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Abstract—A mobile crowdsensing (MCS) platform motivates to

employ participants from the crowd to complete sensing tasks. A

crucial problem is to maximize the profit of the platform, i.e., the

charge of a sensing task minus the payments to participants that

execute the task. Recently, the appearance of data reconstruction

method makes it possible to improve the platform’s profit with a

limited amount of sensing results in Compressive MCS (CMCS).

However, It is of great challenge to the maximal profit for the

CMCS platform, since it is hard to predict the reconstruction

quality due to the dynamic features and mobility of participants.

In response to such challenges, we propose two profit-driven

online participant selection mechanisms for the given task model

and participant model. In ProSC, the sub-profit in each slot

is maximized during the sensing period of a task, by combing

a statistical-based quality prediction method and a repetitive

cross-validation algorithm. In ProSC+, we jointly optimize the

number of required participants and their spatial distribution

to further improve the converging property. Finally, we conduct

comprehensive evaluations, the results indicate the effectiveness

and efficiency of our mechanisms.

I. INTRODUCTION

Mobile Crowdsensing (MCS) has attracted substantial atten-
tions recently, due to the rapid development of smartphones
and the embedded sensors [1]. There exist various MCS
applications, such as city monitoring [2], smart transportation
[3], emergency alarming [4], etc. In this paper, we focus
on the environmental monitoring application. A typical MCS
framework consists of two parts, i.e., the platform in the
cloud and participants with smart devices. The platform is
responsible for task publishing, data collection, information
processing, and service providing. Participants can be either
data providers or service consumers.

A crucial problem of MCS is to maximize the platform’s
profit for a given sensing task, i.e., the charge of the sensing
task minus the payments to participants that execute the task.
The charge is determined by the data quality of the sensing
results, while the payments are related to selected participants.
In this paper, we utilize the spatial-temporal coverage as
an essential metric for measuring the data quality, which is
popularly adopted in recent literature [5] [6] [7]. For example,
given an environmental monitoring task, the platform always
wants to obtain accurate and comprehensive sensing data
across the entire target area. If the sensing data of a target area
is low rank, we call it compressive [8]. The data reconstruction
is an effective strategy to improve the data quality with a

limited amount of sensing data in compressive MCS (CMCS).
If we divide the target area into multiple cells, the data recon-
struction process means to deduce those unsensed cells from
the collected data of sensed cells. Since we take the coverage
as a metric to measure the data quality, the reconstruction
quality indicates the spatial-temporal coverage after the data
reconstruction process. Given a data reconstruction method,
the selection of sensed cells determines the reconstruction
quality as well as the total payments to participants. Therefore,
a proper participant selection mechanism is essential and
should be carefully designed to maximize the profit of the
platform. Although the participant selection problem have
been discussed richly in traditional MCS system [9] [10] [11],
the related research in compressive MCS is not enough.

It is of great challenge to design the profit-driven participant
selection mechanism in CMCS, since it is hard to predict
the data quality due to the dynamic features and mobility of
participants. 1) The dynamic features of participants indicate
that the platform should determine whether or not to select a
participant in a real time. The platform should predict the profit
brought by the arrival participants, and select those who can
bring the maximum profit. In the traditional MCS system, the
profit prediction is based on the coverage increase, which can
be calculated intuitively. However, in the CMCS system, the
profit prediction is influenced by both the coverage increase
and the reconstruction results. 2) The mobility, which is an
important feature of participants in CMCS, brings uncertain
spatial-temporal distribution of collected data. Planned mobile
trajectories for participants would make it possible to sense
more representative spatial and temporal data, and to achieve
high reconstruction quality with less cost. Nevertheless, the
planned trajectories are restricted within mobility constraints.
The relative distributions produced by multiple restricted par-
ticipant trajectories are variable in different slots, which makes
the reconstruction quality prediction difficult.

In this paper, we aim to exploit dynamic and mobile
participants to execute sensing tasks and maximize the profit of
the platform. This is characterized as the POPS problem. In re-
sponse to this essential problem, we predict the reconstruction
quality based on an exponential-based method and propose to
maximize the sub-profit in each slot to approximately approach
the maximum profit of all slots for a given task. The linear pro-
gramming method and repetitive cross-validation algorithm are
used in ProSC to alternately optimize the essential parameter978-1-5386-2542-2/18/$31.00 c�2018 IEEE



� and participant quantity. To further improve the converging
property of our mechanism, we then develop an entropy-based
algorithm to jointly optimize the number of employed partici-
pants and the participant distribution in each slot. Specifically,
the proposed mechanisms in this paper are orthogonal with all
existing data reconstruction methods [8] [12]. The combination
of our mechanisms and proper reconstruction methods can
further improve the reconstruction quality and maximize the
platform’s profit. The main contributions of the paper can be
summarized as follows:

• We formulate the online participant selection problem
under given task model and participant model, aiming
to maximize the profit of the CMCS platform.

• We predict the reconstruction quality in compressive en-
vironmental monitoring applications with an exponential-
based method.

• To tackle the proposed POPS problem, we first develop an
intrinsic mechanism (ProSC) to maximize the sub-profit
in each slot under random participant selection. Then
we propose a distribution-aware mechanism (ProSC+) to
further improve the converging property.

• We conduct extensive evaluations with a real dataset and
three reconstruction methods. The evaluation results indi-
cate the effectiveness and efficiency of our mechanisms.

II. PROBLEM FORMULATION

A. The model of sensing tasks

Consider that the CMCS platform publishes a sensing task
(such as the temperature monitoring), including the sensing
area and the task duration. We divide the sensing area into N
cells with the same size and split the task duration into M slots
with the same length. For any cell, the sensed data is assumed
unchanged during a slot but may vary across different slots. To
reduce the payments, the platform would not employ sufficient
participants to sense all cells in every slot. That is, just a part
of appropriate cells are selected to be sensed by participants
in each slot. Each participant is required to upload the sensed
data of a cell one time during one slot.

Definition 1: (data matrix) Let x(t)
ij denote the measured

result (such as temperature) of a cell at i row and j column
of the sensing area in tth slot, where 1in, 1jm, and
1tM . It is common to take a snapshot and stack the
columns in slot t to form a column vector. Those column
vectors of all slots are compiled into the columns of a
larger matrix XN⇥M , where N=n⇥m. Note that, we use x
(lowercase) to indicate the spatial data matrix in each slot, and
X (capital) to indicate the spatial-temporal data matrix in this
paper.

Definition 2: (sensing matrix) The sensing matrix C
records the collected sensing results. According to the defined
data matrix X and the participant selection matrix S (which
will be introduced in Section II-B; Sij=1 if the cell i is sensed
by participants in slot j, else Sij=0), the sensing matrix can
be desined as C=X � S, where � denotes the element-wise
product of two matrices.

Definition 3: (reconstruction quality) Suppose the recon-
structed matrix can be denoted as bX , it is deduced from the
sensing matrix C via the data reconstruction. The reconstruc-
tion quality Q of bX is defined as the correct coverage ratio.

Q =

P
i,j

���
Sn

X̂ij

��� (X̂ij�Xij)
Xij

 �
o���

N ⇥ M
(1)

Definition 4: (profit) Suppose the sensing cost of different
participants to execute the sensing task in a cell of a slot is the
same, the payment is determined by the cost, and is denoted
as c. If a cell is correct, the gain of it is defined as g, else
the gain is 0. Based on the given parameters, the profit of the
CMCS platform can be calculated as:

P=g⇥(N⇥M)⇥Q�c⇥
X

i,j

Sij

Note that, the data matrix X is the ground truth of the target
area, which can not be got in the real-world. More details
about data reconstruction can be seen in [7] [8]. Hence, it is
challenging to predict the reconstruction quality or profit.

B. The model of mobile participants

Definition 5: (selection matrix) Suppose there are total U
participants who are selected to execute the sensing task. Let
S(u) denote the selection matrix of participant u (1uU ),
S(u)
ij =1 if the cell i is sensed by participant u at jth slot.

Thus, we have selection matrix S=
P

u S
(u). We set Sij=1 if

Sij�1. It means repeated sensing of one cell in the same slot
by multiple participants is regarded as a waste.

The participants need to report their basic information to
the platform as they appear. For any participant u, the start
time, the start location, the destination, and the deadline are
denoted as t(u)s , l(u)s , l(u)d , and t(u)d , respectively. 1t(u)s M ,
1t(u)d M . Once a participant registers for the task, we
assume that they will execute the sensing task until reaching
their destinations. The CMCS platform makes trajectory plans
for selected participants to make sure that each of them can
reach the destination before the deadline. Hence, we have
S(u)
lsts

=1 and S(u)
ldt

=1, where 1tt(u)d . However, the partic-
ipants come to the platform dynamically, the total number
and distribution of participants are unknown at first. It is
challenging to determine which participant to select aiming
to maximize the profit.

C. The POPS problem formulation

In this paper, our objective is to maximize the profit of
the platform for a sensing task through data reconstruction,
with the above models of tasks and participants. To achieve
the objective, we propose the Profit-driven Online Participant
Selection (POPS) problem in CMCS: Given the task area N
and duration M , the gain g of a correct cell, the payment c
of sensing a cell, the quality requirement ↵, the budget B of
the platform, and participant mobility information t(u)s , l(u)s ,
l(u)d , t(u)d , we determine the selection matrix S to maximize
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Fig. 1: Statistic results of the reconstruction quality in the temperature dataset

the profit of the CMCS platform. Hence, our POPS problem
can be formulated as:

max Q � c
M⇥N⇥g ⇥

P
i,j

Sij

s.t.
Q � ↵;
c ⇥

P
i,j

Sij  B;

8u, S(u)
lsts

=1;

8u, S(u)
ldt

=1, 1tt(u)d ;

(2)

where 1iN, 1jM, 1uU . The first two constraints
indicate the task requirement and budget limitation, respec-
tively. The reconstruction quality must beyond the threshold
and the total payments should not exceed the budget. The last
two constraints indicates the mobility constraints of partici-
pants. Each participant should reach the destination before the
deadline under the planned trajectory.

III. RECONSTRUCTION QUALITY PREDICTION

Recently, researchers have proposed many reconstruction
methods for various applications. In this paper, we consider
three representative methods, including PCA (Principal Com-
ponent Analysis), CS (Compressive Sensing), and STCS (Spa-
tial and Temporal Compressive Sensing). PCA is a popular
reconstruction method for most applications. CS and STCS
have been used in the field of environment monitoring [7] [8].

We first implement the PCA reconstruction method on the
real-life temperature dataset [13] in one slot and compute
the reconstruction quality under the different numbers of
sensing cells. For each setting of the number of sensing
cells, we select such number of cells randomly and conduct
100 rounds of experiments and calculate the reconstruction
quality on average. To estimate the relationship between the
reconstruction quality and the number of sensing cells, we
evaluate two representative cumulative distribution functions:
the exponential distribution and the Pareto distribution. We
adopt the maximum likelihood estimation (MLE) method to
estimate the parameters of the two distributions and perform
the Akaike test to decide the best one. The evaluation results
are illustrated in Fig. 1(a). We can see that the relationship
between the reconstruction quality and the number of sensing
cells closely resembles the exponential distribution.

We further evaluate the reconstruction quality by the CS
and STCS reconstruction methods in all slots. Fig. 1 plots
the reconstruction results, under reconstruction methods and
the number of sensing cells. We find that all of such kinds
of evaluation results are all consistent with the exponential
distributions. The root cause is that the number of deduced
cells increases at first with more sensed cells. However, the
number overlapped deduced cells increases, too, as the number
of sensed cells large enough. That makes the reconstruction
quality initially has a high rate of increase, but as the sensed
cells more and more, the increase rate taper off, until all
the cells are correct. Hence, it is reasonable to infer that the
relationship between the reconstruction quality and the number
of sensing cells follows the exponential distributions with
different parameter settings. Accordingly, we can utilize the
exponential distribution to estimate the reconstruction quality,
when the number of sensing cells is given.

The cumulative distribution function of the exponential
distribution can be expressed as follows:

F (y;�) =

⇢
1 � e��y, y � 0
0, y < 0

(3)

According to our observations, the reconstruction quality can
be estimated by the following equation:

Q0 = max{ y

N ⇥ M
,F (y;�)} (4)

where y is the number of sensing cells, y=
P

i,j Sij . In this
paper, we can infer the true reconstruction quality Q by
assuming that Q⇡Q0.

To solve the POPS problem, we need to derive the ideal
value of the parameter � for X , then we can predict the
reconstruction quality based on selected participants. However,
the value of � for the x (the spatial data matrix in a slot)
and X (the spatial-temporal data matrix across all the slots)
are different even using the same reconstruction method. The
reason is that the data reconstruction is based on the matrix
structure. Consider that those mobile participants come to the
platform dynamically. It is infeasible to predict the sensing
matrix C due to the lack of prior knowledge; hence, we can
not get the exact value of � for the X directly. Fortunately,
we find that the � for x in different slots (x(1), x(2), x(3),
...) is almost the same, we denote it as �c. For this reason,



we propose to maximize the sub-profit in each slot and
utilize the sub-profit sum across all slots to approximate the
maximum profit of the CMCS platform. Thus, according to
the exponential-based quality prediction measurement and the
gradual approximation method, the objective function in each

slot is 1�e
��c(

P
i,j

sij)

� c
n⇥m⇥g

P
i,j

sij , the quality threshold

constraint and the budget constraint can be combined as
� ln(1�↵/M)

�c


P
i,j

sij  B
M⇥c .

IV. PARTICIPANT SELECTION MECHANISMS

A. ProSC: an intrinsic mechanism

The objective function of the POPS problem in each slot
experiences two variables, �c and

P
i,j sij . The variableP

i,j sij includes the participant quantity and distribution.
In ProSC, we suppose that the platform would guide each
selected participant to move along the shortest route from the
start location to the destination. Based on this assumption, the
distribution of selected participants can be known beforehand.
Therefore, only the �c and participant quantity y (y=

P
i,j sij)

should be determined. The main idea of our mechanism is that,
we iteratively adjust the values of �c and y, until the profit in
each slot converges to the maximum value.

There are three steps in each slot. In the first step, we
optimize y under a given value of �c. If �c is determined,
the y is easy to get since the objective function in each slot
is convex, and a traditional linear programming algorithm can
be used. Note that, the initial value of �c in the first slot is
determined randomly. In the second step, we would select a
set of mobile participants to carry on the sensing task. Some
participants may leave the target sensing area after certain
slots, while new participants may enter the sensing area at
any time. If there are y0 participants at the (t�1)th slot,
y�y0 new participants would be selected in the tth slot. In
ProSC, we select the y�y0 new participants randomly, the y0

existing participants would move along their shortest routes
and continue to execute the sensing task in the next slot.

In the third step, we optimize the value of �c through
repetitive cross-validation based on collected data in each slot.
Cross-validation is a common method to estimate parameters
[7]. We take an example to illustrate the main idea. Consider
that we have recruited k participants to sense k cells in a slot
and the sensing data have been collected. Thus, we select k�1
cells from the k sensing cells, execute the data reconstruction
and deduce the data of the left one cell. The ground truth of k
sensing cells are all known, we can compare the reconstruction
results of the k cells with the ground truth of them, and get
the error rate ✓ of the k sensed cells. As discussed in [7],
the observed error rate satisfy the normal distribution around
the actual error rate, ✓i ⇠ N(#,�2), where # denotes the
ground truth of the actual error rate. Therefore, we repeat the
above cross-validation process p rounds, and use the average
value of observed error rates to estimate the actual error

rate, that is #⇡✓̄, and ✓̄=(
k⇥pP
i=1

✓i)/(k⇥p). Thus, the value of

the parameter �c can be estimated based on the error rate,
�c= ln(1�#)/(�k). The value of �c is used in the next slot
to optimize the number of required participants.

Repeat the above steps, the parameter �c and participant
quantity y will be updated in each slot, while the profit
will converge to the maximum value in a few slots. The
selection matrix S compiled by S(u) of all slots would be
an approximate solution to the POPS problem. However, the
participant distribution has not been considered. In ProSC, the
routes of some participants may be similar with each other or
even overlapped in some slots. This phenomenon will incur
lower reconstruction quality and higher error rate under the
same number of participants. The uneven error rate in different
slots may lead to the un-converging of our mechanism.

B. ProSC+: a distribution-aware mechanism

To tackle the un-converging problem in the ProSC, we
optimize the participant distributions in ProSC+. Intuitively,
it would be better if those selected participants disperse in
the target sensing area, so as to sense more different cells. For
this reason, those similar routes should be avoided in each slot.
Ideally, the most representative cells should be sensed. Wang
et al. [7] propose to select one more representative sensing cell
in each slot, until the data quality is satisfied. This method is
not suitable for mobile and dynamic participants. On the other
hand, uniform coverage is discussed currently and the entropy
was proposed as a metric to illustrate the dispersion degree of
participant distribution [6] [14].

To maintain a stable dispersed distribution in all slots, we
utilize the 2D entropy to guide the participant distribution
in ProSC+. The 2D entropy has been widely used in the
field of image segmentation [15], since it could illustrates the
information confusion and spatial correlation of pixels in an
image. The more confusion the image, the higher the entropy
value. Similarly, we can formalize the sensing results in a
slot as an image, and the number of participants in each cell
acts as the gray value of a pixel. The more decentralized the
participants, the higher the entropy value. The 2D entropy (E)
can be calculated as:

E= �
X

a

X

b

f(a, b)

n ⇥ m
⇥log2(

f(a, b)

n ⇥ m
) (5)

where a denotes the number of participants in a cell, b denotes
the average number of participants in the neighborhoods of a
cell, and f(a, b) is the repetition number of 2-tuples (a, b).

We divide the participants in a slot into two kinds, existed
participants and new participants. For the existed participants,
the trajectory planning is restricted by the mobility constraints.
1) the movement distance between two slots should not exceed
the mobile capability of each participant. 2) each participant
must reach the destination before the deadline under allocated
sensing cells. Suppose there are y0 existed participants, and the
speed of each participant can be calculated through historical
data. To select a proper set of sensing cells in each slot, we
first assign a selection pool containing potential cells for each
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participant u (1uy0), then choose a optimal cell as the
sensing cell.

pool(u)t =
\

l

(
S
l
(v̄(u)�d(l0

���S(u)
l0(t�1)=1 , l

���S(u)
lt =1) ,

S
l
(v̄(u)⇥(t(u)d � t)�d(l

���S(u)
lt =1 , l(u)d )))

(6)

where v̄(u) denotes the average speed of participant u. The
slot length is formulated as 1. d(i, j) denotes the Manhattan
distance between location i and j. For the y�y0 new partici-
pants, we should select proper set from the start locations of
all candidates. It means all the start locations of candidates,
whose start time is t, can be regarded as the selection pool of
new participants.

pool+t =
[

w(w 6=u)

l(w)
s

���t(w)
s = t (7)

We combine the selection process of the two kinds of
participants, and formulate the selection problem in each slot
as: pick y0 proper cells from the selection pool of each existed
participant and y�y0 cells from the start locations of candidate
participants, aiming to maximize the E of all the y cells.
This selection problem is a knapsack problem, and the greedy
algorithm is an effective resolution to this kind of problem.
The value of E, however, is a global parameter; hence, a
progressive plain greedy algorithm cannot be directly used.
To tackle the selection problem, we adopted an iteration based
greedy algorithm. We first select y cells randomly and compute
E, then repeat the selection process for Ie rounds, where Ie
is the threshold. At last, the participant distribution with the
largest E within the Ie rounds is selected as an approximately
optimal solution. The calculation of the participant quantity y
and the �c in ProSC+ is the same with those in ProSC.

V. PERFORMANCE EVALUATION

A. Experiment setup

Dataset: We evaluate our mechanisms based on a real-life
temperature dataset. The temperature dataset was delivered
by the SensorScope project [13]. The project deploys 88
sensors across the EPFL campus to collect environmental
parameters from 2006.11.01 to 2007.05.09. The sampling
period of each sensor is 30 seconds. The target sensing area
is about 500m⇥300m. We divide the sensing area as 10⇥10
cells, and find that 52 cells are covered by sensors. If a cell is

covered by multiple sensors, the average value of those sensors
acts as the sensing result in that cell.

To enable our experiments, we first reconstruct the whole
data matrix based on the real dataset, and use the synthetic data
as the ground truth to carry on the following test. The reason
is that the number of cells covered by stations is limited in the
real dataset. We can not simulate the participant trajectories
with these limited and separated sensing cells. Note that, the
reconstruction method to synthesize data and experiments are
different in our paper. The synthesizing process may lead to
a higher value of the parameter �c in our experiments than
in a real situation, yet the theories discussed in this paper is
not impacted. Since the dataset do not contain the participants
information, we randomly generate the mobility settings for
each participant, including the start time, the start location,
the end location and the deadline.

Baselines: To compare with our mechanisms, we use the
following three baselines.

• MaxBrand: All budget is used to recruit participants.
The new participants in each slot are selected randomly.
The trajectories of selected participants are the shortest
routes.

• MaxBentro: All budget is used to recruit participants.
When new participants are needed, the ones with max-
imum entropy value are selected. The trajectories of
selected participants are guided through the platform to
cells with a highest entropy value.

• RandNum: The number of participants in each slot is
determined randomly, the participant trajectories are not
considered in this baseline.

B. The profit and participant quantity compare

Fig. 2 illustrates the profit results of our algorithms and
baselines. The maximum achievable profit computed offline is
around 40. We can find that the profits of all five mechanisms
vibrate in different slots. The reason is that the sensing data in
different slots is variable. The profit of ProSC around the 15th

slot performs large offset, because the participant trajectories
are similar with each other in those slots. The profit of
ProSC+ is more stable than ProSC, and it is higher than other
mechanisms in most slots. Since the number of participants
in the RandNum mechanism is selected randomly within the
budget, the peak value of profit achieved by RandNum in
different slots can be seen as the possible maximum profit.
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The profit of ProSC+ after the second slot is always near
the maximum profit, which proves the effectiveness of our
mechanism.

Fig. 3 describes participant quantity compare of different
mechanisms in each slot. The optimal ground truth of par-
ticipant quantity under our settings is 36. As all the budget
is used to recruit participants in MaxBrand and MaxBentro,
the participant quantity of these two mechanisms are all equal
to the budget. The results of ProSC+ and ProSC are similar
in most slots, except that the latter one vacillates hardly in
some slots. We can see that, the participant quantity of ProSC+
is stable around the ground truth 36 after the second slot. It
means that the convergence rate of ProSC+ is within two slots,
which prove the effectiveness of our mechanism.

C. The prediction of �c and profit

Fig. 4 shows the predicted value of the parameter �c in
each slot. Note that, the ground truth of the �c in each slot
under our settings is 0.031. We can see that the predicted �c in
ProSC and MaxBrand perform great fluctuation through dif-
ferent slots, due to the lackness of the distribution controlling
process. The predicted �c in ProSC+ and MaxBentro is more
stable, and the former one is always closer to the ground truth
than the latter one. Especially, the prediction error of ProSC+
is always less than 0.01 after the second slot. According to
the quantity prediction method introduced in Section IV, the
quantity prediction error is within ±1 under the illustrated �c

prediction error. Therefore, the prediction method introduced
in our paper is proven effective to determine the participant
quantity in each slot.

Fig. 5 represents the compare results of the predicted profit
and actual profit. We can find that both the predicted profit
and actual profit of ProSC fluctuate obviously in different
slots, while those of ProSC+ are more stable. However, the
predicted profit of both ProSC and ProSC+ are always lower
than their actual profits. The reason is that the parameter �c

is underestimated (Fig. 4), as we predict �c through repetitive
cross-validation based on the limited sensing data. To predict
the profit more accurately, a better method is needed to predict
the parameter �c.

VI. CONCLUSIONS

In this paper, we focus on maximizing the profit of the
CMCS platform, which employs dynamic and mobile partici-
pants to sense a part of sensing cells and deduce the results of

all unsensed cells via the data reconstruction. We characterize
such an optimization problem, denoted as POPS, with the
quality requirement of the sensing task and the mobility
constraints of participants. We then propose two methods to
solve the POPS problem. We conduct evaluations on a real-
life dataset and the results demonstrate the effectiveness and
efficiency of our mechanisms.
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