss and the actual
storage situations in the deduplicated storage systems.

∑
b j∈Bs

size(b j)×m j ≥M ·Cs. (9)

• The final space/service overhead of both the source
and target server should not exceed the corresponding
capacities for ∀ fi ∈ Fs, b j ∈ Bs & (fi,b j) ∈ Is.

∑
b j∈Bs

size(b j)× (1−m j)≤Cs. (10)

∑
b j∈Bs

size(b j)× (m j + r j)≤Ct . (11)

∑
fi∈Fs

hi× (1− xi− γi · yi))≤ Ts. (12)

∑
fi∈Fs

hi× (xi + γi · yi)≤ Tt . (13)

• The state variables are all Boolean: xi,yi,m j,r j ∈
{0,1}, ∀ fi ∈ Fs,b j ∈ Bs.

We develop the objectives of our Jingwei scheme, i.e.,
realize an elegant trade-off between the space efficiency and
the service adaptability. The space efficiency is described by
minimizing the extra space cost caused by block replication,
i.e., ∑b j∈Bs size(b j)×r j. The service adaptability can be repre-
sented by maximizing the amount of share data requirements,
i.e., ∑ fi∈Fs yi × hi. These two rationales are normalized as
follows.

min
∑b j∈Bs size(b j)× r j

∑b j∈Bs size(b j)
+λ

∑ fi∈Fs hi× yi

∑ fi∈Fs hi
, (14)

where the parameter λ can be adjusted to adapt to different
optimization tendencies for these two rationales.

With Equ. (14) as the migration objective and Equ. (5)∼(13)
as the constraints, the problem can be formulated as an
Integer Linear Programming (ILP) problem. The ILP problem
is known to be NP-hard [22], and there is currently no known
efficient solving algorithm in polynomial time complexity. In
particular, when the variables are restricted to Boolean assign-
ments (0 or 1), then merely deciding whether the problem has
an optimal solution has been long known to be NP-Complete
[23]. Fortunately, commercial optimizers, like CPLEX [24],
lp solve [25], and Gurobi optimizer [26], can solve this kind of
problems efficiently for instances with hundreds of thousands
of variables. Therefore, we exploit these highly-optimized
solvers to search out the optimal migration plan directly.

However, the scenario with only one empty target migra-
tion server may not be applicable for the large-scale storage
systems, where it is not common for a server to join with an
empty state. In addition, the constraint of migrating all files
to one server may limit the performance improvement.

V. MIGRATING FILES TO MULTIPLE NON-EMPTY SERVERS

In a more general scenario, multiple non-empty servers
rather than one empty server can accept the migrated files from
an overloaded server. As a consequence, the above formulation
will not be applicable. Therefore, in this section, we further
propose efficient heuristic algorithms for the general migration
scenario based on the Bloom filter-based data sketches.

A. Bloom Filter-based Data Sketch

To find the optimal target server for each file to migrate,
an intuitive method is to compare the fingerprints (using MD5
[27] or SHA-1 [28] coding) of blocks contained by the file
and that stored by the candidate servers. The files prefer to be
migrated to the server with more common blocks. However,
the information comparisons would consume non-trivial com-
putation resources and lead to unbearable processing latency.
For example, for a file with n blocks, it takes O(n× |Bt |)

time-complexity to determine whether the server contains
such blocks or not, where |Bt | is the total number of blocks
in a candidate server. In order to decrease the computation
complexity, we adopt Bloom Filter (BF) [29], a hashing map-
ping method that has been widely utilized in networking and
distributed systems, to represent the blocks on each candidate
server. This captures the data characteristics and facilitates
the similarity detection from pair-wise fingerprint checking to
the membership queries on the data sketches. Then the time-
complexity of determining whether a server contains the n
blocks in a file can be decreased as O(n · kBF), where kBF
indicates the number of utilized hash functions.

B =
𝑘𝑘𝐵𝐵𝐵𝐵 = 2

𝑚𝑚 = 19

0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0

b1 b2 b3

Fig. 4. An illustrative example of the BF-based data sketch. Note that the
8th bit of the sketch suffers from the hash collisions.

Fig. 4 provides an illustrative example for the BF-based
data sketches. Given the block set B with three partitioned
blocks b1, b2, and b3, the BF represents B with a bit vector
of length m = 19. All m bits in the vector are initially set as
0. The kBF = 2 independent hash functions are employed to
map each block into kBF positions in the bit vector. Those hit
positions would be all set to 1. The binary string derived from
the hash functions is exactly the BF-based data sketch.

Each server would maintain a bit vector, with the same
kBF functions and vector length, to record the membership
information at the block level. According to the bit vector and
the kBF used hash functions, we can realize the membership
queries against any data block. To be specific, when a file fi in
the source server tries to select its optimal target server from
all available candidates, it would first require the BF vector of
each candidate. For any block b j in file fi, the BF judges that
this block does not belong to the candidate server, if any bit at
the kBF hashed positions in the BF vector is 0. Otherwise, the
BF believes that the queried block b j belongs to the candidate
target server with a rate of false positives.

The false positive is that, for any block b 6∈ B, all of its kBF
hash positions in the bit vector may be set as 1 when represent-
ing other blocks in set B. This is caused by the unavoidable
hash conflicts, as the 8th bit in Fig. 4. The false-positive rate,
denoted as p, can be derived by p=(1−(1−1/m)n·kBF)kBF [29],
where n represents the number of represented blocks in set B.

B. The Effective Heuristic Algorithms based on Bloom filters

The BF-based data sketch elaborates a feasible and effective
method to detect the data similarity through membership
queries. According to the data sketches, we propose effective
heuristic algorithms for migrating files to multiple non-empty
servers. Note that, a rational migration strategy in the general
scenario can potentially decrease the total space cost. This is
achieved by making maximum use of the shared blocks on
the target servers to rebuild the migrated files. The heuristic

Algorithm 1: Space-saving Data Migration

Input: Data sketch (Ψ) and file set (F) for Ss and S̃t ;
the target migrtaion percentage M.

Output: The migration variable xi and the target
server St(i) for each file fi in Fs.

1 F ′s=Fs; xi = 0, St(i) = Ss, ∀ fi ∈ F ′s .
2 Generate the global space-saving indexes through

INDEX CALCU(F ′s ,Sk), ∀Sk ∈ S̃t .
3 while M is not reached do
4 Get I(i,k), ∀ fi ∈ F ′s , ∀Sk ∈ S̃t .
5 determine the file to migrate and its target [fî,Sk̂]

in max|Fs|
i=1 max|S̃t |

k=1 I(i,k).
6 migrate file fî to Sk̂, where xî = 1 and St(î) = Sk̂;
7 updated the file set F ′s : F ′s =F ′s -{ fî};
8 updated Ψk̂ with file set Fk̂ = Fk̂ ∪{ fî};
9 Update I(i, k̂) with INDEX CALCU(F ′s ,Sk̂);

10 function INDEX CALCU(Fs,Sk)
11 for i=1→ |Fs| do
12 calculate ϕ(i,k) based on data sketch Ψk;
13 Define the ranking index of file fi and server Sk by

I(i,k) = ϕ(i,k)−ϕ(i,s);
14 return I(i,k), ∀ fi ∈ Ss

algorithms are composed of the space-saving data migration
in Section V-B1 and the heat-aware data replication in Section
V-B2, with complexity analyses attached in Section V-C.

1) Space-saving Data Migration: The space-saving data
migration determines which files to migrate and where they
should be directed to, with the ambition of less extra space
cost. To achieve this, we rank the migration sequence of files
according to a space-saving index. We define the index as the
amount of saved storage resource when a file migrates to a
candidate target server. The index can be represented by the
deviation between the data amount that freed from the source
server and the increased space on the migration target. We
prefer the data migration in priority of the high space-saving
index. This plays a vital role in improving the space efficiency.

The specific steps are detailed in Algorithm 1. The input
includes the BF-based data sketches and file sets for the
source server Ss and all target candidates S̃t , where S̃t =
{S1,S2, . . . ,Sn}. The file set of the candidate server Sk is
denoted by Fk. To derive the migration variable xi and the
corresponding migration target St(i), we elaborate a space-
efficient index to inspire the migration sequence. The function
is shown in Lines 10-14. Let ϕ(i,k) represent the data volume
of shared blocks between fi and Sk ∈ S̃t , which can be derived
from the BF-based membership queries of blocks in fi on the
Sk’ data sketch (Ψk). Then, the function returns the index I(i,k)
according to the deviation between ϕ(i,k) and ϕ(i,s), which
reflects the saved space resources through migrating file fi
from Ss to the Sk. Note that, the value of ϕ(i,s) is calculated
based on the sketch without fi, which can actually reflect the
space overlapping between fi and others in Ss.

With the space-saving index for each file-server matching,

Algorithm 2: Heat-aware Data Replication
Input: Heat degree Hs of file set Fs; available service

capacities (ASC) of S̃t ; the unit-heat value κ .
Output: The replica locations repeat set(i) and the

heat allocation γi for each file fi in Fs.
1 for i = 1→ |Fs| do
2 repeat set(i) = {St(i)};
3 Get ϕ(i,k), ∀Sk ∈ S̃t & Sk 6= St(i);
4 build Qi by sorting ϕ(i,k) in the descending order;
5 for k = 1→ |Qi| do
6 calculate SDA(i) = hi/(|repeat set(i)|+1);
7 if SDA(i)/(size(fi)−ϕ(i,k))>= κ then
8 repeat set(i)=repeat set(i) ∪ {Sk};
9 updated the sketch Ψk with Fk = Fk +{ fi};

10 else
11 break;

12 Adjust γi by HEAT ALLOCATION(fi,repeat set(i));

13 function HEAT ALLOCATION(fi, repeat set(i))
14 Derive ASC for all servers in repeat set(i);
15 Compute γi(j) = ASC(j)/∑

|repeat set(i)|
j=1 ASC(j);

16 Update ASC(j)=ASC(j)−γi(j)hi, ∀S j ∈ repeat set(i);
17 return γi, ASC

we can determine the files to migrate and their target servers
through detecting the maximum I(i,k) iteratively, until M
percentage of the data amount in Ss has been migrated (Lines
3-9). Note that, each migration would change the storage state
of both the source server and the target server. Thus, the data
sketches should be locally updated on the server that files are
added or released. Furthermore, the ranking index should also
be updated on the related servers accordingly (Lines 7-9).

2) Heat-aware Data Replication: After determining the
migrated files and their destinations, the next step is to
adjust this migration plan considering the files’ heat degree.
Overheated files should have multiple replicas in the system
for fault tolerance and better user experience. We present a
unit-heat value (κ) to exploit the necessity of file replication.
We also calculate the quotient between the split data access
requirements (SDA) and the extra space the replica requires.
The SDA(i) is defined as the evenly split data access frequency
that each replica of file fi undertakes. Any replication is
executed if the quotient value is greater than the unit-heat
value. This ensures the replica generation of hot files with
little extra space cost.

The specific algorithm is expressed in Algorithm 2. For
any file fi with its current storage server St(i), we get
ϕ(i,k), ∀Sk ∈ S̃t & Sk 6= St(i). The value of ϕ(i,k) is there-
after sorted in a descending order to construct the server
queue Qi (Lines 1-4). The server ranking at the front of
Qi contains more similar content with fi. For each server
in Qi, we calculate the split data access SDA(i) and the
extra space cost size(fi)−ϕ(i,k). If the division between these
two parameters is larger than κ , then the file fi would be
replicated to Sk, i.e., the kth server in Qi, with the data

TABLE II
TIME AND SPACE COMPLEXITY ANALYSIS.

Algorithm Time complexity Space complexity
BF-based Data Sketch O(|Bt |max · kBF) O(m)
Space-saving Data Migration O(|Fs|2 · |S̃t |2 ·nmaxkBF O(m|S̃t |+ |Fs||S̃t |
Heat-aware Data Replication O(|Fs| · |S̃t |2 · log2 |S̃t |) O(|Fs||S̃t |)

sketch Ψk being updated (Lines 5-9). After determining the
replica locations repeat set(i) for file fi, we further leverage
function HEAT ALLOCATION(fi,repeat set(i)) (Lines 13-17)
to adjusts the allocated amount of data access for each server
in repeat set(i). This function takes over the role of the load
scheduler, which balances the service load according to the
available service capabilities of the involved servers.

C. Time and Space Complexity

We analyze the time and space complexity of the above
three algorithms in this subsection as shown in Table II. The
time complexity of the BF-based data sketch is O(|Bt |max ·
kBF), where kBF indicates the number of utilized hash func-
tions and |Bt |max represents the maximum number of blocks
at any candidate server. Note that, the sampling technologies
would reduce the time complexity by a factor of the sample
ratio. The space complexity of the BF-based data sketch is
O(m), where m expresses the BF length.

The time complexity of the space-saving data migration is
O(|Fs|2 · |S̃t |2 · nmaxkBF), where nmax indicates the maximum
number of blocks in any file. Note that, after each file
migration, the storage states of both the source server and
the targets are updated partially. This would not augment
the overall time complexity of the algorithm. In addition, the
space complexity is O(m|S̃t |+ |Fs||S̃t |), where m|S̃t | records the
server sketches and |Fs||S̃t | records the space-saving indexes.

As for the heat-aware data replication algorithm, the time
complexity is O(|Fs| · |S̃t |2 · log2 |S̃t |). Here, O(|S̃t | · log2 |S̃t |)
is result from ordering the target servers based on the shared
data volume. The complexity |Fs| and |S̃t | is caused by the
maximum migration times and the maximum replication times
for each file in Fs. The space complexity is O(|Fs||S̃t |).

VI. PERFORMANCE EVALUATION

In this section, we empirically evaluate the performance of
our Jingwei strategy using a real-world dataset. We describe
our experimental settings and then present the experimental
results, which show the efficiency of our proposed data mi-
gration strategy over other comparison methods.

A. Experimental Settings

Our experiments use an HP OMEN Desktop PC, equipped
with an Intel(R) Core(TM) i7 CPU with 3.80GHz 8-core CPU
and 64GB of RAM. The machine runs Ubuntu Linux 16.04
x64 with 4.15.0 kernel.

Datasets. We use a real-world GitHub dataset for the eval-
uation to demonstrate the universality of our Jingwei strategy.
The dataset is downloaded on GitHub websites, which consist
of the zip compressed source codes of 117 randomly selected
projects on some hot topics, such as Altair [30] and Azure [31].

There are in total 20,000 files in this dataset, with a maximum
size of 8.59M and a minimum size of 1B. We partition the files
using the variable-sized chunking approaches [4]. They declare
block boundaries based on the byte contents, which has been
demonstrated to be more effective for similarity detection. The
average block size is 3.14KB, and the global deduplication
ratio is 45.94% for this dataset.

Comparison methods. To illustrate the performance of
Jingwei more comprehensively, we consider three other com-
parison methods in this paper.
• Goseed [5], which provides an optimal solution with

the commercial optimizer to minimize the extra space
occupation in the migration process. However, it can only
be applied to migrate files to a single empty server.

• SARA (Service-Aware Replication Allocation scheme),
where replicas are generated for hotter files [11] and are
allocated to the servers with more available service ca-
pabilities [12]. We assign the migration status of Jingwei
to SARA directly to compare the performance in the file
replication stage.

• Random, which is the baseline of all these comparisons.
In the Random method, files are ranked randomly and
then migrated/replicated to a randomly chosen server.

We also compare Jingwei ILP for the first scenario, which
exhibits the optimal migration strategy derived from the ILP
solver. In addition, the optimal result of our heuristic al-
gorithms, Jingwei opt, is also compared. It detects content
similarity through pair-wise fingerprint checks, but not mem-
bership queries on the bit arrays. Thus, Jingwei opt avoids the
false positives caused by the BF-based hash mappings.

Metrics. Firstly, we verify the performance of space ef-
ficiency rationale with the Data Replication Ratio (DRR),
which is defined as the ratio between the extra space cost
attached by file migrations and the initial space occupation
at the source server. The second comparison metric is the
Replica heat (RH), which indicates the total heat degree of the
file replicas. A high value of RH indicates that more replicas
are generated for hot files, which is vital for the service
adaptability. Furthermore, RS-ratio is a comprehensive index
of the DRR and RH, which reflects the amount of RH per
extra storage unit in the file replication stage. This quantifies
the performance balance between the space efficiency and the
service adaptability. The Migration Count (MC)/Replication
Count (RC) is also considered, which is defined as the counts
of file migration/replication when a certain amount of data has
been migrated from the overload source server.

Parameter setting. We first unzip and partition the files
in the dataset into variable-sized blocks. Each block is rep-
resented by its fingerprint using MD5 [27]. We sketch the
data blocks at each involved server using Bloom filters with
kBF = 2 and m = 15000 by default. We employ the widely
utilized Zipf distribution to govern the file popularity in heat
degree generation [32], where the concentration degree of data
access is set as 1. We set λ = 0.4 and κ = 0.02 to unify the
value of RC as 4 in the first scenario with one single empty
target server. For the second scenario with multiple available

0 . 0 5 0 . 1 5 0 . 2 5 0 . 3 50 . 0
0 . 5
1 . 0
1 . 5
2 . 0
2 . 5
3 . 0
3 . 5

Da
ta R

epl
ica

tio
n R

atio

M i g r a t i o n p e r c e n t a g e

 G o s e e d J i n g w e i _ I L P J i n g w e i _ o p t
 J i n g w e i S A R A R a n d o m

(a) The Data Replication Ratio.

0 . 0 5 0 . 1 5 0 . 2 5 0 . 3 50
2 0
4 0
6 0
8 0

1 0 0
1 2 0
1 4 0
1 6 0

Re
pli

ca
He

at

M i g r a t i o n p e r c e n t a g e

 J i n g w e i _ I L P J i n g w e i _ o p t
 J i n g w e i S A R A R a n d o m

(b) The Replica Heat.

0 . 0 5 0 . 1 5 0 . 2 5 0 . 3 5- 3 . 5
- 3 . 0
- 2 . 5
- 2 . 0
- 1 . 5
- 1 . 0
- 0 . 5
0 . 0
0 . 5
1 . 0

log
10(R

S-r
atio

)

M i g r a t i o n p e r c e n t a g e

 J i n g w e i _ I L P J i n g w e i _ o p t
 J i n g w e i S A R A R a n d o m

(c) The RS-ratio.

0 . 0 5 0 . 1 5 0 . 2 50
5

1 0
1 5
2 0
2 5
3 0

Mi
gra

te/R
epe

atC
oun

ts

M i g r a t i o n p e r c e n t a g e

G o s e e d
J i n g w e i _ I L P
J i n g w e i _ o p t
J i n g w e i
S A R A
R a n d o m

0.35

(d) The MC and RC.

Fig. 5. The performance with different migration percentages in the first scenario.

target servers, we set κ = 5, and the RC follows that of Jingwei
for other comparison methods. The unity of RC facilitates the
performance comparisons in the file replication stage.

B. Numerical Results

We conduct large-scale experiments to test the respective
performance of Jingwei and its competitors in two migration
scenarios, separately.

1) Performance in the first scenario: For the first scenario,
we only utilize one project in the data set. The reason is
that the performance of Jingwei and its competitors is more
significant for data set wherein the files are pretty similar
with numerous shared blocks. Otherwise, the migration can be
viewed as separating the two irrelevant sub-datasets without
data sharing dependencies. In the “altair” project [30], there
are 20 files with 16,328 unique blocks, where each file contains
a maximum of 3,635 blocks and a minimum of 18 blocks.

Fig. 5 depicts the performance of Jingwei and its com-
petitors in the first scenario. The performance of the data
replication ratio (DRR) is exhibited in Fig. 5(a). The data
volume when DRR=1 represents the original file volume in the
source server without data deduplication. Jingwei consistently
achieves a similar DRR compared with Jingwei ILP and
Jingwei opt, while only about 6% extra DDR is triggered
compared with the Goseed method. This verifies the space
efficiency of Jingwei, which does not cause much extra space
overhead during data replications. By contrast, SARA and
Random, which construct file replicas without considerations
of data deduplication, lead to 2× and even 3× space occupa-
tion in the worst cases.

Fig. 5(b) reflects the replica heat (RH) and Fig. 5(c) exhibits
the RS-ratio. The Jingweis perform well in both of these two
metrics. The reason is that, Jingweis prefer to replicate files
with a relatively high heat degree, and allocate the replicas to
the server with high similarity. The SARA method, although
achieving higher RH through replicating the hottest files,
performs unsatisfactorily in terms of the RS-ratio (around
101.7 times lower than that of Jingwei). It is because that
the replica allocation of SARA considers just the available
service capacities, but ignores the potential space reduction
with deduplication technologies.

The migration and replication times are finally counted in
Fig. 5(d), where the migration counts (MC) are represented by
histograms that are filled with patterns. The Goseed method

only considers the migration stage, thus with the RH always
being zero. We adjust parameters λ and κ to align the RC of
the comparison methods as 4, which avoids the performance
impact caused by the RC variance. When the migration
percentage is 25%, about 25% (5/20) file replicas are extra
generated in Jingwei ILP, with only 5.7% of the extra space
cost compared with Goseed (as shown in Fig. 5(a)). This
exhibits that Jingweis conduct space-saving file replications.
The MC of our heuristic methods (Jingwei and Jingwei opt) is
sometimes higher than the optimal Jingwei ILP. The reason is
that the space-efficient data migration of the heuristic methods
may not be globally optimal. Some extra migration of similar
files may add the migration counts, but fortunately, it has little
impact on other metrics. It is because that the extra migrated
files may have numerous shared blocks with their targets.

2) Performance in the second scenario: For the general
migration scenario, all files in the dataset are initially allo-
cated to ten servers randomly so as to construct the original
storage states. Goseed and Jingwei ILP are not compared in
this subsection, because they are only applicable to the first
migration scenario.

Fig. 6 illustrates the evaluation performance for the general
scenario. Specifically, in Fig. 6(a), Jingwei opt and Jingwei
achieve the DRR with a negative log10 value. This means
that the total space occupation is dramatically decreased after
the data migration and replication. This benefits from the
similarity-aware file allocation and verifies the space efficiency
of our Jingweis. Furthermore, the saved space progressively
increases as the migration percentage grows up. When 45% of
data migrates, about 41% of occupied space can be freed from
the source server. However, the methods without deduplication
incorporated, i.e., SARA and Random, lead to double or even
multiple storage occupation. Fig. 6(b) illustrates that SARA
outperforms others in terms of replica heat (RH). The reason
is that it chooses the hottest files to replicate, which facilitates
the average RH for each replica. Jingwei’s RH is about half of
SARA because it considers not only the heat degree but also
the extra space cost that the replica requires.

Jingweis achieve absolute advantages in RS-ratio, as shown
in Fig. 6(c). Specifically, the RS-ratio of Jingweis is about
5×103 times higher than that of SARA and around 104 times
higher than that of Random. The reason is that the replica
allocation of the latter two methods fails to realize the space
reduction through similarity detection between the migrated

0 . 0 5 0 . 1 5 0 . 2 5 0 . 3 5 0 . 4 5- 0 . 5
0 . 0
0 . 5
1 . 0
1 . 5
2 . 0
2 . 5
3 . 0
3 . 5
4 . 0

Da
ta R

epl
ica

tio
n R

atio

M i g r a t i o n p e r c e n t a g e

 J i n g w e i _ o p t J i n g w e i
 S A R A R a n d o m

(a) The Data Replication Ratio.

0 . 0 5 0 . 1 5 0 . 2 5 0 . 3 5 0 . 4 50
1 0 0 0
2 0 0 0
3 0 0 0
4 0 0 0
5 0 0 0
6 0 0 0

Re
pli

ca
He

at

M i g r a t i o n p e r c e n t a g e

 J i n g w e i _ o p t J i n g w e i
 S A R A R a n d o m

(b) The Replica Heat.

0 . 0 5 0 . 1 5 0 . 2 5 0 . 3 5 0 . 4 5- 2 . 0
- 1 . 5
- 1 . 0
- 0 . 5
0 . 0
0 . 5
1 . 0
1 . 5
2 . 0
2 . 5
3 . 0

log
10(R

S-r
atio

)

M i g r a t i o n p e r c e n t a g e

 J i n g w e i _ o p t J i n g w e i
 S A R A R a n d o m

(c) The RS-ratio.

0 . 0 5 0 . 1 5 0 . 2 5 0 . 3 5 0 . 4 50 . 0
0 . 5
1 . 0
1 . 5
2 . 0
2 . 5
3 . 0
3 . 5
4 . 0

log
10(M

C)

M i g r a t i o n p e r c e n t a g e

 J i n g w e i _ o p t J i n g w e i
 S A R A R a n d o m

(d) The Migration Counts.

Fig. 6. The performance with different migration percentages in the general scenario.

TABLE III
THE PERFORMANCE OF JINGWEI WITH DIFFERENT SAMPLE RATIOS.

methods sample ratio
1 1/2 1/4 1/8 1/16

DDR Jingwei opt -0.335 -0.328 -0.339 -0.335 -0.333
Jingwei -0.338 -0.326 -0.338 -0.335 -0.329

RH Jingwei opt 2266.4 2259.0 2249.5 2186.6 2146.8
Jingwei 2266.2 2248.1 2246.3 2184.6 2104.7

RS-ratio Jingwei opt 179.1 178.5 177.7 172.8 160.7
Jingwei 179.1 177.6 177.5 172.6 160.4

MC Jingwei opt 45 106 183 503 621
Jingwei 50 186 219 531 819

RC Jingwei opt 7761 7698 7624 7318 7209
Jingwei 7755 7624 7591 7290 7026

files and data in the candidate targets. Otherwise, Jingweis
jointly consider the replica heat and the extra space utilized.

Fig. 6(d) further illustrates the MC performance in the
second scenario. When the migration percentage is less than
15%, one single migration can accomplish the migration task
(log10 1 = 0) for Jingweis, while the Random method requires
more than 400 times. This illustrates the high efficiency of
Jingweis in data migration. They tend to migrate files that
release more space from the source server, which accelerates
the migration process. The MC of Jingwei is slightly higher
than that of Jingwei opt. This phenomenon is caused by the
potential false positives of Bloom filters. Such false positives
may disorder the file ranking in Algorithm 1. Note that, the
MC of SARA follows that of Jingweis. The reason is that
the SARA method does not involve the migration stage. We
assign the migration states of Jingwei to SARA directly to
compare the method performance in the file replication stage.
In addition, we do not compare the RC performance in the
general scenario. The reason is that the RCs are all kept as a
constant value for these comparison methods.

Table III shows the performance of Jingwei with different
sample ratios when the migration percentage is fixed as 0.35.
Note that, the sampling technologies can be further assembled
to alleviate the computational overhead, especially for real-
world storage systems with a large number of variables and
constraints. One notable change is that the MC increases
gradually with more blocks are sampled. The leading cause is
that the sampling technologies would weaken the accuracy and
efficiency during file rankings. Note that, the sampled blocks
in files and servers are chosen randomly, and the chosen blocks
in files may not be sampled at their optimal targets. Otherwise,
fortunately, the metrics except for MC closely track the non-

TABLE IV
THE PERFORMANCE OF JINGWEI WITH DIFFERENT BF LENGTHS.

BF lengths
5000 10000 15000 20000 25000

DDR -0.338 -0.338 -0.335 -0.335 -0.335
RH 2266.1 2266.0 2266.2 2266.4 2266.4
RS-ratio 179.1 179.0 179.1 179.1 179.1
MC 56 51 50 45 45
RC 7748 7753 7755 7761 7761

sample situation. Note that, the false positives only retard the
migration process because less space is freed from the source
for each migration. The DRR would not be impacted too much
when each migrated file finds its optimal target.

Thereafter, the performance of Jingwei with different BF
lengths is exhibited in Table IV, with the migration percentage
being fixed as 0.35. As the BF length grows from 5,000 to
25,000, the MC is abbreviated from 56 to 45. Note that, the
MC of the Jingwei opt is 45 under the same conditions. This
declares that the impact of false positives can be alleviated
with a longer bit array. The other metrics change slightly as the
BF length increases. Table III and Table IV together prove the
robustness of our Jingwei strategy. It still provides relatively
satisfactory performance with lower computational consump-
tion (sampling technologies) and less space occupation (BF-
length reduction).

In summary, Jingwei realizes an efficient and adaptable
migration strategy, which constructs a large number of file
replicas with only limited extra storage space. To be specific,
Jingwei generates 25% replicas, with only 5.7% of the extra
space utilization compared with Goseed.

VII. CONCLUSION
In this paper, we report Jingwei, an efficient and adaptable

data migration strategy to migrate and replicate files to the
proper servers. This contributes to the space efficiency and
service adaptability rationales simultaneously in the dedupli-
cated storage systems. We first design the migration strategy
based on the ILP technologies when only one empty migration
target is allowed. We further extend the problem into the
general scenario, wherein multiple non-empty servers are
available for migration. We solve the general migration using
effective heuristics based on Bloom filters. The trace-driven
experiments under different scenarios show that our solution
can significantly lessen the extra space cost in migration while
increasing the replicas for hot files.

REFERENCES

[1] S. Li and T. Lan, “Hotdedup: Managing hot data storage at network
edge through optimal distributed deduplication,” in Proc.of 39th IEEE
Conference on Computer Communications, INFOCOM, ON, Canada.
IEEE, 2020, pp. 247–256.

[2] Y. Zhang, Y. Wu, and G. Yang, “Droplet: A distributed solution of data
deduplication,” in Proc.of 13th ACM/IEEE International Conference on
Grid Computing, GRID, Beijing, China. IEEE Computer Society, 2012,
pp. 114–121.

[3] B. Balasubramanian, T. Lan, and M. Chiang, “SAP: similarity-aware
partitioning for efficient cloud storage,” in Proc.of IEEE Conference on
Computer Communications, INFOCOM, Toronto, Canada. IEEE, 2014,
pp. 592–600.

[4] W. Xia, Y. Zhou, H. Jiang, D. Feng, Y. Hua, Y. Hu, Q. Liu, and Y. Zhang,
“Fastcdc: a fast and efficient content-defined chunking approach for
data deduplication,” in Proc.of USENIX Annual Technical Conference,
USENIX ATC, CO, USA. USENIX Association, 2016, pp. 101–114.

[5] A. Nachman, G. Yadgar, and S. Sheinvald, “Goseed: Generating
an optimal seeding plan for deduplicated storage,” in Proc.of 18th
USENIX Conference on File and Storage Technologies, FAST, CA, USA.
USENIX Association, 2020, pp. 193–207.

[6] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and C. Maltzahn,
“Ceph: A scalable, high-performance distributed file system,” in Proc.of
7th Symposium on Operating Systems Design and Implementation,
OSDI, WA, USA. USENIX Association, 2006, pp. 307–320.

[7] S. Ghemawat, H. Gobioff, and S. Leung, “The google file system,”
in Proc.of the 19th ACM Symposium on Operating Systems Principles,
SOSP, NY, USA. ACM, 2003, pp. 29–43.

[8] D. Harnik, M. Hershcovitch, Y. Shatsky, A. Epstein, and R. I. Kat,
“Sketching volume capacities in deduplicated storage,” in Proc.of 17th
USENIX Conference on File and Storage Technologies, FAST, Boston,
MA. USENIX Association, 2019, pp. 107–119.

[9] A. Duggal, F. Jenkins, P. Shilane, R. Chinthekindi, R. Shah, and M. Ka-
mat, “Data domain cloud tier: Backup here, backup there, deduplicated
everywhere!” in Proc.of 2019 USENIX Annual Technical Conference,
USENIX ATC,WA, USA. USENIX Association, 2019, pp. 647–660.

[10] C. Hamdeni, T. Hamrouni, and F. B. Charrada, “Data popularity mea-
surements in distributed systems: Survey and design directions,” Journal
of Network and Computer Applications, vol. 72, pp. 150–161, 2016.

[11] X. Wei and Y. Wang, “Popularity-based data placement with load
balancing in edge computing,” IEEE Transactions on Cloud Computing,
pp. 1–1, 2021.

[12] Q. Wei, B. Veeravalli, B. Gong, L. Zeng, and D. Feng, “CDRM: A
cost-effective dynamic replication management scheme for cloud storage
cluster,” in Proc.of the 2010 IEEE International Conference on Cluster
Computing, Crete, Greece. IEEE Computer Society, 2010, pp. 188–196.

[13] H. Shen, “An efficient and adaptive decentralized file replication al-
gorithm in P2P file sharing systems,” IEEE Transactions on Parallel
Distributed Systems, vol. 21, no. 6, pp. 827–840, 2010.

[14] L. Lee, P. Scheuermann, and R. Vingralek, “File assignment in parallel
I/O systems with minimal variance of service time,” IEEE Transactions
on Computers, vol. 49, no. 2, pp. 127–140, 2000.

[15] T. Janaszka, D. Bursztynowski, and M. Dzida, “On popularity-based load
balancing in content networks,” in Proc.of 24th International Teletraffic
Congress, ITC, Kraków, Poland. IEEE, 2012, pp. 1–8.

[16] K. Zhou, Y. Zhang, P. Huang, H. Wang, Y. Ji, B. Cheng, and Y. Liu,
“LEA: A lazy eviction algorithm for SSD cache in cloud block storage,”
in Proc.of 36th IEEE International Conference on Computer Design,
ICCD, FL, USA. IEEE Computer Society, 2018, pp. 569–572.

[17] M. Ma and V. W. S. Wong, “An optimal peak hour content server cache
update scheduling algorithm for 5g hetnets,” in Proc.of 2019 IEEE
International Conference on Communications, ICC, Shanghai, China.
IEEE, 2019, pp. 1–6.

[18] N. Zhao, H. Albahar, S. Abraham, K. Chen, V. Tarasov, D. Skourtis,
L. Rupprecht, A. Anwar, and A. R. Butt, “Duphunter: Flexible high-
performance deduplication for docker registries,” in Proc.of USENIX
Annual Technical Conference, USENIX ATC. USENIX Association,
2020, pp. 769–783.

[19] Z. Cao, S. Liu, F. Wu, G. Wang, B. Li, and D. H. C. Du, “Sliding look-
back window assisted data chunk rewriting for improving deduplication
restore performance,” in Proc.of 17th USENIX Conference on File and
Storage Technologies, FAST, Boston, MA. USENIX Association, 2019,
pp. 129–142.

[20] M. Lillibridge, K. Eshghi, D. Bhagwat, V. Deolalikar, G. Trezis, and
P. Camble, “Sparse indexing: Large scale, inline deduplication using
sampling and locality,” in Proc.of 7th USENIX Conference on File and
Storage Technologies, FAST, CA, USA. USENIX, 2009, pp. 111–123.

[21] D. Huang, D. Han, J. Wang, J. Yin, X. Chen, X. Zhang, J. Zhou, and
M. Ye, “Achieving load balance for parallel data access on distributed
file systems,” IEEE Transactions on Computers, vol. 67, no. 3, pp. 388–
402, 2018.

[22] W. Zhong, S. Xie, K. Xie, Q. Yang, and L. Xie, “Cooperative P2P energy
trading in active distribution networks: An milp-based nash bargaining
solution,” IEEE Transactions on Smart Grid, vol. 12, no. 2, pp. 1264–
1276, 2021.

[23] R. M. Karp, “Reducibility among combinatorial problems,” in Proc.of
50 Years of Integer Programming 1958-2008 - From the Early Years to
the State-of-the-Art. Springer, 2010, pp. 219–241.

[24] Cplex optimizer. [Online]. Available:
https://www.ibm.com/analytics/cplex-optimizer

[25] Introduction to lp solve 5.5.2.11. [Online]. Available:
http://lpsolve.sourceforge.net/5.5/

[26] The fastest mathematical programming solver. [Online]. Available:
http://www.gurobi.com/

[27] R. L. Rivest, “The MD5 message-digest algorithm,” RFC, vol. 1321, pp.
1–21, 1992.

[28] D. E. E. III and P. E. Jones, “US secure hash algorithm 1 (SHA1),”
RFC, vol. 3174, pp. 1–22, 2001.

[29] L. Luo, D. Guo, R. T. B. Ma, O. Rottenstreich, and X. Luo, “Optimizing
bloom filter: Challenges, solutions, and comparisons,” IEEE Communi-
cations Surveys & Tutorials, vol. 21, no. 2, pp. 1912–1949, 2019.

[30] “Topics on github.” https://github.com/topics/chrome-extension.
[31] “Topics on github.” https://github.com/topics/azure.
[32] J. Li, H. Wu, B. Liu, J. Lu, Y. Wang, X. Wang, Y. Zhang, and L. Dong,

“Popularity-driven coordinated caching in named data networking,” in
Proc.of Symposium on Architecture for Networking and Communications
Systems, ANCS, TX, USA. ACM, 2012, pp. 15–26.

