
1

SDTP: Accelerating Wide-Area Data Analytics
with Simultaneous Data Transfer and Processing

Yiting Chen, Lailong Luo, Member, IEEE , Deke Guo, Senior Member, IEEE , Ori Rottenstreich,
and Jie Wu, Fellow, IEEE ,

Abstract—For the efficient analysis of geo-distributed datasets, cloud providers implement data-parallel jobs across geo-distributed
sites (e.g., datacenters and edge clusters), which are generally interconnected by wide-area network links. However, current
state-of-the-art geo-distributed data analytic methods fail to make full use of the available network and computing resources. The main
reason is that such geo-distributed methods must wait for bottleneck sites to complete the corresponding transmission and
computation in each phase. Furthermore, such geo-distributed methods may be impractical to the network bandwidth dynamicity and
diverse job parallelism. To this end, we propose a Simultaneous Data Transfer and Processing (SDTP) mechanism to accelerate
wide-area data analytics, with the joint consideration of network bandwidth dynamics and job parallelism. In the SDTP, a site can
execute the computation, provided that it obtains the required input data. As a result, the input data loading, map, shuffle, and reduce
phases at each site need not wait for the completion of the previous stages of other sites. We further improve the SDTP method by
offering more accurate time estimation and generalizing the mechanism to dynamic situations. The trace-driven results demonstrate
that SDTP can improve the wide-area analytic job response time by 19% to 72% compared to other methods.

Index Terms—Wide-area data analytics, task scheduling, job response time, dynamic network, job parallelism.

F

1 INTRODUCTION

CLOUD providers such as Google, Amazon, and Alibaba
have deployed data centers globally to provide instant

services. These services generate a large volume of data
across the world [1], including transaction data, user logs
and performance logs, etc. Mining geo-distributed data (also
known as wide-area data analytics) is crucial for commercial
recommendations, anonymous detection, performance up-
grades, and system maintenance, among others. A distribut-
ed computing framework such as MapReduce is generally
implemented to mine such massive datasets.

A dominant challenge in this computing paradigm is the
heterogeneity of hardware resources among geo-distributed
sites, including the computing, uplink bandwidth, and
downlink bandwidth. For example, the gap between the
bandwidth among sites of Amazon EC2 is up to 12 ⇥ [2],
and the computation capacity of the largest online service
provider may be up to two orders of magnitude larger
than that of ordinary ones [3], [4]. With the development of
edge computing, many applications are placed at the edge.
However, the edge resources are naturally heterogeneous
and insufficient [5], [6]. Moreover, the data amounts among
geo-distributed sites are also highly heterogeneous [3], [7],

• Y. Chen, L. Luo and D. Guo are with the Science and Technology Labora-
tory on Information Systems Engineering, National University of Defense
Technology, Changsha Hunan, 410073, China. E-mail: {chenyiting18,
luolailong09, dekeguo}@nudt.edu.cn.

• O. Rottenstreich is with the Department of Computer Science, Technion
Israel Institute of Technology, Haifa 3200003, Israel, and also with
the Department of Electrical Engineering, Technion Israel Institute of
Technology, Haifa 3200003, Israel. E-mail: or@cs.technion.ac.il

• J. Wu is with the Department of Computer and Information Sciences,
Temple University, Philadelphia, PA 19122. E-mail: jiewu@temple.edu.

• Corresponding author: Lailong Luo and Deke Guo.

[8]. As reported in reference [9], the amounts of Skype logs
in over 100 different Azure sites indicate that the largest
sites had 22 ⇥ the values as the smallest site. These hetero-
geneities significantly affect the execution of wide-area data
analytics.

The job response time is a key metric in the analysis of
geo-distributed data, which usually contains multiple tasks
on one stage and is dominated by the completion time of
the last task [3], [8], [10]. However, the heterogeneity of
the hardware resources and diversity of the data volumes
among geo-distributed sites have a serious impact on the
job completion time. Thus, it is challenging to optimize
this metric because multiple factors must be considered,
including the WAN link bandwidth among sites [7], [8],
[11], [12], the cost of the WAN links [13], [14], [15], [16], the
computing resources in each site [3], [4], [17], and the data
distribution [8], [9], [18]. To this end, Iridium [8] considers
the heterogeneity of the WAN link bandwidth among sites
and optimizes the placement of the reduce tasks to mini-
mize the overall response time. Flutter [13] jointly considers
the heterogeneities of both the bandwidth and cost of the
WAN links among the sites. In contrast, Tetrium [3] offers
a novel placement strategy for the map and reduce tasks
with respect to the heterogeneities of both the WAN links
and computing capacity among the sites. These methods
can improve the response time to a certain extent.

Observation: The state-of-the-art task scheduling strategies
execute the MapReduce tasks in a strict sequential manner, which
may idle the distributed sites and lead to unnecessary waiting
time. A toy example with three sites at the map stage is
presented in Fig. 1, and the basic settings are shown in
Fig. 1(a). We assume that each task processes 100 MB of
data, and the time required to process each task is 2 sec.
Initially, sites 1, 2, and 3 contain 10, 40, and 50 GB of

2

0 50 100

Site 1

Site 2

Site 3

compute transfer

Site-2

26GB 22GB

(c) The time of the Tetrium (d) The time of a better approach

14G
Site-3
28G

Site-1
58G

Site-2

20GB 10GB

20G
Site-3
40G

Site-1
40G

0 10 20 30 40 50 60

Site 1

Site 2

Site 3

transfer compute

0 20 40 60

Site 1

Site 2

Site 3

transfer compute

Site-1

Site-3Site-2
(2, 20, 5)(1, 10, 1)

(5, 40, 5)

10GB

50GB40GB

Site-2
40G

Site-3
50G

Site-1
10G

(b) The time of the traditional method(a) The configuration of sites

Fig. 1. Toy examples of heterogeneous geo-distributed sites and unequal job response time of different scheduling approaches. In Fig. 1(a), sites
1, 2 and 3 contain 10, 40, 50 GB of local data, respectively. The triple on each site represents the uplink bandwidth, the number of computing slots,
and the downlink bandwidth, respectively.

local data, respectively. They have an unequal number of
computing slots, and the link bandwidth between a pair of
sites is also heterogenous. We use a triple at each site to
represent the upload bandwidth, the number of computing
slots and the download bandwidth, respectively. Using such
a setting, the traditional method usually executes the map
tasks on local sites and thus avoids transferring local data
to others. As shown in Fig. 1(b), the bottleneck is site 2
which needs 80 sec to complete its tasks. To reduce the
response time, Tetrium [3] tries to balance the transferring
and computation workloads among the sites, and migrates
part of the data from those sites which cannot handle its
workload effectively. It generates the map task placement
strategy illustrated in Fig. 1(c). In this placement solution,
sites 2 and 3 need to transmit 26 and 22 GB of data to site 1,
respectively. During the transfer period, sites 2 and 3 remain
idle. The sites can only begin the data computation when
all transmissions have been completed. In this example,
Tetrium requires 56 sec in total.

As indicated in Fig. 1(d), it is possible to improve the
existing work on wide-area data analytics by balancing and
parallelizing the data transfer and data processing. In this
solution, sites 2 and 3 transmit less data to site 1 because
the transfer time may overwhelm the processing time, even
if site 1 has more computing slots. Moreover, sites 2 and 3
begin to process the data at time 0 as they require no data
from the other sites. Therefore, the data transmission and
data processing parallelized from 0 to 20 sec. As a result,
the total running time of the map stage is 40 sec.

According to the above observation and motivation, this
study presents a novel task scheduling mechanism known
as Simultaneous Data Transfer and Processing (SDTP) to
accelerate wide-area data analytics by decreasing the re-
sponse time of wide-area data analytic jobs. With the joint
consideration of the WAN link heterogeneity and parallel
execution in each site, SDTP first models the scheduling
problem as a non-linear programming problem, which is
generally complicated and is hard to resolve. To resolve
this non-linear programming problem, SDTP relaxes the
non-linear programming model to a linear programming
model. Thereafter, SDTP reduces the overall response time
by migrating part of the data from the straggler site which
leads to the longest response time to the idlest site which
has the least response time.

In practice, the WAN bandwidth is dynamic over time.
Reference [11] reports that the available bandwidth is below
25% of the maximum bandwidth between Amazon EC2 sites

in some cases. However, previous work which devoted to
the geo-distributed batch analytics assumed that the WAN
bandwidth was static over the job execution period [3], [8],
[17], [19]. Moreover, a complex relationship exists between
the computation time and degree of parallelism. In general,
the computation time of parallel tasks will decrease with
an increase in the degree of parallelism. The assignment of
additional resources to the job has a marginal impact on
the performance. However, many references have assumed
that the computation time will decrease constantly with the
increase of the degree of parallelism [3], [17]. Therefore, we
propose two improved approaches SDTP+ and SDTP++,
which provide a more accurate computation time estima-
tion of each stage within a site and can be generalized to
dynamic situations.

The main contributions of this paper can be summarized
as follows.

• We discover that state-of-the-art task scheduling s-
trategies cannot make full use of the available net-
work and computing resources, which may lead
to unnecessary waiting time. To minimize the job
response time, we present a new non-linear program-
ming model to characterize the geo-distributed data
analytic job with joint consideration of the resource
heterogeneity and the degree of parallelism, as well
as the dynamic WAN links among the sites.

• We make reasonable relaxations and assumptions on
this model and propose a novel scheduling mecha-
nism known as SDTP to accelerate wide-area data
analytics. SDTP allows the sites to begin the data
processing once they obtain the required input data.

• Considering the dynamicity of WAN and the influ-
ence of the degree of parallelism, we further present
two improved scheduling mechanisms known as S-
DTP+ and SDTP++. The two approaches can provide
more accurate time estimation and can be general-
ized to dynamic situations.

• We conduct trace-driven experiments to evaluate
the performance of SDTP, SDTP+ and SDTP++. The
results demonstrate that our methods outperforms
existing methods and achieves a 19% to 72% reduc-
tion in the overall job response time.

The remainder of this paper is organized as follows:
Section 2 presents the background and related work. Sec-
tion 3 outlines the system model and formulates the task
placement problem of a geo-distributed data analytic job.

3

Our SDTP, SDTP+, and SDTP++ methods are described in
Section 4 and 5. We conduct extensive evaluations using
realistic traces in Section 6, and we conclude the paper in
Section 7.

2 BACKGROUND AND RELATED WORK

In geo-distributed data analytics, multiple sites are connect-
ed by WAN, which restricts massive data transmission. Data
processing frameworks, such as Hadoop and Spark, rely on
the MapReduce model to implement their tasks on multiple
geo-distributed sites in parallel. These geo-distributed sites
may be highly heterogeneous in terms of the hardware
capacity and data distribution. Furthermore, as the WAN
bandwidth is also dynamic, the running time of the parallel
frameworks exhibits certain properties. Therefore, in this
section, we introduce the heterogeneities in geo-distributed
sites, the dynamicity of the WAN bandwidth, and the paral-
lel computing properties, followed by a discussion of related
work on the geo-distributed data analytics.

2.1 Characteristics of Computation and Network Re-
sources among Distributed Sites
Heterogeneity of resources and data distribution: An im-
portant characteristic and challenge in geo-distributed data
analytics is that the resources among different sites are
highly heterogeneous in terms of the hardware capacity [3].
Different sites are built at varying times and in varying
regions, with diverse goals and budgets, thereby resulting
in high heterogeneity [3], [20]. To demonstrate the hetero-
geneity of hardware resources, we compare the two most
important hardware capacities, namely the computation
and bandwidth. In particular, the computation capacity of
one of the largest online service providers may be up to two
orders of magnitude larger than that of ordinary ones [3],
[4]. The impending trend of edge computing increases the
heterogeneity. In private clusters, the compute capacities
vary significantly from just a handful of cores to hundreds of
cores [21]. The link bandwidth among different sites is also
extremely diverse [8], [18], [22]. According to a measure-
ment of Amazon EC2 in 11 different regions, the bandwidth
among the sites is 15⇥ smaller than the bandwidth within a
site and 60⇥ smaller in the worst case [2].

Moreover, the amounts of data generated on different
sites are heterogenous, which has a serious impact on the
job response time [23]. An analysis of Skype logs obtained
from over 100 different Azure sites demonstrated that the
median, 90th percentile, and maximum values were 8, 15,
and 22 ⇥ larger than those of a site with the minimum log
data [9]. Therefore, the data distribution across the sites may
not be constant or may even be skewed in certain cases.

Dynamicity of the WAN: The dynamicity of the WAN
bandwidth across different sites also poses significant chal-
lenges to geo-distributed data analytic jobs. Researchers
discovered that large variances exist across different sites,
and in certain cases, the available bandwidth is below 25%
of the maximum bandwidth [11]. Consequently, it is difficult
to develop task placement strategies for minimizing the job
response time prior to the bandwidth change.

Degree of parallelism: In parallel computing, the
amounts of data processed by the job is varied. Even if the

 0

 100

 200

 300

 400

 500

 0 8 16 24 32 40 48 56 64 72 80

Jo
b

ru
nn

in
g

tim
e

[s
ec

]

Degree of parallelism

Job 1, 80GB
Job 1, 20GB
Job 2, 20GB

Fig. 2. Job running times with different degrees of parallelism (the
number of slots) and amounts of data.

jobs contain the same amounts of data, different degrees of
parallelism will also lead to different job responses time [24].
To determine the relationship between the computation time
and the size of input data and degree of parallelism, we
constructed a Spark cluster based on 11 virtual machines (1
manager node and 10 worker nodes). Each virtual machine
contained 8 cores and 8 GB of main memory.

We measured the running time of two jobs that ran
on Spark under BigDataBench [25], and the results are
presented in Fig. 2. The running time of Job 2 exhibited
little variation with the increase in the parallelism. Job 1
exhibited a significant acceleration of up to 56 parallel slots
when it processed 80 GB of input. When Job 1 processed a
small input of 20 GB, it required no more than 16 parallel
slots. For all jobs, assigning additional parallel tasks beyond
a "sweet spot" in the curve added only diminishing gains.
Thus, we need to design a method which can calculate more
accurate computation time according to the type of job, the
size of the input data and the degree of parallelism.

2.2 Related Work
Geo-distributed data analytics has received substantial at-
tention over the past several years. Numerous efforts have
been made to optimize the response times of such jobs.

Geo-distributed data analytics on MapReduce-based
systems: Iridium [8] considers the heterogeneity of the
WAN, and aims to minimize the response time of jobs
across geo-distributed sites by optimizing the placement of
the reduce task and involved input data. Considering the
heterogeneities of the WAN links and the WAN bandwidth
cost, Flutter [13] is a new task scheduling algorithm for
reducing both the response time and the network cost of
big data processing jobs. Tetrium [3] jointly considers the
heterogeneities of the computing and networking resources
when designing the placement strategy of the map and
reduce tasks. Yugong [1] proposes a novel data and job
placement strategy to minimize the cross-DC bandwidth
use and to reduce the query latency. Liu et al. proactively
aggregate the output data of map tasks and avoid repet-
itive data transfers in the shuffle stages to reduce the job
response time [19]. The above methods mainly decrease the
job response time, while massive WAN links and computing
resources remain idle during the job execution.

To minimize the average job makespan, Zheng et al.
study a joint scheduling optimization mechanism by over-
lapping the map and shuffle phases of two jobs to form
a strong pair [26]. However, it focuses on the single data-
center applications. Furthermore, these methods all ignore

4

the dynamic nature of the available WAN bandwidth and
the influence of the degree of parallelism. Decima [24]
uses reinforcement learning and neural networks to learn
workload-specific scheduling algorithms and sets an effi-
cient parallelism degree for each job to minimize the average
job response time. However, it only attempts to optimize the
average job response time in a single cluster.

Geo-distributed data analytics on other distributed
systems: With a focus on the geo-distributed SQL query,
CLARIENT [27] includes a novel WAN-aware query opti-
mizer, which can achieve multi-query network-aware plan
selection and task placement to ensure low query laten-
cy. WANalytics [28], Pixida [29] and Geode [30] attempt
to reduce the bandwidth use across geo-distributed data
centers and decrease the latency for SQL query requests.
Lube [31] monitors geo-distributed data analytic queries in
real-time, and detects and mitigates potential bottlenecks
(e.g., bandwidth scarcity) at runtime to reduce the query
response time.

Furthermore, Gaia [2] provides a machine learning syn-
chronization model for cross-site learning tasks. It dy-
namically eliminates insignificant communication between
sites to accelerate the execution of machine learning jobs.
Monarch [32] optimizes the iterative processing style of
graph-parallel systems to execute geo-distributed graph
analytics effectively. Liu et al. present a hierarchical syn-
chronous parallel mode, which results in lower WAN band-
width use, faster convergence, and a lower WAN cost for
wide-area graph analytics [12]. G-Cut [33] optimizes the
performance of graph processing jobs by minimizing the
inter-DC data transfer time. To save the amount of data
transferred and to reduce the makespan, HPS+ [34] offers
a new resource allocation algorithm. However, these meth-
ods have mainly focused on wide-area machine learning,
SQL analytics, astronomical applications, and certain special
fields. Therefore, they are not applicable for general big data
processing frameworks such as MapReduce.

Optimizing systems for dynamic settings: Considering
the challenge of scarce and variable WAN bandwidth, Tur-
bo [7] adjusts the query execution plans for geo-distributed
SQL queries in response to runtime resource variations
across data centers. AWStream [11] automatically learns
an accurate profile to model the relationship between the
accuracy and bandwidth consumption of an application.
Thereafter, it carefully adjusts the application data rate
to match the available bandwidth, while maximizing the
achievable accuracy. Besides, Magrino et al. introduce pre-
dictive treaties to predict the evolution of the system state
in distributed transaction processing [35]. This method can
reduce the coordination of geo-distributed applications and
improve their performance. Unfortunately, these methods
only focus on some specific areas and are not applicable
to geo-distributed data analytics on MapReduce-based sys-
tems.

In this study, we propose a novel scheduling mechanism
named SDTP to accelerate wide-area data analytics. The
method attempts to make full use of the available network
and computing resources to avoid unnecessary waiting
time, and it can realize an effective balance between the data
transfer and data processing. Moreover, with a focus on the
dynamic network and diverse job parallelism, we further

Site 1 Site 1

Site 2 Site 2

Site 3 Site 3
Data

Loading

Raw Data

Raw Data

Raw Data

Site 1

Site 2

Site 3

Intermediate
Results

Intermediate
Results

Intermediate
Results

Site 1

Site 2

Site 3

Shuffle

Site 1

Site 2

Site 3
Reduce

Computation

Map Stage Reduce Stage

Final
Results

Final
Results

Final
Results

Map
Computation

Fig. 3. An illustration of the execution process of a wide-area data
analytic job.

improve the SDTP method by offering more accurate time
estimation and generalizing it to dynamic situations.

3 MODELING AND PROBLEM FORMULATION

In this section, we describe the execution of the wide-area
data analytic job and formulate the optimal response time
problem for such jobs, including the details of calculating
the overall time consumption. Table 1 summarizes the major
notations used in this paper.

3.1 Execution of Wide-area Data Analytic Job
In this section, we describe how we place tasks in the
map and reduce stages to minimize the entire response
time of a wide-area data analytic job in the system. The
task placement in each stage involves deciding which tasks
should be placed on the site and determining the source of
the task input data.

In this paper, we focus on the jobs that have exactly
one map stage and one reduce stage. We formulate the
task placement of the wide-area data analytic job for each
stage independently. The map stage includes the input data
loading and map computation phases, and the reduce stage
is divided into the shuffle transfer and reduce computation
phases.

Fig. 3 presents an example of the execution process of
a wide-area data analytic job. The 3 sites have different
amounts of unprocessed local data. At the data loading
phase, the sites with heavy workload transfer some raw
data to those sites which have sufficient computing and
bandwidth resources. After that, each site executes the map
computation on its raw data and generates intermediate
results. At the reduce stage, each reduce task needs to read
the corresponding intermediate data generated by all map
tasks. In the shuffle phase, according to the fraction of
reduce tasks performed at each site, each site transfers the
intermediate data to corresponding sites. Finally, each site
performs the reduce computation to get the final results.

Owing to the heterogeneities of the WAN bandwidth
and computing capacity among the geo-distributed sites,
the transmission times for obtaining the required input
data on different sites are uneven. However, in previous
approaches, the sites can execute the map computation only
when all of the transmissions are completed. This will idle
the distributed sites and lead to unnecessary waiting times.

5

TABLE 1
Notations and definitions

Notation Definition
D set of sites
Ai amount of the data generated at site i

T i
load input data loading time of site i

T i
shuf

communication time of the
shuffle phase of site i

Si number of computation slots at site i

q ratio of intermediate data to input data
Ijshuf volume of intermediate data at site j

xj
i

amount of the data transferred from
site j to site i at the map stage

↵i
fraction of reduce tasks to place

at each site i

Bi
down(t), B

i
up(t)

uplink/downlink bandwidth of
site i at time t

tdown
i,s , tdown

i,e
start/end time when site i downloads

all input data from other sites

tupj,s, t
up
j,e

start/end time when site j

uploads input data to other sites
T i
map, T

i
red map/reduce computation time of site i

Tload, Tshuf input data loading time and shuffle time
Tmap, Tred map/reduce computation time

T i
load,down, T

i
load,up

download/upload time of site i

at the input data loading phase
T i
shuf,start start time of site i at the shuffle phase
Tshuf,load sum time of the first three phase

T i
shuf,down, T

i
shuf,up

upload/download time of site i

at the shuffle phase

Thus, in our method, a site can execute its task computation,
provided that it obtains the required input data, to avoid
unnecessary waiting time.

3.2 Response Time at Map Stage
At the map stage, the task placement problem involves de-
termining the amount of data x

j
i that should be transferred

from site j to site i, and i, j 2 D, where D is the set of
sites and x represents the set of the data volume that is
transferred across all sites. We assume that the map stage
contains the input data loading phase and map computation
phase, as shown in Fig. 3. Each site should obtain its input
data from other sites during the input data loading phase.
We suppose that a site can begin to execute its tasks if the
data assigned to it has been collected. Let T

i
load represent

the input data loading time of site i. The map computation
time of site i is denoted by T

i
map. At this stage, the goal is

to minimize the maximum response time among the sites.
That is:

min
x

max
i

T
i
load + T

i
map. (1)

As the bandwidth of the WAN links among the sites
may be dynamic, let B

i
down(t) represent the download

bandwidth of site i at time t, and let B
i
up(t) represent

the corresponding upload bandwidth of site i at time t.
According to x, we can obtain the fraction of map tasks
at each site. Therefore, the total volume of data that site i

needs to download is
P

j2D,j 6=i x
j
i . We use t

down
i,s and t

down
i,e

to denote the start and end times when site i downloads all

input data from other sites. Let tupj,s and t
up
j,e denote the start

and end times when site j uploads all data to other sites that
need to fetch data from site j. Then, we have:

Z tdown
i,e

tdown
i,s

B
i
down(t) dt =

X

j2D,j 6=i

x
j
i (2)

Z tup
j,e

tup
j,s

B
j
up(t) dt =

X

i2D,j 6=i

x
j
i . (3)

From the above two equations, we can determine that
the download time of site i at the map stage is tdown

i,e �t
down
i,s ,

and the upload time of other sites that contain the input data
of site i is tupj,e� t

up
j,s. Thus, the input data loading time of site

i is the maximum value between the download time of site i

and the upload time of other sites that need to transmit data
to site i. Therefore, we have:
T

i
load = max

j2D
(tdown

i,e � t
down
i,s , t

up
j,e � t

up
j,s), j 6= i, x

j
i 6= 0. (4)

The computation time of tasks at a site is determined by
the total volume of data to process, the degree of parallelism
of the site, and the job operation processes. Thus, in the
map computation phase, we use a function f to estimate the
computation time of site i according to the job type, input
data size

P
j2D x

j
i , and number of computation slots Si on

site i. That is:
T

i
map = f(

X

j2D

x
j
i , Si). (5)

Moreover, there is a constraint on the data volume. That
is, the sum volume of all data mitigated from site i to others
and the data remaining at site i must be equal to the original
data size Ai. X

j2D

x
j
i = Ai, x

j
i � 0, 8i 2 D (6)

Using the above descriptions, we formulate the task
placement problem P1 at the map stage as follows:

min
x

max
i

T
i
load + T

i
map

s.t. Constraints (2), (3), (4), (5), (6).
(7)

3.3 Response Time at Reduce Stage
At the reduce stage, we should decide the fraction ↵i of
reduce tasks to place on each site i, where ↵ denotes the
set of the fraction of reduce tasks on all sites. We suppose
that the reduce stage includes the shuffle phase and reduce
computation phase, as shown in Fig. 3. In this case, T i

shuf
represents the communication time of the shuffle phase at
site i. This is the transfer time during which site i obtains its
input data from other sites. The reduce computation time
on site i is denoted by T

i
red. At this stage, the goal is to

minimize the maximum response time among the sites; that
is:

min
↵

max
i

T
i
shuf + T

i
red. (8)

At the shuffle phase, the total amount of data that site i

needs to download is
P

j2D,j 6=i(I
j
shuf ⇥ ↵i). Furthermore,

I
j
shuf is the amount of intermediate data on site j. Besides,
t
down
i,s , and t

down
i,e denotes the start and end times when site

i downloads its input data from other sites. Let t
j,up
s and

t
j,up
e represent the start and end times when site j uploads

all data to the corresponding sites. Hence, we have:

6

Z tdown
i,e

tdown
i,s

B
i
down(t) dt =

X

j2D,j 6=i

(Ijshuf ⇥ ↵i) (9)

Z tup
j,e

tup
j,s

B
j
up(t) dt =

X

i2D,j 6=i

(Ijshuf ⇥ ↵i). (10)

Similar to the calculation of the time on map stage, the
download time of site i at the reduce stage is tdown

i,e � t
down
i,s ,

and the upload time of other sites that contain the input data
of site i is t

up
j,e � t

up
j,s. The data shuffle time of site i is equal

to the maximum transmission time between the download
time of site i (tdown

i,e � t
down
i,s ,↵i 6= 0) and the upload time of

other sites (tupj,e � t
up
j,s, j 6= i) that contain the input data of

site i . Then, we have:
T

i
shuf = max

j2D
(tdown

i,e �t
down
i,s , t

up
j,e�t

up
j,s), j 6= i,↵i 6= 0. (11)

Following the map stage, the intermediate data from the
map tasks on site i are equal to q⇥

P
j2D x

j
i , where q denotes

the ratio of the intermediate data to the input data of the
map stage. Moreover,

P
j2D x

j
i indicates the input data of

the map stage on site i, and it is the sum of the amount of
data

P
j2D,i 6=j x

j
i transferred from site j to site i (i 6= j) and

the remaining data x
i
i on site i.

I
i
shuf = q ⇥

X

j2D

x
j
i . (12)

The ratio ↵i of the reduce task on each site needs to
satisfy the following constraint:X

i2D

↵i = 1,↵i � 0. (13)

At the reduce computation phase, the input data of the
reduce computation on site i is Ishuf ⇥ ↵i, where Ishuf is
the total amount of intermediate data calculated by the map
tasks across all sites. We use a function h to estimate the
reduce computation time of site i, according to the job type,
input data of the reduce phase, and number of computation
slots Si on site i. Thus, we have:

T
i
red = h(Ishuf ⇥ ↵i, Si). (14)

Using the above descriptions, we formulate the task
placement problem P2 at the reduce stage as follows:

min
↵

max
i

T
i
shuf + T

i
red

s.t. Constraints (9), (10), (11), (12), (13), (14).
(15)

By means of the above formulations, we have specified
the calculation of the map and reduce stage response times
for a wide-area analytic job. However, according to our
model, the function of f is usually complicated and non-
linear. Therefore, the problems P1 and P2 are both non-linear
programming problems in general. Besides, the bandwidth
of the WAN links among the sites may be dynamic. Thus, it
is hard to obtain the optimal solutions in polynomial time.

4 SDTP: TASK SCHEDULING FOR WIDE-AREA
DATA ANALYTICS

In this section, we investigate a more special case and
convert the wide-area data analytic problem into a simpler
problem. First, we assume that the WAN is static and each
site uses a fixed WAN bandwidth. Second, we assume
that the computation time of each task is fixed and the
computation time can be calculated by a simple formula.

4.1 SDTP at the Map Stage

According to [36], only 7% of jobs in a production MapRe-
duce cluster are reduce-heavy. That is, a reduction in the
running time at the map stage is particularly important to
minimize the response time of the entire job. As the WAN
is static, each site has a fixed upload and download WAN
bandwidth. In this section, Bi

down and B
i
up represent the

download and upload bandwidths of site i, respectively.
Let T i

load represent the input data loading time of site i,
which is dominated by the maximum transfer time between
the download time (T i

load,down) of site i and upload time
(T j

load,up) of sites that need to transfer data to site i. Thus, the
input data loading time of site i can be formulated as Eq. 18.
T

i
load,down is equal to

P
j2D,i 6=j x

j
i divided by B

i
down, andP

j2D,i 6=j x
j
i is the sum of the amounts of data that need

to be transferred to site i from other sites. T j
load,up is the

maximum value among the upload times of site j that need
to transfer data to site i. Thus, we have:

T
i
load,down =

X

j2D,i 6=j

x
j
i/B

i
down, 8i 2 D (16)

T
j
load,up = max

j2D

0

@
X

i2D,i 6=j

x
j
i/B

j
up

1

A (17)

T
i
load = max

j2D

⇣
T

i
load,down, T

j
load,up

⌘
, i 6=j, x

j
i 6=0. (18)

To simplify the computation time calculation, we assume
that the computation time of each task is fixed and tmap

is the computation time of a map task. When the number
of tasks on one site exceeds its available compute slots,
the tasks will be usually executed with subsequent waves
locally and cannot use the idle slots in other sites [3]. For
example, site 1 has 50 slots and site 2 has 100 slots. If sites
1 and 2 both compute 100 map tasks, site 1 completes those
tasks within two waves and site 2 completes those tasks
with one wave. Thus, the computing time of site 1 is twice
that of site 2. To this end, the computation time on each
site is equal to the number of tasks divided by the degree
of parallelism and subsequently multiplied by the execution
time of a single task. The map computation time of site i can
be formulated as Eq. 19.

T
i
map =

&P
j2D x

j
i

Si

'
⇥ tmap (19)

The goal of the map stage problem is similar to that
of Eq. 1. Finally, when the WAN of each site is static
and the computation time of each task is also fixed, the
task placement problem of the map stage is formulated as
problem P3:

min
x

max
i

T
i
load + T

i
map

s.t. Constraints (16), (17), (18), (19).
(20)

The above problem is a non-linear programming prob-
lem, which cannot be solved in polynomial time. For the
interest of efficiency and scalability, we turn to an approxi-
mation algorithm (Algorithm 1), reducing the total response
time significantly. The Algorithm 1 iterates to the optimal
solution by adjusting map task placement on each site. To

7

Times

Map

Data Loading Map

Site 1

Site 2

Data Loading

Data Loading MapSite 3

Times

Map

Data Loading Map

Site 1

Site 2

Data Loading

Data Loading MapSite 3

t1 t2 t3 t1 t2 t3

(a) A previous task placement method. (b) An improved task placement method.

Fig. 4. Different task placement methods.

accelerate the Algorithm 1 approaching the optimal solu-
tion, we formulate the problem P4 to obtain an initial input
for Algorithm 1.

We assume that the computation of the map tasks must
wait for the completion of the data transmission. The in-
put data loading time and map computation time of the
map stage are both dominated by the bottleneck site. The
objective of this problem can be transformed into Eq. 21.
Specifically, the input data loading time in the map stage of
this job is equal to the largest input data loading time across
all sites (Eq. 22). The map computation time in the map stage
of this job is dominated by the maximum computation time
across all sites (Eq. 23). Therefore, if the data transfer and the
computation cannot be performed simultaneously, the map
task placement problem P4 can be formulated as follows:

min Tload + Tmap (21)

Tload = max(T i
load) (22)

Tmap = max(T i
map). (23)

The problem P4 is a linear programming problem and it
can be solved in polynomial time by existing methods, such
as the interior point algorithm or other linear programming
algorithms that have been realized by many solvers. With
the initial input from P4 and the following three theorems,
we design the Algorithm 1 to achieve map task placement
with a reduced job response time. Intuitively, when a site has
higher response time than others, we can migrate some tasks
from this site to others to reduce the response time of the w-
hole stage. Moreover, when all sites have the same response
time at this stage, it means the current task placement is
optimal and cannot be further optimized. Based on these
intuitions, we formulate 3 theorems which can be proved as
follows.

Theorem 1. Assuming that the input data of this stage can be
divided, the response time of a stage is minimized when all sites
have the same response time in this stage.

Proof. Suppose that a task placement scheme exists in which
the response times of all sites are not the same, and this task
placement scheme has a minimized time in the map stage.
An example is presented in Fig. 4(a), where site 3 is the
bottleneck site that has the longest response time, and site
2 has the minimum response time. After t1, site 3 is still
working, while site 2 is idle.

As all sites can transfer data to one another, if site 3
transfers little data to site 2, and the response time of site 2
and 1 does not exceed the maximum time across other sites,
the tasks of site 3 will decrease. The computation time of site
3 will decrease with the decrease in the number of tasks. The
transmission time of site 3 is dominated by the maximum
transfer time between the download time of site 3 and the

Site
1

Site
2

Site
3

k

m l

Site
1

Site
2

Site
3

m+k l-k

Site
1

Site
2

Site
3

k-l

m+l

(a) exist loop in the transfer (b) better transfer when k < l (c) better transfer when k > l

Fig. 5. Improved task placement method.

upload time of the sites that need to transfer data to site 3.
As the download data of site 3 unchanged, the download
time of site 3 is unchanged. Similarly, the upload time of the
sites which need to transfer data to site 3 is also unchanged.
Thus, the transmission time of site 3 will decrease or remain
unchanged. Therefore, the response time of site 3 decreased,
and the response times of sites 1 and 2 are both less than
the response time of site 3. Finally, the response time of this
stage will decrease.

This example can be easily extended to any number of
sites. Similarly, we assume that the response times of the
n sites are tunable, and this task placement scheme has a
minimized time at this stage. The site with the longest time
can either transfer part of its data to other sites or reduce
the amount of data received from other sites, to reduce the
response time. In this process, it is required that the com-
pletion time of other sites does not exceed the completion
time of bottleneck site. After that, the response time of this
stage can be significantly reduced. Consequently, this result
contradicts the assumption, and Theorem 1 is proven.

Theorem 2. At a given stage, the maximum response time of all
sites t

old
max determines the entire response time of this stage. The

decrease of toldmax may shorten the gap of all sites’ response time,
which guarantee the potential of reduce the entire response time.

Proof. In parallel data analytics, a stage is finished when all
sites complete their allocated tasks. Thus, the entire response
time is determined by the bottleneck site, and is equal to
t
old
max. When some tasks are transferred from the bottleneck

site to other sites, the t
old
max will be reduced. Consider the

simple case in which the tasks of the bottleneck site are only
transferred to site i in which the response time is minimum
across all site. After the task transfer, if the response time
of site i is less than t

old
max, the response time of site max is

also decreased, then the gap of these two sites is narrowed,
as well as the gap among all sites. Let t

new
max denote the

maximum response time of the new task placement strategy
which follows the above conditions. Based on Theorem 1,
t
new
max is less than t

old
max, which means the decrease of entire

response time.

Theorem 3. In the map stage, if site 1 needs to transfer k data to
site 2, site 3 requires l data to be transferred from site 2, and site 1
needs to transfer m data to site 3, we can determine other transfer
strategies whereby the job response time is less than or equal to
the response time of the original transfer strategy, as illustrated in
Fig. 5.

Proof. Assume that the upload and download bandwidths
of site i are B

i
up and B

i
down, respectively. Hence, in Fig. 5(a),

the transfer time of site 1 is 0, because it does not need to
obtain data from other sites. The transfer time of site 2 is
max((k + m)/B1

up, k/B
2
down) and the transfer time of site

3 is max(l/B2
up, (m + k)/B1

up, (l + m)/B3
down). However,

8

Algorithm 1: SDTP at the map stage.
1 Obtain x by solving P4 based on Ai, Bi

down, Bi
up, and

Si;
2 Calculate the map response time T i

e,m of each site,
bottleneck site m, and difference ratio r;

3 Call decreaseInputData(T i
e,m, x) to obtain new x;

4 Call equalResponseT ime(T i
e,m, x) to obtain new x;

5 return x;

6 Function decreaseInputData(T i
e,m, x)

7 T = Tm
e,m;

8 while r � � and Tm
e,m T do

9 T = Tm
e,m;

10 Obtain the sites I where xl
m > 0, l 2 I ;

11 for l in I do
12 Reduce xl

m by �%;

13 Calculate the new map response time T i
e,m of

each site, bottleneck site m, and difference ratio
r;

14 return x, T i
e,m;

15 Function equalResponseTime(T i
e,m, x)

16 T = Tm
e,m;

17 while r � � and Tm
e,m T do

18 T = Tm
e,m;

19 Sort T i
e,m and divide T i

e,m into two groups,
Gl, Gs;

20 Let T i
e,m = T j

e,m, l 2 Gl, j 2 Gs;
21 Check whether a loop exists and update x;
22 Calculate the new map response time T i

e,m of
each site, bottleneck site m, and difference ratio
r;

23 return x, T i
e,m;

if we adopt other strategies, as illustrated in Fig. 5(b) and
Fig. 5(c), the job response time will be less than or equal
to the response time of Fig. 5(a). If k < l, the transfer
time of sites 1 and 2 is 0, and the transfer time of site
3 is max((m + k)/B1

up, (l � k)/B2
up, (l + m)/B3

down). The
transfer times of the three sites are all less than or e-
qual to the transfer time in Fig. 5(a) and the computation
times of the three sites do not change. If k > l, the
transfer time of site 1 is 0, the transfer time of site 3 is
max((m + k)/B1

up, (l + m)/B3
down), and the transfer time

of site 2 is max((k � l)/B1
up, (k � l)/B2

down). In this case,
the transfer times of the three sites are also all less than or
equal to the transfer time in Fig. 5(a), and the computation
times of the three sites do not change. Therefore, Theorem 3
is proven.

Based on the above theorems, we propose Algorithm 1
to accelerate the wide-area data analytics by balancing the
response time of each site. First, we can solve problem
P4 by some classical linear programming algorithms (e.g.,
Ellipsoid method, Interior point method, Simplex method,
etc.) to determine the preliminary data transmission scheme
(step 1). Thereafter, the algorithm calculates the response
time T i

e,m for each site. T i
e,m is the sum of the transfer time of

site i and the computation time of site i (step 2). Subsequent-
ly, it calls function decreaseInputData(), which attempts to
adjust the data transmission scheme for reducing the map
response time (step 3). The process is repeated until r < � or

T
m
e decreases no more, where � is the expected maximum

difference ratio of the response time across all sites, and r

is the actual difference ratio among the response time of
all sites. For instance, Let t2 and t1 denote the maximum
response time and the minimum response time, respectively.
Then, the actual difference ratio r is (t2 � t1)/t1. In this
process, the algorithm attempts to reduce the response time
of site max at the map stage by decreasing its input data, as
in Theorem 2. The amount of decreased data of each step is
�% (step 12), and � is the adjusting step size. Specifically,
if site i transfers x

max
i data to site max in the original

scheduling scheme, site i will decrease the volume of data
to x

max
i ⇥ (1� �%) in this process.

Thereafter, to reduce the response time of the job
at the map stage further, we design another function
equalResponseT ime(). This function sorts the response
times of all sites and divides each site into two groups, Gl

and Gs, where each group has the same number of sites
(step 19). Next, it matches the items of the two groups one
by one and enables the matched sites to obtain the same
response time (step 20). For example, we assume that sites i
and j are matched, and site i has a larger response time. To
obtain the same response time, site i needs to transfer some
data to site j. Assuming that the amount of transfer data is y,
the following equation is solved: (Ai�y)/si⇥tmap+T

i
load =

T
j
load+x/max(Bi

up, B
j
down)+(Aj �y)/sj ⇥ tmap. Thus, site

i needs to transfer y GB of data to site j. Subsequently, we
verify whether the data transmission scheme depicted in
Fig. 5(a) exists in the calculated data transmission scheme
(step 21). Similarly, the process is repeated until r < � or
T

m
e no longer decreases. Finally, the map task placement

solution x is returned, which can achieve a reduced job
response time.

4.2 SDTP at the Reduce Stage
At the reduce stage, the shuffle time T

i
shuf of site i can be

formulated as Eq. 26. It is the maximum value among the
download time of site i to obtain all input data (T i

shuf,down)
and the upload time of several sites that need to upload a
certain ratio of data to site i (T j

shuf,up). The reduce compu-
tation time of site i is presented in Eq. 27, and tred is the
execution time of a reduce task.

T
i
shuf,down =

X

j2D,j 6=i

(Ijshuf ⇥ ↵i)/B
i
down (24)

T
j
shuf,up =

X

i2D,j 6=i

(Ijshuf ⇥ ↵i)/B
j
up (25)

T
i
shuf =max

j2D
(T i

shuf,down, T
j
shuf,up), j 6= i, I

j
shuf⇥↵i 6=0 (26)

T
i
red =

⇠
Ishuf ⇥ ↵i

Si

⇡
⇥ tred. (27)

Hence, in this case, the task placement problem P5 of the
reduce stage is formulated as follow:

min
↵

max
i

T
i
shuf + T

i
red

s.t. Constraints (24), (25), (26), (27).
(28)

Owing to the complexity of the above problem, we
continue with the simplification. We also require that all
reduce tasks are executed after the shuffle phase. Thus, the
goal of the reduce stage is transformed into Eq. 29, the

9

Times

Map

Data Loading Map Shufflle Reduce

Shufflle ReduceSite 1

Site 2

Data Loading

Fig. 6. Execution process of previous method.

Map

Data Loading Map

Shufflle Reduce

Shufflle Reduce

Site 1

Site 2

Times

Fig. 7. Execution process of SDTP.

shuffle time of the job is denoted by Eq. 30, and Eq. 31
represents the reduce computation time of the job. The task
placement problem P6 of the reduce stage can be formulated
as follows:

min Tshuf + Tred (29)
Tshuf = max(T i

shuf), i 2 D (30)

Tred = max(T i
red), i 2 D. (31)

This is a linear programming problem, and it can be
solved in polynomial time by existing solvers. However, the
job response time of the above formulation is not sufficiently
small. Owing to the constraints on the computing capacities,
the map tasks of one site are not executed at the same time,
and only a part of the tasks can be executed simultaneously
each time. Therefore, the tasks will be executed on different
waves. Once the tasks are completed, the intermediate data
that generated by those map tasks can be transferred to
the other sites, which will execute corresponding reduce
tasks using the generated intermediate data. That is, the
map phase is CPU intensive, and the shuffle phase is I/O
intensive, and the map computation phase may overlap
with the shuffle phase. However, the shuffle phase of a job
must start later than its map phase, and it cannot finish
earlier than its map stage. This is because the shuffle phase
must wait to transfer the intermediate data calculated by the
map phase.

Thus, we can formulate the job response time by over-
lapping the map computation and shuffle phases. Tshuf,load

represents the sum time of the first three phases of the job.
Once the first wave of map tasks in a site has been complet-
ed, the intermediate data of those map tasks generated on
this site and intermediate data can be transferred to other
sites, which will execute its reduce tasks after obtaining all
corresponding intermediate data. Therefore, the start time
of the shuffle phase on site i (T i

shuf,start) is equal to T
i
load

+ tmap, and T
i
load can be calculated by Algorithm 1. The

sum time of the input data loading phase, map computation
phase, and shuffle phase on site i is T

i
shuf + T

i
shuf,start.

The time of the first three phases of the entire job is the
maximum value among (T i

shuf + T
i
shuf,start), i 2 D and it

can be formulated as Eq. 33. Our objective is to minimize
the job response time (Eq. 32).

min Tshuf,load + Tred (32)
Tshuf,load = max

i2D
(T i

shuf + T
i
shuf,start) (33)

Algorithm 2: SDTP at the reduce stage
1 Calculate T i

load, T
i
map by Algorithm 1;

2 Obtain the shuffle start time based on T i
load, tmap;

3 Determine ↵ by solving P7;
4 Calculate the new response time T i

e of each site,
maximum site m, minimum site s, and difference ratio
r;

5 Call getRedTaskP lace(T i
e ,↵,m, s) to obtain new ↵ ;

6 return ↵;

7 Function getRedTaskPlace(T i
e ,↵,m, s)

8 T = Tm
e ;

9 while r � � and Tm
e T do

10 T = Tm
e ;

11 Update the reduce ratio ↵m � ↵m ⇥ �%,
↵s + ↵m ⇥ �%;

12 Calculate the new response time T i
e of each site,

maximum site m, minimum site s, and
difference ratio r;

13 return ↵;

T
i
shuf,start = T

i
load + tmap, i 2 D. (34)

Therefore, the task placement problem P7 can be formu-
lated as follow:

min Tshuf,load + Tred

s.t. Constraints (32), (33), (34), (31).
(35)

Considering the above characteristics, we design an al-
gorithm known as SDTP for reducing the response time of
the entire job. The basic concept is depicted in Fig. 7. In
contrast, the usual geo-distributed data analytics execution
process is presented in Fig. 6. The job can only start a new
phase when the previous phases on all sites have been
completed. Thus, massive resources are required for the idle
time during job processing. SDTP starts the data processing
as soon as possible and attempts to make full use of the
resources of the sites.

Specifically, as shown in Algorithm 2, the input data
loading time and map computation time at the map stage
are first obtained for each site by x, which calculated by
Algorithm 1 (step 1). Moreover, the start time of the shuffle
phase is determined according to T

i
load and tmap (step

2). Thereafter, the model of problem P7 is formulated. In
problem P7, the map and shuffle phases will overlap. The
linear programming problem P7 is solved using a linear
programming method to obtain the original reduce task
placement solution (step 3). Thereafter, the algorithm ob-
tains the difference ratio of the reduce tasks across all sites
and attempts to decrease the job response time by decreas-
ing the ratio of the reduce tasks on the bottleneck site. It
calls the function getRedTaskP lace(), which attempts to
mitigate part of the reduce tasks from the straggler site,
leading to the highest response time on the most vacant site
with the lowest response time. The rate of each adjustment
is �%. That is to say, the ratio of reduce tasks at the site m

and site s change to ↵m � ↵m ⇥ �% and ↵s + ↵m ⇥ �%,
respectively.

In Algorithm 1, the iteration times of the while loop in
lines 17 to 22 is a constant k, and the complexity of the
sort in line 19 is O(n log n). Thus, the complexity of the
function equalResponseTime() is O(kn log n). Problem P4 is

10

Algorithm 3: SDTP+
1 Build models m1(),m2() to predict the map response

time and reduce the response time;
2 Calculate x by solving problem P4;
3 Obtain the map response time T i

e,m by m1(), x,
bottleneck site m, and difference ratio r;

4 Call decreaseInputData(T i
e,m, x) to obtain new x ;

5 Follow steps 2 to 5 in Algorithm 2 to obtain new ↵ ;
6 return x,↵;

a linear programming problem, which can be solved by
normal solvers in polynomial time. Specifically, we adopt
the interior point method to solve problem P4 with the time
complexity O(n3.5

L
2) [37], where n represents the number

of variables, and L denotes the scale of the problem. Thus,
the complexity of step 1 is O(n3.5

L
2) and is higher than

that of function equalResponseTime(). Therefore, the overall
complexity of Algorithm 1 is O(n3.5

L
2). In Algorithm 2,

the most time-consuming process is calling Algorithm 1
for execution. Thus, the complexity of Algorithm 2 is also
O(n3.5

L
2).

5 FURTHER IMPROVEMENT OF SDTP
In this section, the dynamic nature of the WAN bandwidth
and the influence of the degree of parallelism are consid-
ered. The ever-changing WAN bandwidth and degree of
parallelism in the parallel computing will seriously affect
the job response time in wide-area data analytics. In this
section, the computation time of tasks at each site is pre-
dicted by the nonlinear regression algorithm. Based on the
more accurate time estimation, we formulate a suitable task
scheduling scheme to optimize the job response time. This
scheme can be generalized to dynamic situations.

5.1 Challenge of Accurate Time Estimation
A job with large input or large intermediate data can effi-
ciently harness additional parallelism; in contrast, a job run-
ning on small input data or with less efficiently paralleliz-
able operations will obtain few gains from extra parallelism.
Therefore, it is necessary to formulate the relationship of the
job running time to the size of the input data and degree of
parallelism.

For recurring jobs, the running time and intermediate
data sizes can be reasonable predicted [24], [38], [39]. In this
section, we use the multiple nonlinear regression algorithm
to predict the job running time. Based on these predictions,
the job running time can be further reduced. As we calculate
the task placement solution separately in each stage, we
construct the related model for the running time in each
individual stage. At the map stage, the task placement
problem P8 can be formulated as:

min
x

max
i

T
i
load + T

i
map

s.t. Constraints (16), (17), (18), (5), (6).
(36)

At the reduce stage, the task placement problem P9 can
be formulated as:

min
↵

max
i

T
i
shuf + T

i
red

s.t. Constraints (24), (25), (26), (12), (13), (14).
(37)

Algorithm 4: SDTP++
1 Calculate x,↵ by Algorithm 3;
2 Obtain the response time T i

e of each site by x,↵;
3 Measure the new WAN bandwidth Bi

d,n, B
i
u,n with the

interval tinter ;
4 if the change in the WAN > ⇢ then
5 if tc <= tmin

load then
6 Obtain the new input data Ai by x, tc;
7 Calculate x,↵ by Algorithm 3;

8 if tc > tmin
load and tc < tmin

map then
9 Get ↵ by

getRedTaskPlace(T i
e,m, x, Bi

d,n, B
i
u,n, Si);

10 return x,↵;

We first build the prediction models m1() and m2() to
predict the map time and reduce the response time on
each site (step 1). Next, we calculate the initial solution
x by solving P4 (step 2). Thereafter, we use the function
decreaseInputData(T i

e,m, x) in Algorithm 1 to obtain a
better transmission scheme at the map stage (step 4). In
this function, we use the prediction model m1() to calculate
the map computation time on each site. Subsequently, we
follow Algorithm 2 from steps 2 to 5 to obtain the final
task placement solution. In these steps, we also use the
prediction model m2() to calculate the map computation
time on each site.

5.2 Challenge of Dynamic Network Bandwidth
In addition to the scarcity, large variances exist in the WAN
bandwidth. The dynamic WAN bandwidth will significantly
affect the response time of the wide-area data analytic job.
For example, one site may contain sufficient bandwidth and
rich computing resources, and thus, it can execute a large
number of computation tasks of job A. During the execution
process of job A, the WAN bandwidth of the site decreases
sharply and the site have to spend more time to transfer
data to obtain the input data of job A. As a result, if the
original task placement strategy is not changed, the job
response time of job A will increase dramatically. Thus, it
is necessary to consider the dynamic nature of the WAN
bandwidth, especially for batch jobs with a long response
time.

Focusing on the dynamic WAN bandwidth, we design
a task placement update module, which provides a band-
width detection component to detect the bandwidth of each
site with a given interval. When the variation in the WAN
bandwidth exceeds ⇢, the module will change the task
placement solution according to the job execution state and
the variation in the WAN bandwidth. When the job is in
the input data loading phase, we first calculate the data
amount of each site, and subsequently determine a new task
placement at the map and reduce stages using Algorithm 3
(steps 5 to 7). If the job is in the map computation phase,
we continue to complete the map computation phase, and
thereafter calculate a new task placement at the reduce stage
using function getRedTaskP lace() in Algorithm 3 (steps
8 to 9). In this algorithm, we use the prediction model
to predict the reduction in the computation time of the
job on different sites. If the current time tc is larger than

11

 0

 10

 20

 30

 40

 50

 60

 70

 80

In-Place Iridium Tetrium

R
ed

uc
tio

n
in

 A
ve

ra
ge

 R

es
po

ns
e

Ti
m

e
(%

)
10-site
30-site

(a) Average response time.

 0

 10

 20

 30

 40

 50

 60

 70

In-Place Iridium Tetrium

Av
er

ag
e

Sl
ow

do
w

n
(%

)

10-site
30-site

(b) Average slowdown.

 0

 0.2

 0.4

 0.6

 0.8

 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 2

C
D

F

In-Place
Iridium

Tetrium

(c) CDF in slowdown when |D| = 10.

Fig. 8. Reduction in average response time, the average slowdown and CDF in slowdown compared to other approaches under different numbers
of sites.

t
min
map, we do nothing, because the shuffle phase will transfer

special data to the corresponding sites. A change in the
task placement will seriously affect the reduce response
time. The specific steps of the algorithm are presented in
Algorithm 4.

In Algorithm 4, there are no loops and the most time-
consuming process is calling Algorithm 3 for execution.
Thus, the complexity of Algorithm 4 is dominated by Al-
gorithm 3. In Algorithm 3, the function decreaseInputData()
is called for execution. In decreaseInputData(), the iteration
times of the while loop in lines 8 to 13 is a constant k and
the nested while loop in lines 11 to 12 is iterated p times,
where p is the number of sites. Hence, the complexity of
function decreaseInputData() is O(kp). It is also lower than
the complexity of solving the problem P4 in step 2. To
this end, the complexity of Algorithm 4 and Algorithm 3
is O(n3.5

L
2).

6 PERFORMANCE EVALUATION

In this section, we discuss the comprehensive evaluations
that were conducted to measure the performance of our
methods using the Google dataset [40], [41] and the Alibaba
dataset [42].

6.1 Experiment Settings
We construct two wide-area analysis environments with
10 and 30 geo-distributed heterogeneous sites, respectively.
The resource capabilities are set according to Amazon EC2.
More precisely, the bandwidth of each inter-site link ranges
from 100 Mbps to 2 Gbps, and the number of slots on each
site ranges from 10 to 100. Moreover, by default, we set
the ratio between the intermediate data and input data q

as 0.5, the excepted difference ratio among response times
of all sites � as 0.1, and the adjusting step size � as 5. The
execution time of a map task tmap ranges from 10 to 120s
and the execution time of a reduce task tred ranges from 5
to 60s.

We use realistic trace data sets from Google and Aliba-
ba to emulate the geo-distributed data analytic jobs. The
Google trace [40], [41] collects the information of machines,
jobs, and tasks in a data center with 12.5k machines. The
events of the machines, jobs, and tasks are all described by
one or more records. Each record generally contains meta-
information such as the timestamp, ID, event type, and
resource request. The Alibaba trace [42] was published by
the Alibaba Group in 2018. It contains records regarding 4k
machines over a period of eight days. This trace includes

many types of batch workloads, most of which are DAG
jobs. The machines in Google trace and Alibaba trace are
randomly divided into 30 and 10 sites, respectively. Thus,
the workload of each site is combined by the tasks distribut-
ed on corresponding machines.

We compare our approach with the following methods
in our evaluations.

• In-Place: The default Spark approach which runs
tasks locally according to the input data placement
and assigns tasks evenly to all sites in the shuffle
phase.

• Iridium: A recent method that improves the job re-
sponse time by shuffle-optimized reduce task place-
ment for geo-distributed jobs.

• Tetrium: A state-of-the-art approach in recent years,
which aims to optimize the placement of the input
data and reduce tasks, as well as improve the job
response time.

6.2 Performance of Our Approach
We first evaluate the performance of our approach, namely
SDTP, by comparing it with several classical task placement
approaches in terms of the average response time and
average slowdown. We present the results of the reduction
in the average response time and reduction in the average
slowdown compared to various approaches. The slowdown
is defined as the reduction ratio of the response time of
a single job compared to that of other approaches. For
instance, the response time of job A using In-place is t1

and the response time of job A using SDTP is t2; thus, the
slowdown of job A compared to the response time using In-
place is (t1� t2)/t1. The average slowdown is the sum of all
slowdowns of each job divided by the number of jobs.

Fig. 8(a) presents the improvement of SDTP on the
average job response time under different numbers of sites.
From this figure, we can find that SDTP outperforms the
other baseline methods significantly. In particular, when
the number of sites is 10, our method reduces the average
job response time of all job types by 72%, 70%, and 29%
compared to In-Place, Iridium, and Tetrium, respectively.
Thus, our approach can effectively reduce the job response
time. When the number of sites is 30, our method reduces
the average job response time of all job types by 61%,
60%, and 19% compared to In-Place, Iridium, and Tetrium,
respectively. The reductions in the average response time
under the 10-site setting are more significant than those
under the 30-site setting. This is because more sites result

12

 0

 100

 200

 300

 400

 500

Small Medium Large All

R
at

io
 o

f A
ve

ra
ge

 R

es
po

ns
e

Ti
m

e
(%

)

In-Place
Iridium
Tetrium

(a) Average response time.

 0

 20

 40

 60

 80

 100

Small Medium Large All

Av
er

ag
e

Sl
ow

do
w

n
(%

)

In-Place
Iridium
Tetrium

(b) Average slowdown.

Fig. 9. Ratio of average response time and the average slowdown on
diverse scales.

in more computing resources being required to process the
job, and the overlapping time of the map computation and
shuffle phases is reduced. Thus, the reduction in the average
response time decreases with the increase in the number of
sites.

Fig. 8(b) also presents the reduction in the slowdown
compared to In-Place, Iridium, and Tetrium when the num-
ber of sites is varied. When the number of sites is 10, our
approach can reduce the average response time for each job
by 56% compared to the In-Place method. Thus, SDTP can
reduce the job response time for most of the wide-area data
analytic jobs. Similarly, with the increase in the number of
sites, the reduction in the average slowdown decreases. This
is also because with the increase in the number of sites, the
sum of the computing resources required to process the job
increases, and the overlapping time of the map computation
and shuffle phases decreases. Thus, the reduction in the
average slowdown decreases when the number of sites in-
creases. Furthermore, the reductions in the average response
time are less than the reductions in the average slowdown
according to the different baselines. This demonstrates that
SDTP is more effective for jobs with a long response time.

Fig. 8(c) presents the CDF in the slowdown compared
to other approaches when the number of sites is 10. It can
be observed that the slowdown mainly ranges from 0.1 to
0.8. Besides, compared with Iridium and In-Place, SDTP can
reduce the response time of almost all jobs by at least 10%,
and can reduce the response time of 50% jobs by 10% to 70%
compared to Tetrium. That is to say, SDTP can effectively
reduce the response time of most of the wide-area data
analytic jobs compared with other approaches.

Thereafter, we evaluate the improvement in the average
response time on jobs of different scales compared to In-
Place, Iridium, and Tetrium. We classify all jobs as small-
scale, medium-scale or large-scale jobs according to the
volume of input data that they required. If the amount of
input data of a job is no greater than 60 GB, it is regarded
as a small-scale job. If the amount of input data of a job is
greater than 60 GB and no greater than 600 GB, it is classified
as a medium-scale job. Otherwise, it is a large-scale job. In
this experiment, the number of sites is set to 10.

Fig. 9(a) presents the ratio of average response time
between baselines and our approach on diverse scales. This
figure demonstrates that the response time increases with
the increase of job scale. That is, our approach is more
effective for time-consuming jobs. This is because with the
increase in the scale of the jobs, SDTP can use more idle
resources to transfer data and process tasks. At the map
stage, the time-consuming jobs usually result in a greater

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

Map Reduce All

R
at

io
 o

f A
ve

ra
ge

 R

es
po

ns
e

Ti
m

e
(%

)

In-Place
Iridium
Tetrium

(a) Average response time.

 0

 20

 40

 60

 80

 100

Map Reduce All

Av
er

ag
e

Sl
ow

do
w

n
(%

)

In-Place
Iridium
Tetrium

(b) Average slowdown.

Fig. 10. Ratio of average response time and the average slowdown on
different components.

difference in the sum time of the data transmission and
map task execution across all sites. Thus, SDTP can use idle
resources to balance the sum time of the data transmission
and map task execution across all sites, thereby reducing
the time more. At the reduce stage, larger jobs result in
longer map computation and shuffle times, and the job
response time can be reduced further by overlapping the
map computation and shuffle phases.

Fig. 9(b) shows the slowdown of the job response time
with the increase in the scale of the jobs. The reduction in
the average slowdown ranges between 37% and 75% for
large jobs. Thus, our approach can effectively reduce the job
response time when the job scale is large. The reduction in
the average slowdown decreases with the increase in the
job scale. This is because with the growth in the amount of
input data, the response time of the jobs increases and the
time that SDTP can optimize becomes large.

Thereafter, we evaluate the influence of the average
response time on different components compared to In-
Place, Iridium, and Tetrium. Fig. 10(a) presents the ratio of
average response time between baselines and our approach
with different components. When using only Algorithm 1
at the map stage, the ratios of average response time under
In-Place, Iridium, and Tetrium compared to SDTP are 318 %,
290%, and 123%, respectively. When using only Algorithm 2
at the reduce stage, the reduction in the average job response
time is greater than the reduction in the average job response
time when using Algorithm 1. That is, Algorithm 2 can
reduce job response time more than Algorithm 1. When
using Algorithms 1 and 2 simultaneously, the reduction in
the average job response time is greater than the reduction
in the average job response time when using only one
algorithm. That is, using Algorithms 1 and 2 simultaneously
results in less job response time. Furthermore, the reduction
in the average job response time using Algorithms 1 and
2 simultaneously is less than the sum of the reduction in
the average job response time when using Algorithm 1
and Algorithm 2 separately. This is because optimizing the
map stage with Algorithm 1 definitely changes the input
of the reduce stage, which decreases the performance of
Algorithm 2, since Algorithm 1 makes the data distribution
more balanced among different sites.

Fig. 10(b) depicts the reduction in the average slowdown
compared to the other approaches. It can be observed
that the reduction in the average slowdown when using
Algorithm 2 is slightly greater than the slowdown when
using Algorithm 1. This demonstrates that Algorithm 2 is
more effective in reducing the job time. Furthermore, when
using Algorithms 1 and 2 simultaneously, the reduction in

13

 0

 20

 40

 60

 80

 100

0.01 0.05 0.1 0.25 0.5 0.75 1

R
at

io
 o

f A
ve

ra
ge

 R

es
po

ns
e

Ti
m

e
(%

)

(a) Ratio of average response time.

 0
 20
 40
 60
 80

 100

 0 0.2 0.4 0.6 0.8 1

R
ed

uc
tio

n
in

 A
ve

ra
ge

 R

es
po

ns
e

Ti
m

e
(%

) In-Place
Iridium

Tetrium

(b) Reduction in average response
time.

Fig. 11. Influence of ratio of q.

 0

 50

 100

 150

 200

0.2 0.4 0.6 0.8 1

R
at

io
 o

f A
ve

ra
ge

 R

es
po

ns
e

Ti
m

e
(%

)

(a) Ratio of average response time.

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

R
ed

uc
tio

n
in

 A
ve

ra
ge

 R

es
po

ns
e

Ti
m

e
(%

) In-Place
Iridium

Tetrium

(b) Reduction in average response
time.

Fig. 12. Influence of number of slots.

the average slowdown is greater than the reduction in the
average slowdown when using only one algorithm.

6.3 Impact of Varied Parameters
In this section, we quantify the impact of diverse parameters
on SDTP, including the ratio of the intermediate data to
the input data at the map stage q, the number of slots, the
expected maximum difference ratio � and the adjusting step
size �.

Fig. 11(a) depicts the influence of q. The figure indicates
the ratio of the response time to T for different q values,
where T is the response time when q = 1. It can be observed
that the job response time increased with the increase in q.
This is because a larger q will produce more intermediate
data. Transmitting intermediate data at the shuffle phase
and handling intermediate data at the reduce stage can both
increase the overall response time.

Fig. 11(b) illustrates the reduction in the average re-
sponse time with different q values compared to In-Place,
Iridium, and Tetrium. It can be observed that, with the
increase in q, the reduction in the average response time
increases compared to Tetrium, whereas the reduction in
the average response time is relatively stable compared to
In-Place and Iridium. The reason for this is that, with the
increase in q, the amount of intermediate data increases.
SDTP can effectively reduce the response time at the reduce
stage by overlapping the map computation and shuffle
phases compared to Tetrium. As the job response time of
In-Place and Iridium is very long, SDTP can make full use
of the idle resources to reduce the job response time, and
thus, the reduction in the average response time is always
large compared to those of In-Place and Iridium.

Different numbers of slots will also affect the job re-
sponse time. Fig. 12(a) indicates that the reduction in the
average job response time decreases with the increase in the
number of slots. In this experiment, the number of slots on
each site ranges from 100 to 1000 when the ratio of the slot
number is 1. When the ratio of the slot number is 0.1, the
number of slots on each site is equal to the number of slots
when the ratio of the slot numbers is 1 multiplied by 0.1.
Thus, the number of slots increases with the increase in the

(a) Influence of �.

 0

 20

 40

 60

 80

 100

 120

 140

1 5 10 20 30 40 50

R
at

io
 o

f A
ve

ra
ge

 R

es
po

ns
e

Ti
m

e
(%

)

(b) Influence of �.

Fig. 13. The influence of � and �.

ratio of the slot numbers. The figure indicates the ratio of
the response time to T with different ratios, where T is the
response time when the ratio of slot numbers is 1. It can
be observed that the job response time is reduced with the
increase in the number of slots. When a site has more slots,
it can process the map and reduce tasks more rapidly, and
thus, the time of the map and reduce computation phases is
decreased.

The reduction in the average response time with differ-
ent numbers of slots compared to In-Place, Iridium, and
Tetrium is illustrated in Fig. 12(b). It can be observed that
the reduction in the average response time decreases with
more slots. This is because when sites have more slots, the
map and reduce computation times decrease, and thus, the
time that SDTP can improve is limited, particularly at the
reduce stage.

Finally, we measure the influence of the expected max-
imum difference ratio � and the adjusting step size �.
Fig. 13(a) shows the influence of �. We count the number
of iterations and demonstrate the ratio of the response time
to T for different � values, where T is the response time
when � = 0.01 at the map stage. With the increase of �,
the average response time grows rapidly. Specifically, the
average response time when � = 1 is 10% higher than that
when � is set as 0.01. That is to say, the trend of the reduction
of the response time increases with the decline of �. On the
other hand, the smaller value of �, the more iterations the
algorithms required meaning the longer execution time. To
better trade-off the efficiency and performance of algorithm
1 at the same time, we assign � as 0.1. When � = 0.1, the
average response time is only 0.75% less than that when
� = 0.01. Moreover, the average iteration amounts for
scheduling one job when � = 0.1 is about 20 times less
than that when � = 0.01.

Fig. 13(b) shows the influence of adjusting step size.
It presents the ratio of the average response time T for
different �, where T is the average response time when
� = 1. With the increase of �, the average response time
also increases. This indicates that using smaller � results in
less job response time.

6.4 Impact of Parallelism
Considering the impact of parallelism in parallel computing,
we first evaluate the accuracy of our prediction method on
the response time at different stages. Thereafter, we modify
our algorithms and other benchmarks by computing more
accurate computation time with our prediction method, and
then analyze the deviation of the unmodified approaches
from the actual values. Finally, we evaluate the performance
of SDTP+.

14

 0

 20

 40

 60

 80

 100

 120

Small Medium Large All

AP
E

(%
)

In-Place
Iridium
Tetrium
SDTP

(a) Absolute percentage errors.

 0

 5

 10

 15

 20

 25

 30

 35

Small Medium Large All

R
ed

uc
tio

n
of

 A
ve

ra
ge

 R

es
po

ns
e

Ti
m

e
(%

)

In-Place
Iridium
Tetrium

(b) Average response time.

Fig. 14. Absolute percentage errors and reduction in average response
time with prediction computation time.

We measure the time of multiple queries with different
data amounts and degrees of parallelism running on Spark
using BigDataBench [25]. Based on the results, we use
the multiple linear regression algorithm to construct the
prediction model for the computation time in each stage.
The results demonstrate that the R2 statistics are all larger
than 0.9, where R is the correlation coefficient. The value
of the F-statistic is larger than the value according to the
F distribution table. The probabilities p corresponding to
the F -statistics are all less than 0.0001. That is, a strong
correlation exists between the amount of input data and
degree of parallelism, and thus, the prediction model is
effective.

To quantify the impact of the degree of parallelism, we
analyze the absolute percentage error (APE) of different
approaches. The APE is calculated as APE = |T � Tp|/T ⇤
100%. For example, T is the average response time of the In-
Place algorithm, and Tp is the average response time when
the computation time is calculated by the prediction model
in the In-Place algorithm. Fig. 14(a) presents the APEs of the
different algorithms for varying job scales. The APEs of the
algorithms are all greater than 20%.

Thus, if we only use the times of the map and reduce
tasks and the number of computation slots to calculate the
computation time at different stages, the final results of the
job response time will differ significantly from the actual job
response time. Moreover, the APE of Tetrium is larger than
those of the other approaches because Tetrium considers the
influence of the heterogeneity of computing resources on
different sites. The computation time for each site in Tetrium
is equal to V/Si ⇥ t, where V is the amount of data and t is
the execution time of a single task.

The reduction in the average response time on different
job scales compared to the In-Place, Iridium, and Tetrium
methods is illustrated in Fig. 14(b). It can be observed that
the improvement in the average response time of all jobs
is between 7% and 14%. Furthermore, when the scale of
jobs is large, the improvement in the average response time
of all jobs is between 20% and 26%. That is, the reduction
in the average response time increases with the increase in
the amount of data. Note that, due to the limitations of our
experiment environment, the size of input data used in this
experiment is no more than 100GB per site, which means
that many large-scale jobs are not considered. However, as
shown in Fig. 9(a), the larger size of input data, the greater
advantages our algorithms have over other benchmarks. If
these large-scale jobs are considered in this experiment, the
advantages of our algorithms will become greater.

 0

 100

 200

 300

 400

 500

 600

 700

Small Medium Large All

R
ed

uc
tio

n
in

 A
ve

ra
ge

 R

es
po

ns
e

Ti
m

e
(%

)

(a) Range from 0.1 to 2 GB/s.

 0

 20

 40

 60

 80

 100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

R
ed

uc
tio

n
in

 A
ve

ra
ge

 R

es
po

ns
e

Ti
m

e
(%

)

(b) Different fluctuation ranges.

Fig. 15. Reduction in average response time when WAN bandwidth
changed.

6.5 Dynamic Bandwidth
Fig. 15(a) presents the influence of the dynamic WAN links
on the job response time. The changed bandwidths of all
sites are randomly generated between 0.1 and 2 GB/s.
We measure the reduction in the average response time of
SDTP++ compared to SDTP+ when the WAN bandwidth
changed on different job scales. It can be observed from
Fig. 15(a) that there is a large reduction in the average
response time. Thus, if the WAN bandwidth is varied while
the task placement remains unchanged, the job response
time will become very long. When the scale of the job is
medium or large, the reduction in the average response
time is very large compared to that of small-scale jobs. Thus,
SDTP++ is more effective for time-consuming jobs.

The reduction in the average response time with dif-
ferent WAN bandwidths is illustrated in Fig. 15(b). In this
figure, the value of the abscissa � is the difference in the
WAN bandwidth. For example, when � is 0.1, the WAN
bandwidth Bi of each site range from Bi⇥0.9 to Bi⇥1.1. It
can be observed that the reduction in the average response
time increases with an increase in �. The reason for this is
that when � increases, a link with sufficient bandwidth may
become the bottleneck link, and the original data transmis-
sion scheme will cause a longer transmission time.

7 CONCLUSIONS AND FUTURE WORK

Cloud service providers and research institutes deploy da-
ta centers or edge clusters globally, which generate large
volumes of data across geo-distributed locations. We have
proposed a novel scheduling mechanism known as SDTP
for wide-area data analytics. This method attempts to bal-
ance the data transfer and task computation, and begins
the tasks as early as possible. Moreover, SDTP provides
more accurate time estimation and can be generalized to
dynamic situations. The evaluation results demonstrate that
SDTP can outperform existing state-of-the-art methods and
significantly improves the job response time.

In future work, we plan to realize our method on pop-
ular big data frameworks. There are mainly two challenges
to do so. Firstly, in the current big data frameworks (e.g.
Hadoop, Spark, etc.), the tasks of each stage are executed
when all tasks obtain their required input data. However,
in our approach, we assume that a site can execute task
computation once it gets its required input data. Thus, how
to realize a new task scheduling component to satisfy our
requirement is challenging. Secondly, with the sites dis-
tributed across different regions, task failures are more likely
to occur due to the unstable wide-area network. The task
failures may lower the performance of our methods. Thus,

15

coping with task failures or persistent data transmission is
an open problem.

ACKNOWLEDGMENT

This work is partially supported by National key re-
search and development program under Grant No
2018YFE0207600, National Natural Science Foundation of
China under Grant No. U19B2024 and No. 62002378, and
Tianjin Science and Technology Foundation under Grant
No. 18ZXJMTG00290.

REFERENCES

[1] Y. Huang, Y. Shi, Z. Zhong, Y. Feng, J. Cheng, J. Li, H. Fan, C. Li,
T. Guan, and J. Zhou, “Yugong: Geo-distributed data and job
placement at scale,” in Morgan Kaufmann/ACM VLDB, Los Angeles,
USA, August 26-30, 2019.

[2] K. Hsieh, A. Harlap, N. Vijaykumar, D. Konomis, G. R. Ganger,
P. B. Gibbons, and O. Mutlu, “Gaia: Geo-distributed machine
learning approaching lan speeds,” in USENIX NSDI, Boston, USA,
April 9-11, 2017.

[3] C. Hung, G. Ananthanarayanan, L. Golubchik, M. Yu, and
M. Zhang, “Wide-area analytics with multiple resources,” in ACM
EuroSys, Porto, Portugal, April 23-26, 2018.

[4] “Private conversation with datacenter operators of one of the
largest public cloud providers,” anonymized, Tech. Rep., 2016.

[5] W. Zhang, S. Li, L. Liu, Z. Jia, Y. Zhang, and D. Raychaudhuri,
“Hetero-edge: Orchestration of real-time vision applications on
heterogeneous edge clouds,” in IEEE INFOCOM, Paris, France,
April 29 - May 2, 2019.

[6] V. Farhadi, F. Mehmeti, T. He, T. F. L. Porta, H. Khamfroush,
S. Wang, K. S. Chan, and K. Poularakis, “Service placement and
request scheduling for data-intensive applications in edge clouds,”
IEEE/ACM Transactions on Networking, vol. 29, no. 2, pp. 779–792,
2021.

[7] H. Wang, D. Niu, and B. Li, “Turbo: Dynamic and decentralized
global analytics via machine learning,” IEEE Transactions on Paral-
lel and Distributed Systems, vol. 31, no. 6, pp. 1372–1386, 2020.

[8] Q. Pu, G. Ananthanarayanan, P. Bodík, S. Kandula, A. Akella,
P. Bahl, and I. Stoica, “Low latency geo-distributed data analytics,”
in ACM SIGCOMM, London, United Kingdom, August 17-21, 2015.

[9] J. Jiang, R. Das, G. Ananthanarayanan, P. A. Chou, V. N. Pad-
manabhan, V. Sekar, E. Dominique, M. Goliszewski, D. Kukoleca,
R. Vafin, and H. Zhang, “Via: Improving internet telephony call
quality using predictive relay selection,” in ACM SIGCOMM,
Florianópolis, Brazil, August 22-26, 2016.

[10] Z. Hu, D. Li, and D. Guo, “Balance resource allocation for spark
jobs based on prediction of the optimal resource,” Tsinghua Science
and Technology, vol. 25, no. 4, pp. 487–497, 2020.

[11] B. Zhang, X. Jin, S. Ratnasamy, J. Wawrzynek, and E. A. Lee,
“Awstream: Adaptive wide-area streaming analytics,” in ACM
SIGCOMM, Budapest, Hungary, August 20-25, 2018.

[12] S. Liu, L. Chen, B. Li, and A. Carnegie, “A hierarchical syn-
chronous parallel model for wide-area graph analytics,” in IEEE
INFOCOM, Honolulu, USA, April 15-19, 2018.

[13] Z. Hu, B. Li, and J. Luo, “Time-and cost-efficient task scheduling
across geo-distributed data centers,” IEEE Transactions on Parallel
and Distributed Systems, vol. 29, no. 3, pp. 705–718, 2018.

[14] W. Xiao, W. Bao, X. Zhu, and L. Liu, “Cost-aware big data
processing across geo-distributed datacenters,” IEEE Transactions
on Parallel and Distributed Systems, vol. 28, no. 11, pp. 3114–3127,
2017.

[15] W. Chen, I. Paik, and Z. Li, “Cost-aware streaming workflow
allocation on geo-distributed data centers,” IEEE Transactions on
Computers, vol. 66, no. 2, pp. 256–271, 2017.

[16] H. Hu, Y. Wen, T. Chua, and X. Li, “Cost-optimized microblog
distribution over geo-distributed data centers: Insights from cross-
media analysis,” ACM Transactions on Intelligent Systems and Tech-
nology, vol. 8, no. 3, pp. 1–18, 2017.

[17] L. Chen, S. Liu, B. Li, and B. Li, “Scheduling jobs across geo-
distributed datacenters with max-min fairness,” IEEE Transactions
on Network Science and Engineering, vol. 6, no. 3, pp. 488–500, 2019.

[18] W. Li, X. Yuan, K. Li, H. Qi, and X. Zhou, “Leveraging endpoint
flexibility when scheduling coflows across geo-distributed data-
centers,” in IEEE INFOCOM, Honolulu, USA, April 15-19, 2018.

[19] S. Liu, W. Hao, and B. Li, “Optimizing shuffle in wide-area data
analytics,” in IEEE ICDCS, Atlanta, USA, June 5 – 8, 2017.

[20] L. Luo, D. Guo, W. Li, T. Zhang, J. Xie, and X. Zhou, “Compound
graph based hybrid data center topologies,” Frontiers of Computer
Science, vol. 9, no. 6, pp. 860–874, 2015.

[21] C. Hung, G. Ananthanarayanan, P. Bodík, L. Golubchik, M. Yu,
P. Bahl, and M. Philipose, “Videoedge: Processing camera streams
using hierarchical clusters,” in IEEE/ACM SEC, Bellevue, USA,
October 25-27, 2018.

[22] W. Li, D. Guo, A. X. Liu, K. Li, H. Qi, S. Guo, A. Munir, and
X. Tao, “Coman: Managing bandwidth across computing frame-
works in multiplexed datacenters,” IEEE Transactions on Parallel
and Distributed Systems, vol. 29, no. 5, pp. 1013–1029, 2018.

[23] D. Guo, J. Xie, X. Shi, H. Cai, C. Qian, and H. Chen, “HDS:
A fast hybrid data location service for hierarchical mobile edge
computing,” ACM/IEEE Transactions on Networking, vol. 29, no. 3,
pp. 1308–1320, 2021.

[24] H. Mao, M. Schwarzkopf, S. B. Venkatakrishnan, Z. Meng, and
M. Alizadeh, “Learning scheduling algorithms for data processing
clusters,” in ACM SIGCOMM, Beijing, China, August 19-23, 2019.

[25] http://prof.ict.ac.cn/.
[26] H. Zheng and J. Wu, “Joint scheduling of overlapping mapreduce

phases: Pair jobs for optimization,” IEEE Transactions on Services
Computing, pp. 1–11, 2018.

[27] R. Viswanathan, G. Ananthanarayanan, and A. Akella, “Clarinet:
Wan-aware optimization for analytics queries,” in USENIX OSDI,
Savannah, USA, Novermber 2-4, 2016.

[28] A. Vulimiri, C. Curino, P. B. Godfrey, T. Jungblut, K. Karanasos,
J. Padhye, and G. Varghese, “Wanalytics: Geo-distributed analytics
for a data intensive world,” in ACM SIGMOD, Victoria, Australia,
May 31- June 4, 2015.

[29] K. Kloudas, R. Rodrigues, N. M. Preguiça, and M. Mamede,
“Pixida: optimizing data parallel jobs in wide-area data analytics,”
in Morgan Kaufmann/ACM VLDB, Kohala Coast, Hawai‘i, August 31
- September 4, 2015.

[30] A. Vulimiri, C. Curino, P. B. Godfrey, T. Jungblut, J. Padhye,
and G. Varghese, “Global analytics in the face of bandwidth and
regulatory constraints.” in USENIX NSDI, Oakland, USA, May 4-6,
2015.

[31] H. Wang and B. Li, “Mitigating bottlenecks in wide area data
analytics via machine learning,” IEEE Transactions on Network
Science and Engineering, vol. 7, no. 1, pp. 155–166, 2020.

[32] A. P. Iyer, A. Panda, M. Chowdhury, A. Akella, S. Shenker, and
I. Stoica, “Monarch: Gaining command on geo-distributed graph
analytics,” in USENIX HotCloud, Boston, USA, July 9, 2018.

[33] A. C. Zhou, S. Ibrahim, and B. He, “On achieving efficient data
transfer for graph processing in geo-distributed datacenters,” in
IEEE ICDCS, Atlanta, USA, June 5-8, 2017.

[34] L. Zhao, Y. Yang, A. Munir, A. X. Liu, Y. Li, and W. Qu, “Optimiz-
ing geo-distributed data analytics with coordinated task schedul-
ing and routing,” IEEE Transactions on Parallel and Distributed
Systems, vol. 31, no. 2, pp. 279–293, 2020.

[35] T. Magrino, J. Liu, N. Foster, J. Gehrke, and A. C. Myers, “Efficient,
consistent distributed computation with predictive treaties,” in
ACM EuroSys, Dresden, Germany, March 25-28, 2019.

[36] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and I. Stoica,
“Improving mapreduce performance in heterogeneous environ-
ments,” in USENIX NSDI, San Francisco, USA, December 11, 2008.

[37] N. Karmarkar, “A new polynomial-time algorithm for linear pro-
gramming,” in ACM STOC, Washington, USA, April 30 - May 2,
1984.

[38] S. Venkataraman, Z. Yang, M. J. Franklin, B. Recht, and I. Stoica,
“Ernest: Efficient performance prediction for large-scale advanced
analytics,” in USENIX NSDI, Santa Clara, USA, March 16-18, 2016.

[39] A. Gounaris, G. Kougka, R. Tous, C. T. Montes, and J. Torres,
“Dynamic configuration of partitioning in spark applications,”
IEEE Transactions on Parallel and Distributed Systems, vol. 28, no. 7,
pp. 1891–1904, 2017.

[40] https://commondatastorage.googleapis.com/clusterdata-2011-
2/, 2011.

[41] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch,
“Heterogeneity and dynamicity of clouds at scale: Google trace
analysis,” in ACM SOCC, San Jose, USA, October 14-17, 2012.

[42] https://github.com/alibaba/clusterdata, 2018.

16

Yiting Chen received MS degree in School of
information and communication from Guilin uni-
versity of electronic technology of China, Guilin,
China, in 2017. She is currently working toward
Ph.D in College of Systems Engineering, Nation-
al University of Defense Technology, Changsha,
China. Her current research interests include
geo-distributed data analytics, distributed com-
puting, and machine learning.

Lailong Luo received his B.S, M.S. and Ph.D
degree at the school of systems engineering
from National University of Defence Technolo-
gy, Changsha, China, in 2013, 2015 and 2019,
respectively. He is currently a lecturer in the
school of systems engineering, National Univer-
sity of Defense Technology, Changsha, China.
His research interests include probabilisitic data
structures and data analysis.

Deke Guo received the B.S. degree in indus-
try engineering from the Beijing University of
Aeronautics and Astronautics, Beijing, China, in
2001, and the Ph.D. degree in management sci-
ence and engineering from the National Univer-
sity of Defense Technology, Changsha, China,
in 2008. He is currently a Professor with the
College of System Engineering, National Univer-
sity of Defense Technology, and is also with the
College of Intelligence and Computing, Tianjin
University. His research interests include dis-

tributed systems, software-defined networking, data center networking,
wireless and mobile systems, and interconnection networks. He is a
senior member of the IEEE and a member of the ACM.

Ori Rottenstreich is an assistant professor
at the department of Computer Science and
the department of Electrical Engineering of the
Technion, Haifa, Israel. Previously, he was a
Postdoctoral Research Fellow at Princeton Uni-
versity. Ori received his B.Sc. degree in Com-
puter Engineering and Ph.D. degree in Electrical
Engineering from Technion.

Jie Wu is the associate vice provost for inter-
national affairs with Temple University. He also
serves as the chair and Laura H. Carnell pro-
fessor with the Department of Computer and
Information Sciences. Prior to joining Tempe U-
niversity, he was a program director with the US
National Science Foundation and was a distin-
guished professor with Florida Atlantic Universi-
ty. His current research interests include mobile
computing and wireless networks, routing proto-
cols, cloud and green computing, network trust

and security, and social network applications. He regularly publishes
in scholarly journals, conference proceedings, and books. He serves
on several editorial boards, including the IEEE Transactions on Ser-
vice Computing and the Journal of Parallel and Distributed Computing.
He was general co-chair/chair of the IEEE Mobile Adhoc and Sensor
Systems 2006, the IEEE International Parallel & Distributed Processing
Symposium 2008, IEEE ICDCS 2013, and ACM MobiHoc 2014, as well
as program co-chair for IEEE INFOCOM 2011 and CCF CNCC 2013. He
was an IEEE Computer Society distinguished visitor, ACM distinguished
speaker, and chair of the IEEE Technical Committee on Distributed
Processing (TCDP). He is a fellow of the IEEE.

