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LEO Satellite Networks: When Do All Shortest
Distance Paths Belong to Minimum Hop Path Set?

Quan Chen, Lei Yang, Deke Guo, Bangbang Ren, Jianming Guo, and Xiaogian Chen

Abstract—Low-Earth orbit (LEO) satellite constellation net-
work (SCN) has become a promising solution for non-terrestrial
networks (NTNs). In LEO-SCN:s, the shortest distance path (SDP)
and minimum hop path (MHP) are two types of important
paths.This paper focuses on the proposition that all the SDPs
belong to the MHP set and studies the conditions when the
proposition holds or not. Based on the topological regularity
and link distance variation patterns, this paper proves several
simplified equivalent propositions and derives a discriminant
function to judge if the proposition holds in an arbitrary
constellation. Simulations verify the judging method and find
that all the SDPs belong to the MHP set in constellations with
small inclinations (less than 68 deg) or large phasing offsets. The
propositions can help to simplify the calculation of SDP.

Index Terms—LEOQO satellite networks, constellation, routing,
inter-satellite link, shortest path, minimum hop path

I. INTRODUCTION

Low-Earth orbit (LEO) satellite constellation networks
(SCNs), especially mega-constellation networks, have become
an emerging technology for providing low-latency, broadband,
and wide-area network services [1], [2]. Studies have shown
that the LEO-SCNs have low-latency advantages over ground
networks in many scenarios [3].

The delay in LEO-SCN is mainly determined by the path
distance, thus many routing strategies search for the shortest
distance paths (SDPs) [4] which can be solved by classical
shortest path algorithms, e.g., Dijkstra algorithm [5]. The
minimum hop-count path (MHP) is also an important type of
path that has the least possible hops between two nodes [6].
In general wireless networks, it is difficult to find an explicit
relation between SDP and MHP if the links have irregular or
random lengths. Between two nodes, an SDP may have more
hops than the MHP. However, in LEO-SCN, it is possible that
all SDPs belong to the MHP set because of the regularity
and symmetry of the constellation topology and the periodic
variation of inter-satellite links (ISLs) [4]. If this proposition
holds, then the SDP calculation in the constellation can be
greatly simplified and limited to a smaller sub-graph.

Generally, the LEO-SCN has a mesh-like topology [3], and
thus the calculation of MHP in LEO-SCN is much simpler than
SDP. Moreover, since those MHPs define a local subgraph, if
SDP is strictly proved to belong to the MHP set, the solution
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of SDP can be simplified to within the subgraph, which greatly
lowers the complexity especially in mega-constellations.

Qu et al. [5] summarize the SDP and MHP and their
applications in routing strategies. Chen et al. [7] assume all
SDPs are also MHP and adopt the MHP instead of SDP as
the routing metric for low-latency. Also, some researchers have
investigated if all SDPs belong to the MHP set. Ekici et al.
[6] find the SDP is in the MHP set in some special cases, then
they exploit the latitude information to simplify the shortest
path calculation. But this algorithm only applies to polar
constellations with zero phasing offset. Duan [8] proposes
a judging condition for all SDPs belong to the MHP set in
polar constellation networks. But the condition is sufficient but
not necessary and only applies to limited cases. Therefore, a
general and analytical judging approach is needed.

This paper aims to provide a general method for judging if
all SDPs belong to the MHP set in a given LEO-SCN. The
original proposition is equivalently converted and simplified.
Then an explicit discriminant function is derived to judge if
the proposition holds or not. The judging condition is suffi-
cient and necessary. Finally, numerical simulations verify the
method. The main contributions are summarized as follows:

« In the typical constellation network topology, judging if all
SDPs belong to the MHP set is equivalently simplified to
judge the single-hop vertical detour case.

e Based on the ISL variation, a discriminant function and
analytical criterion are proposed to judge if all SDPs in a
given constellation network belong to the MHP set or not.

o Simulations verify the proposed judging method and the
results show that whether the proposition holds mainly
depends on the orbit inclination and phasing factor. All
SDPs belong to the MHP set in constellations with small
inclinations (less than 68 deg) or large phasing offsets.

II. CONSTELLATION NETWORK MODEL

A. Satellite Constellation and ISLs

The LEO-SCN typically adopts the Walker constellation
[5] that is formally expressed by a: Ng/Np/F, where « is
the orbit inclination, @ € (0,7), Ng is the total satellite
number, Np is the number of orbit planes, and F' is a phasing
factor. Np orbit planes with the same inclination and altitude
are regularly distributed along the equator, and these orbits
are evenly spaced by AQ) = 27/Np. Mp satellites are also
evenly distributed in each plane, Mp = Ng/Np. The satellite
position within the plane is specified by the satellite phase
angle u (u € [—m, 7]). The phase angle differences of adjacent
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Fig. 1. Constellation topology and ISLs. All V-ISLs have equal and constant
distances, while H-ISL distances are different and vary with satellite phase w.

satellites within the plane and between adjacent planes are
AD =27/Mp and Af = 2w F/Ng, respectively.

Fig. 1 shows the classical ISL connecting mode [4]. Each
satellite maintains four ISLs: two vertical (intra-plane) ISLs
(V-ISLs) with adjacent satellites within plane; two horizontal
(inter-plane) ISLs (H-ISLs) with satellites in adjacent orbits.

B. ISL distance variation

Because of the regularity and symmetry of the Walker
constellation, the ISL variation pattern of any satellite applies
to all the satellites in the constellation. The ISL distance is

d=+V2(Rg +hs)V1—cos© (1)

where Rp is the Earth radius, hg is the orbit altitude, and ©
is the Earth-centered angle between the two satellites. © of
V-ISLs is A® , while © of H-ISLs can be calculated by

cos O = ¢1 — cg cos(2u + Af) 2)
where ¢; = (cos?(AQ/2) — cos’asin®(AQ/2)) cos Af —
cosasin AQsin Af, co = sin®asin®(AQ/2). Based on (1)
and (2), the ISL distances have two characteristics:

o All the V-ISLs are of the same and constant distances;
o H-ISL distances are different and vary with satellite phase u.
In terms of H-ISLs, the derivative of d is

Y gy cosin(2u + Af) 3)

Since cg > 0,4/1 — cos © > 0, the sign of % is determined
by sin(2u + Af). The H-ISL distance reaches the minimum
at o/ = 2l — &F and the maximum at v’ = kr — 5.
The distance variation has a period of 7 and is symmetrical
about u = 5T — &L a5 later shown in Fig.6.

2 2

III. NOTATIONS AND DEFINITIONS

With the four-ISL connecting pattern, the virtual topology of
the constellation network is mesh-like or torus-like [3], [9] (see
Fig. 2). Each satellite S can be identified by a virtual address
(vs, hs) indicating the vg-th satellite in the hg-th orbit plane.
Any two satellites in the network are reachable via a multi-
hop path P. The vertical, horizontal, and total hop-counts of
P are denoted by NV(P), N*(P), and N(P), respectively.
The physical distance of P is d(P).
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Fig. 2. The mesh-like virtual topology of constellation. The SDP calculation
can be simplified to the MHP region if all SDPs belong to MHP set.
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Fig. 3. Examples of the horizontal detour. The dashed line indicates the
corresponding minimum hop path.
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Fig. 4. Examples of the vertical detour. The dashed line indicates the
corresponding minimum hop path.
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Definition 1. Minimum Hop Path (MHP). In the mesh-
like topology, the path from satellite A(va,ha) to B(vg, hpg),
Pyp, is not unique. The MHP between A and B is defined
as Pl = argminpep, 4 N(P). The set of all MHP P°
between all node pairs is denoted by P°.

Although each satellite has four ISLs, any satellite on
PQ; has at most two forwarding directions [6]. The
next-hop node on P9, is always closer to B in terms
of hop-count. The required minimum hop-count of P9,
can be given by N(PYp) = NY(P%z) + N"(P%p),
where N?(P5) = min{|va —vp|, Mp — |va —vp|} and
Nh(PgB) = min{|hA - hB‘ ,Np - |hA - hBl} [1]

Definition 2. Horizontal and Vertical Detour. A non-
minimum hop path contains one or multiple detours. Pop
is a horizontal detour if hc¢ = hp and N"(Pcp) > 0,
as shown in Fig 3. Similarly, Pop is a vertical detour if
ve = vp and NY(Pcp) > 0, as shown in Fig 4. Due to
the mesh-like topology, a detour Pop has more hops than
Pg’D' N(PCD) — N(PgD) =2k, ke 7+,

Definition 3. Minimal Vertical Detour (MVD). If Pop is a
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Fig. 5. Minimal vertical detour(MVD) and single-hop vertical detour(SHVD).

vertical detour and all horizontal hops of Pop are successively
taken, then Pgp is defined as an MVD (see Fig. 5) and PMVP
denotes its set . Note that each vertical detour contains at least
one MVD. If Pcp € PMVD then NV(Pcp) = 2k, k € Z7.

Definition 4. Single-Hop Vertical Detour (SHVD). If Pcp €
PMVD and NY(Pcp) = 2, then Pcp is defined as an SHVD
(see Fig. 5). PSHVD denotes the SHVD set, PSHVD C pMVD |

Definition 5. Shortest Distance Path (SDP). The SDP be-
tween A and B is defined as Pjp = argminpep, ,1d(P).
Let P* denote an SDP between any given node pair.

IV. EQUIVALENT TRANSFORMATION OF PROPOSITIONS

The core proposition that all the SDPs belong to the MHP
set in an LEO-SCN can be expressed as P1: YP* € PO, This
paper aims at judging the conditions for the establishment
of P1. Based on the above definitions, we derive several
simplified necessary and sufficient conditions for P1, and
propose a discriminant function to judge if P1 holds or not.

Proposition 1. An SDP has no horizontal detour.

Proof. If Pop is a horizontal detour, as shown in Fig. 3,
then h¢ = hp, N*"(Pcp) > 0, while N*(P%,) = 0.
Since all the V-ISLs have the same physical distance d",
d(Pep) = N? (Pop)-dV + Y N(Fer) gl where dff > 0 is

the distance of i-th H-ISL; while d(P2,) = N* (P2p) -d".
Since NV(Pcp) > NY(P&p), then d(Pcp) > d(P2p), the
horizontal detour must be longer than the corresponding MHP.
Because any segment of the SDP should also be an SDP, the

horizontal detour cannot be included in an SDP. O

Note that the distances of H-ISLs are different and vary
with the satellite location. Although vertical detour introduces
extra vertical hops, if vertical detour reaches the location with
shorter H-ISLs and the saved distance of H-ISLs can make up
for the extra vertical hops, then the detour is shorter than the
MHP. Therefore, the vertical detour is possible in an SDP.

Proposition 2. A necessary and sufficient condition for VP* €
PYis that YPcp € PMVYP d(Pop) > d(P2)).

Proof. (1) Necessity: If Pop € PMVP| then v¢ = vp and
PYp, is unique. Given YP* € PY, thus P}, = P2j. Since
PMVD N PO — & if Pop € PMVP, then Pop ¢ PY and
Pep # PgD = Pt p. Thus d(Pep) > d(Php) = d(PgD).

(2) Sufficiency: If 3P* ¢ PO then P* has at least one detour.
According to Proposition 1, the detour must be a vertical
detour. Then there must be an MVD on the detour, and we
take it as Pop . Since any segment of P* is also the shortest,
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Fig. 6. H-ISL distance variation pattern.

then Pop = Pfp, d(Pop) < d(P2p). That is, if 3P* ¢ PY,
then 3Pcp € PMVP d(Pop) < d(P8p). The contrapositive
proves the sufficiency of the original proposition. O

Proposition 3. A necessary and sufficient condition for
VPcp € PMVD, d(PCD) > d(PgD) is that VPop € PSHVD,
d(Pcp) > d(P2p).

Proof. (1) Necessity: Since PSHVD C PMVD ' the necessity
is obvious.

(2) Sufficiency: As shown in Fig. 5, given Pop € PMVD, then
NY(Pgp) =2k, k € ZF, and d(Pop) = d(Pg, p ) +2k-d.
If VPcp € PSHYD d(Pop) > d(P2p) is given, since
(Peo, + P81D1 + Pp,p) € PSHVD " then d(P81D1) +
2dV > d(P2p). Similarly, d(PP, ) + 2d¥ > d(P2 p,).
v d(PY, ) +2dY > d(PY,_ p ). Then d(Pep) =
d(PY, p,)+2k-d” > d(PZ ). The sufficiency is proved. [

Combining Proposition 2 and 3, to judge if VP* € PO is
simplified to judge if VPcp € PSHVYP, d(Pop) > d(P2p).
Note that the above propositions apply to all LEO-SCNs with
the four-ISL pattern and mesh-like topology. Although H-
ISL distances vary with time (or satellite phase u), these
propositions apply to cases at all times.

As shown in Fig. 5, if Pcp € PSHVP q(Pop) =
d(P2, p,)+2d" . The H-ISL distance varies with u and can be
expressed as d?(u). Let the satellite phase of C be uy, then u
of the i-th node along P2, is u; = ug + (i — 1) Af, and u of
the corresponding i-th node along Pgl p, 18 u; = A®. Due to
the symmetry of d” (), analysis of solely u;+A® will suffice.
Let g(u;) £ d (u;) — d¥ (u; + A®). Assume N"(PLp) =
m, then the distance difference between Pg p and Pcop is
G(u1,m) £ d(P2p) — d(Pcp) = >~ g(u;) — 2dY, where
ui=uy + (i —1)Af and m = {1,2,..., |22 ]}.

Proposition 4. A necessary and sufficient condition for
VPop € PSHYD d(Pop) > d(P2p) is that Yu; €
—Af-A® T—Af-AD ST .
[—=5—==, 5———, we have the Discriminant Function
G (ur), and Gyr(uy) should satisfy

Gt (uy) 2 Zzl A7 (u;) — d¥ (u; + AD) —2dY <0 (@)

where M:min{L%J7 L%?Q“l—i—%]} and u; =uHi—1)Af.

Proof. If YPcp € PSHYD d(Pop) > d(P2p), then Yuq,m,
G(ui,m) < 0. The above two propositions are equivalent.
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TABLE I
RELATIONSHIP OF SDP AND MHP IN TYPICAL CONSTELLATIONS
Constellation ~ Parameter vp* ¢ PO
GlobalStar 52°0 48/81/0 Yes
Iridium-a 86.4°:66/6/2 Yes
Iridium-b 86.4°:66/6/0 No
OneWeb 87.9°: 648 / 18 /0 No
Starlink-I 53°. 1584 /721739 Yes

Next, let G™** be the maximum of G(uy,m), we search for
G™®* and further narrow the range of w; and m.

Given uy, G(uq,4) — G(ug,i — 1) = g(u;). Let g(u;) >0,
i.e., d(u;) > d" (u; + A®), based on the monotonicity and
symmetry of d (u) as discussed in Section II-B and shown

in Fig. 6, u; should satisfy f% < wit(uitd®) o z- %.
Let u; be u;, we obtain # <u; < %; let u;

be u,,, we obtain m < %72“1+%. Besides, in the mesh-

like topology, m < [%J [1]. Thus to keep g(u;) >0, the
maximum of m is M = min{[£Z |, [%72“1 + 31}. Then
G(u1,m) reaches G™** at m = M, and G(uy, M) is taken
as the discriminant function and denoted by Gjs(uy). The
above constraints of u; and m also specify the conditions
when G(uj,m) reaches G™**. Meanwhile, if Gpr(u1) <0
with u; in the specified range, then G™** < 0 and Yuq,m,
G(u1,m) <0. Thus, the ranges of u; and m are narrowed. [J

G s (uq) actually means the maximum distance gap between
the SHVD and MHP at u;. Note that since near-polar
constellations (e.g., o € [80,100] deg) are w-type [7], related
values should be modified by AQ = #/Np and M =
min{|Np — 1], L%jz“l + %]} in near-polar constellation
cases.

Proposition 4 offers an analytical criterion to judge if P1
holds or not. Based on (1) and (4), whether P1 holds depends
on four constellation parameter o, Np, M p, and F', but not h.

In addition to the theoretical value, P1 helps to simplify the
calculation of SDP. In a graph with n nodes, to solve the SDP
between two nodes, traditional methods need to traverse all
the n nodes. But if P1 holds, the SDP calculation only needs
to search the MHP region. Averagely, only 1/16 computations
are needed [7], saving over 93% computations.

V. SIMULATIONS AND RESULTS

Based on Proposition 4 and the discriminant function, we
examine if P1 holds or not in some typical constellations, as
listed in Table I. Based on Table I, we also test the Proposition
4 by Monte Carlo simulations which are independent of the
above formulations. For each constellation in which P1 holds
in Table I, we randomly generate 1x 10° node pairs at different
time and calculate the shortest path and its hop-count between
each pair, then check if it equals the minimum hop-count. The
results support the conclusion that in these constellations all
SDPs belong to the MHP set. The establishment of P1 also
means that the calculation of SDP in these constellations can
be simplified and only the MHP sub-region is needed.

We further study the effects of the four factors a, Np, Mp,
and F’ by examining if P1 holds with all the possible parame-
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Fig. 7. The maximum of the discriminant function with different o and F' (at
fixed Np = 18, M) = 36). G;*® = 0 is the critical plane. G'{;*” below
the plane means P1 holds in the corresponding constellation.

ter combinations. Np, Mp=[6,7,...,100], F=[0,1,..., Np —
1], @ € (0,120] deg and is discretized by 0.5 deg. Results
show that P1 always holds for any inclined constellations
with o < 68 deg. When o > 68 deg, the establishment of
P1 is mainly affected by o and F' rather than Np or Mp.
Fig. 7 gives an example of Np =18, M,=36. P1 holds in
most cases, but the surface above the critical plane indicates
that P1 does not hold when « approaches 90 deg and F' is
small. Based on d* (u), when o approaches 90 deg, | 42| and
g(u;) are greater, then G7** is greater; Similarly, a smaller
F allows greater M, which also leads to a greater G'j;**. In
these cases, P1 does not hold, i.e., it is possible to find a path
with vertical detour that has a shorter distance than the MHP.

VI. CONCLUSION

This paper derives some simplified equivalent propositions
when all SDPs belong to the MHP set and provides a dis-
criminant function to judge if the proposition holds or not.
Theoretical model and simulations show that the proposition
holds in constellations with small inclinations (e.g., less than
68 deg) or large phasing offsets.
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