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Near-accurate Multiset Reconciliation
Lailong Luo, Deke Guo, Xiang Zhao, Jie Wu, Ori Rottenstreich, Xueshan Luo

Abstract—The mission of set reconciliation (also called set synchronization) is to identify those elements which appear only in exactly
one of two given sets. In this paper, we extend the set reconciliation problem into three design rationales: (i) multiset support; (ii) near
100% reconciliation accuracy; (iii) communication-friendly and time-saving. These three rationales, if realized, will lead to unprecedented
benefits for the set reconciliation paradigm. Generally, prior reconciliation methods are mainly designed for simple sets and thus remain
inapplicable for multisets. The methods based on probabilistic data structures, e.g., the Counting Bloom Filter (CBF), support efficient
representation and multiplicity queries. Based on these probabilistic data structures, approximate multiset reconciliation can be enabled.
However, they often cannot achieve a statisfying accuracy, due to potential hash collisions. The reconciliations enabled by logs or lists
incur high time-complexity and communication overhead. Therefore, existing reconciliation methods, fail to realize the three rationales
simultaneously. To this end, we redesign Trie and Fenwick Tree (FT), to near-accurately represent and reconcile unsorted and sorted
multisets, respectively. Moreover, to further reduce the communication overhead during the reconciliation process, we design a partial
transmission strategy when exchanging two Tries or FTs. Comprehensive evaluations are conducted to quantify the performance of our
proposals. The trace-driven evaluations demonstrate that Trie and FT achieve near-accurate multiset reconciliation, with 4.31 and 2.96
times faster than the CBF-based method, respectively. The simulations based on synthetic datasets further indicate that our proposals
outperform the CBF-based method in terms of accuracy and communication overhead.

Index Terms—Multiset Reconciliation; Trie; Fenwick Tree; Counting Bloom Filter.
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1 INTRODUCTION

CONSIDER a pair of hosts HostA and HostB , which
hold the sets A and B, respectively. The goal of set

reconciliation for HostA and HostB is to search out the
different elements and thereby deduce the union AYB of
set A and set B. In fact, set reconciliation is a common and
fundamental task in a variety of networking scenarios and
distributed systems. For instance, in a distributed file system
[1], files usually need to be duplicated for disaster recovery
via set reconciliation. In peer-to-peer networks [2], any pair
of peers only need to exchange those missing blocks of a
file from each other. For wireless sensor networks [3], the
sink node only needs to collect those unobserved results
from other hosts. For gossip protocol [4], any two nodes
only need to exchange the different elements to save band-
width and accelerate the convergence. In cloud computing
applications, local devices (smartphones, laptops, robotics,
and wearable equipments) only upload or download the
nonexistent data from the Cloud [5].

The major challenge of set reconciliation is searching
out the different elements between two sets, and then ex-
changing them in an accurate as well as fast fashion. A
brute force method for set reconciliation is to transmit all
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elements in HostA to HostB with their multiplicities, and
vice versa. This method is absolutely not advisable due to
the huge cost of bandwidth. Alternately, a possible way
is maintaining a log mechanism with timestamps in each
host to record all the update events. Thereafter, whenever
the hosts communicate again, the updated data can be
synchronized. However, as stated in [6], the log mechanism
has its inherent shortcomings, including requirement of
system-level alterations, redundancy of hot items, lack of
scalability, and strict requirement of networking and storage
environment. Both the brute force method and the log-
based solution are not bandwidth-friendly, since common
elements may be exchanged between the hosts.

Therefore, several differential reconciliation techniques
are proposed to identify and then transmit the different
elements between set A and set B. Usually, the elements
in a set are represented as a list. After exchanging the lists,
HostA to HostB are able to determine and thereafter trans-
mit the different elements. The complexity to distinguish
different elements from common ones depends on the em-
ployed data structure. Consider a hash table as an example,
HostA has to query all elements in A against the hash table
from HostB , and vice versa. Thus, the time-complexity is
OpnA`nBq, where nA and nB are the number of elements in
A and B, respectively. To further reduce the communication
overhead, Bloom filter and its variants are employed to
represent elements [6] [7] [8] [9] [10]. The Bloom filter, in
contrast to the above, is space-efficient but probabilistic. As
a consequence, part of the different elements may not be
reconciled due to the potential false positive errors of the
data structure.

There are also several exact approaches based on the
theory of coding techniques. An error-correcting code based
method has been developed for this problem with nearly
optimal communication overhead by ranking string ele-
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ments in some order [11] [12] [13]. By evaluating the rational
function of the characteristic polynomials, the different (not
in common) strings can be decoded. This method can also
reconcile discrete random variables, by combining the error-
correcting mechanism with graph-coloring theories [14].
Unfortunately, this kind of solutions requires not less than
Opd3q time to decode the difference, where d is the number
of different elements between the sets. Besides, the differ-
ence estimators for these proposals are costly to implement.

Consequently, in this paper, we envision the following
three design rationales for set reconciliation: (1) multiset
support - the reconciled sets can be multisets which al-
low elements to have multiple replicas; (2) near-accurate
- almost all the different elements will be identified; (3)
communication-friendly and time-saving - the incurred
communication overhead during reconciliation process is
acceptable and the time-consumption is short. This vision,
if realized, will lead to unprecedented benefits for set recon-
ciliation. Firstly, we generalize the set reconciliation to mul-
tiset scenarios where existing reconciliation methods fail to
function well. Secondly, near-accurate reconciliation ensures
the QoS of the associated applications, since nearly all dif-
ferent elements will be identified and reconciled. Moreover,
many applications need to invoke the reconciliation process
frequently; hence, it is of great importance to reduce the
bandwidth consumption during each round of reconcilia-
tion, especially for bandwidth-scarce situations. The time-
saving characteristic further enhances the instantaneity of
the methods.

Existing methods, however, fail to achieve the three
rationales simultaneously. In fact, multiset generalizes the
notion of a set and has been widely employed in a vari-
ety of distributed systems. Besides the general fields like
philosophy, Logic, Linguistics, and Physics, multiset has
also found its applications in mathematics and computer
science [15]. Multisets has been applied in a variety of
search and sort procedures. In communication networks,
flows can be abstracted as a multiset by regarding a flow
as an element and letting the number of packets the flow
contains be the multiplicity. By gathering the flows together,
a monitor mechanism is achieved reasonably [16]. Generally,
in distributed scenarios, when two hosts need to maintain
the same content, the multiset reconciliation problem arises.

To settle the multiset reconciliation and achieve the
design rationales, we classify multisets into two categories,
i.e., unsorted or sorted multiset. In an unsorted multiset,
there is no strict constraint on the order of each element.
Indeed, unsorted multiset is the general case for multiset. By
contrast, in some special cases, an element is associated with
its location in the set, e.g., the time-dependent variables,
datasets with dedicated rules like the distance, similarity,
or dictionary order. This implies an order on the elements
of the set. Owning to such differentiation, we tackle the
reconciliation of unsorted multisets and sorted multisets
separately.

To reconcile two unsorted multisets, we first employ the
tree-like data structure Trie [17] to represent each multiset
by recording element information. Note that the traditional
Trie can only represent a simple set, and fails to record the
multiplicity of elements. Hence, we redesign the Trie by
extending its nodes with additional information. Likewise,

TABLE 1
Notations and definitions

Notation Definition
A, B The two input multisets to be reconciled
A˚, B˚ The root sets of A and B, respectively
nA, nB Number of elements in A˚ and B˚, respectively
mApxq Multiplicity of element x in A
DE Elements only exist in either A or B
DEA , DEB Elements only exist in A and B, respectively
DM Common elements, yet with diverse multiplicities
DMA

Elements such that mApxq ą mBpxq
DMB

Elements such that mBpxq ą mApxq
D The multiset denotes the different elements between A and B
d The number of distinct elements in D
dE , dM Number of elements in DE and DM , respectively
EA, EB Elements transmitted between hostA and hostB
r Ratio between dE and d
L Number of levels in the tree data structure
I Number of bits for an element identifier
C Number of bits an element contains

we further represent and reconcile two sorted multisets
by redesigning Fenwick Tree (FT) [18], with respect of
the three design rationales. Moreover, we design a partial
transmission strategy for Tries and FTs to further reduce the
communication overhead, during the reconciliation process.
The basic idea is to summarize a multiset with a tree-
like structure and prune identical subtrees that correspond
to identical subsets of elements. After such pruning, the
remained nodes only record the different elements.

The major contributions are summarized as follows:

‚ We formulate the set reconciliation problem and ex-
tend this problem into three design rationales, i.e.,
multiset support, near-accurate, and communication-
friendly and time-saving. To achieve the three design
rationales simultaneously, we redesign Trie and FT
to near accurately represent and reconcile multisets.

‚ To further decrease the caused communication over-
head, we investigate the partial transmission strat-
egy when exchanging Tries and FTs between hosts.
Specifically, by transmitting the Trie or FT part
by part, the identical subtrees can be recognized
and pruned and thus unnecessary transmission is
avoided.

‚ Comprehensive experiments are conducted to mea-
sure the performance of our proposals, in terms
of accuracy, communication overhead, and time-
consumption. The trace-driven evaluations demon-
strate that Trie and FT achieve near-accurate multiset
reconciliation, with 4.31 and 2.96 times faster than
the CBF-based method, respectively. The simulations
based on synthetic datasets further indicate that
our proposals outperform the CBF-based method in
terms of accuracy and communication overhead.

The remainder of this paper is organized as follows.
Section 2 briefly introduces several related data structures
and formulates the multiset reconciliation problem. Section
3 describes how Trie and FT near-accurately represent and
reconcile a pair of unsorted multisets and sorted multisets.
The communication overhead of our reconciliation methods
is quantified in Section 4. Section 5 presents the comprehen-
sive evaluations. Lastly, we discuss several related issues in
Section 6 and conclude this paper in Section 7.
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Fig. 1. A toy example of Trie which records three strings, i.e., “This”,
“Thin” and “The”.

2 PRELIMINARIES AND FORMULATIONS

In this section, we start with the basic concept of mul-
tiset followed by the three kinds of data structures that
are employed to realize multiset reconciliation. Thereafter,
we formulate the multiset reconciliation problem. Table. 1
summarizes the notations and their definitions in this paper.

2.1 Prior knowledge

2.1.1 Multiset
Unlike a simple set, a multiset allows elements to appear
for multiple times [15]. For clarity, several parameters are
employed to describe a multiset. Let x be an element
of a multiset A, then the multiplicity of x, denoted as
mApxq, is utilized to record the number of instances of x
in A. Besides, a simple set A˚ is defined as the root set
[15] of A such that A˚“txPA|mApxqą0u. A root set can
be shared by different multisets associated with different
element multiplicities. A multiset A can be characterized
as its root set and the multiplicity of each element. That
is, a multiset A can be represented as a set of pairs like
A“txx1,mApx1qy, ¨ ¨ ¨ , xxi,mApxiqy, ¨ ¨ ¨ u. The union of two
multisets A and B is to calculate a new multiset U such that
mU pxq“maxtmApxq,mBpxqu. Correspondingly, the inter-
section between two multisets A and B is a new multiset I
such that mIpxq“mintmApxq,mBpxqu.

2.1.2 Counting Bloom filter
As a typical probabilistic data structure, Counting Bloom
Filter (CBF) [9] is a well-known variant of the traditional
Bloom filter [8]. Bloom filter (BF) [8] represents n elements
with a bit vector of length m. All of the m bits in the
vector are initially set to 0. A group of k independent hash
functions, th1, h2, ..., hku, are employed to randomly map
each element into k positions, th1pxq, h2pxq, ..., hkpxqu, in
the bit vector. For each set element, those bits at such k
positions in the vector are all set to 1. Upon querying, if
any bit at the k hashed positions of the element equals 0, BF
judges that x does not belong to the set. CBF replaces each
bit in the BF vector with a counter consisting of multiple
bits [9]. In this way, it naturally supports deletions and
insertions of elements. The value of each counter can exceed
1. Assume an element x is hashed into the 4th, 10th, and
15th counters, while element y is hashed into the 5th, 15th,
and 24th counters, respectively. Consequently, the value is
1 for the 4th, 5th, 10th and 24th counters, but is 2 for the
15th counter. When the element x is deleted from the set,
the values of the 4th, 10th, and 15th counters are decreased
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Fig. 2. An illustrative example of Fenwick Tree.

by 1, but the value of the 15th counter still remains positive
(with a value of 2-1=1). That is, the membership information
of the element y is still kept in the updated CBF.

2.1.3 Trie
Initially, Trie was proposed to store strings [17] [19]. There-
after it has been widely employed in the area of routing,
information retrieval, image segmentation, geographic in-
formation systems, and even robotics. Basically, each string
is represented by a leaf in the Trie, and the value of the string
is the path from the root to this leaf. Trie is constructed
based on the prefix of the strings. Recursively, all strings
with a common prefix share a common node in the Trie. For
example, consider three strings, “This”, “Thin” and “The”.
As shown in Fig. 1, since they share a common prefix “T”,
these strings have the same root node in the generated Trie.
Similarly, “This” and “Thin” will share the same node “Thi”.
Note that, Trie may be inefficient due to its large amount of
nodes and long average depth. Hence, in real use, the path
compression technique [20] is utilized to prune the interval
nodes with only one child (an example is also given in
Fig. 1). Another alternative solution is the so-called level
compression technique [21], which replaces the ith highest
complete levels of a binary Trie (representing binary strings)
with a single node of degree 2i. In this paper, we employ the
path compression technique by default.

2.1.4 Fenwick Tree
Fenwick Tree (FT) is a data structure mostly employed for
representing an array of numbers and calculating a prefix
sum with the time-complexity of Oplog nq, where n is the
number of elements recorded by FT [18]. Adding an element
to an arbitrary position in the FT costs Oplog nq [22]. As
depicted in Fig. 2, a FT contains both Carry nodes and
Array nodes, denoted as Ci and Ai, respectively. Indeed,
a Carry node is responsible for recording the information of
a dedicated number of elements in the array. The content in
Ci can be calculated by the equation Ci “

ři
k“i´2σi`1Ak,

where σi is the number of consecutive zero bit in the suffix
of a binary representation of i. For instance, 4 is repre-
sented as 100 in the binary system and σ4“2, thus we have
C4“A1`A2`A3`A4. In other words, C4 stands for the first
4 elements in the array. Note that the number of Array nodes
in FT is exactly the same as the number of elements in the
array (for instance there are eight nodes of each kind in Fig.
2). Besides, for any Ci has σi`1 children and the locations of
these children can be derived as Ci´2j´1 , where j P r0, σis.
Usually, FT is employed to resemble binomial trees and
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therefore enables manipulations towards binomial queues
[23], since it provides lower maintenance cost (less storage,
more conceptional simplicity, lower time-complexity) than
previous proposals such as 2-3 trees [24], leftist trees [25].

2.2 Problem Formulation

Consider that two hosts, HostA and HostB , keep two
multisets, A and B, respectively. Reconciling A and B
means searching out and thereafter exchanging the different
elements, such that the multisets are updated in each of
the hosts till finally A“B. Prior reconciliation methods for
simple sets, however, remain inapplicable for the multiset
reconciliation. The reason is that, the difference between
two multisets stems from two sources. The first kind of
difference is DE , which denotes the elements only exist in
either A or B, i.e., DE“tx P A Y B|x R A or x R Bu.
Specifically, DEA denotes those elements that only exist in
set A, while DEB denotes those elements that only exist
in set B. Thus, we have DE“DEAYDEB . The second kind
of difference, denoted as DM , includes the elements which
appear in both A and B, but have distinct multiplicities,
i.e., DM“txPA

˚XB˚ |mDM pxq“|mApxq´mBpxq|u. Typi-
cally, DMA

denotes the common elements, whose multi-
plicities in A are larger than that in B. Meanwhile, DMB

denotes the common elements, whose multiplicities in A are
smaller than that in B. Thus, we have DM“DMA

YDMB
. By

contrast, from the view of hosts, letDA“DEAYDMA
denote

the different elements come from A, and DB“DEBYDMB

denote the different elements caused by B. Then we have
D“DAYDB“DEYDM .

To resolve the multiset reconciliation, we investigate
a reconciliation framework which contains the encoding,
subtracting, and decoding operations of involved mulitsets
and a series of general steps. The encoding, subtracting, and
decoding operations depend on the utilized data structures.
Thus, such operations may vary under different reconcil-
iation methods. Let EA (EB) represent the elements sent
from HostA (HostB) to HostB (HostA) during the recon-
ciliation. The following general steps, are indispensable in
accomplishing fast and efficient multiset reconciliation.

1) Each host executes the encoding operation, which
stores the information of each element in its multiset
with a dedicated data structure.

2) HostB sends the encoding result of multiset B to
HostA.

3) Given the encoding results of the two multisets,
HostA executes the subtracting and decoding op-
erations to derive those elements, which need to be
transmitted to HostB , i.e., EA.

4) HostA sends the subtracting result of the two en-
coding results together with EA, to HostB .

5) Once receiving content from HostA, HostB then
executes the decoding operation to identify those
elements in EB , which need to be sent to HostA.

6) HostB sends EB to HostA and the reconciliation
process is accomplished.

Ideally, an efficient multiset reconciliation method
should only exchange those elements in DE ’s root set, i.e.,
EA“pDEAq

˚ and EB“pDEB q
˚. That is, the elements in DE
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Fig. 3. Representing txx1, 8y, xx2, 4y, xx3, 13y, xx4, 4y, xx5, 6y, xx6, 2yu
with the redesigned Trie.

will be transmitted only once, and the host will generate
dedicated number of replicas of these elements such that
mApxq“mBpxq for all xPDE . Certainly, the elements in DM

will also be reconciled by generating replicas in each host,
rather than transmitting the elements directly. By doing so,
the reconciliation spends the least bandwidth. Therefore, in
this paper, we present the reconciliation methods based on
the redesigned Trie and FT. With our proposals, to save
bandwidth we try to avoid transmitting elements not inDE .

3 ACCURATE MULTISET RECONCILIATION

In this section, we consider the multiset reconciliation prob-
lem for achieving the design rationales. We find that im-
posing an order to all elements in a multiset is helpful in
deriving those different elements during the reconciliation
process. Therefore, we redesign the Trie data structure to
impose an order to the elements in unsorted multiset based
on their Ids. As for sorted multisets, the elements are
already given with a dedicated order. Thus, we redesign
the FT to establish an index tree without changing the given
order.

3.1 Representation of unsorted multisets
A challenging issue when representing an unsorted multiset
for reconciliation is that the employed data structure should
impose an order to all elements such that the different
elements between two multisets can be easily located. For-
tunately, a Trie naturally supports the ordering of elements,
since it constructs an index tree based on the Ids of all
elements it represents.

However, to represent a multiset, each node in a tradi-
tional Trie needs more information to record the multiplicity
of each covered element. As depicted in Fig. 3, the aug-
mented Trie contains two kinds of nodes, i.e., internal nodes
and leaf nodes. Internal nodes are responsible for construct-
ing the Trie by keeping the aggregated information. As for
the leaves, they record the basic information of each element
in the multiset with Id and Multiplicity. The Id field of a
leaf node is a fixed-length binary string, which uniquely
identifies this element. The Multiplicity field counts the
multiplicity of the element.

Each internal node consists of three fields: Prefix, CHash
and MHash. The Prefix represents the common bits in the
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Algorithm 1 Subtracting Tries at HostA
Require: The generated TrieA and TrieB , the number of bits

of each identifier (I).
1: for i“0 to I´1 do
2: Let Location be a vector of integers;
3: Location “ LocateSameNode(TrieA, TrieB , i);
4: % The locations of the same node in TrieA and TrieB

are saved in the even and odd positions of Location,
respectively.

5: for j “ 0 to Location.sizepq{2´1 do
6: TrieA “ PruneTrie (TrieA, Locationr2js);
7: TrieB “ PruneTrie (TrieB , Locationr2j`1s);
8: return TrieA and TrieB ;

Ids of elements covered by this internal node. We notice
that the same prefix may be shared by diverse combinations
of elements. Hence, the CHash field and MHamlsh field
are employed to further represent the subtrie roots from
this node. To calculate the CHash, we first combine the
prefix or CHash of its children together and then hash the
combination value to a unique number. For example, in
Fig. 3, left and right child of node “11011” are 11011110
and 11011101 respectively. We combine them together and
derive the combination as 1101111011011101. Note that,
when calculating the combination, we put the left child
before the right one. There is no strict requirement for the
order of its children, but for consistency one order should be
employed through out the algorithm. A hash function maps
the combination to be a unique number, i.e., ox2ed23af9
in the above example. As a result, the Prefix and CHash
together can determine the structure of the subtrie that roots
from this node. In other words, if two internal nodes have
the same Prefix and CHash, then all elements in the related
subtrie are the same with high probability.

Additionally, each internal node needs a field to repre-
sent the multiplicities of the elements in the subtrie. Note
that, simply adding the multiplicity of all its children to-
gether cannot accurately identify theMultiplicity of its chil-
dren, since different combinations of integers may lead to
the same sum result. Hence, we investigate the MHash field
to exclusively denote theMultiplicity of the elements in the
subtrie. To calculate the MHash, just like the calculation of
CHash we first combine the MHash of its children together
and then hash the combination value to a unique number.
For example, in Fig. 3,

To establish our redesigned Trie, three steps are needed.
Firstly, following its definition, we build the basic structure
of the Trie based on the Id of each element. Secondly,
we delete unnecessary internal nodes by employing the
path compress algorithm [20]. After compression, only n´1
internal nodes and n leaves remain in the resultant Trie.
Thirdly, we complete the fields of each internal node in a
bottom-up manner. In this step, the MHash and CHash of
each internal node are derived by combining the MHash and
CHash of its children together. In this way, the Prefix helps
to build the Trie, and the CHash and MHash exclusively
identify the elements and their multiplicities in the subtrie.
When reconciling, two multisets A and B are represented
as TrieA and TrieB , respectively. By traversing TrieA and
TrieB , our reconciliation method can prune the pair of
subtries if their nodes are exactly the same. The reconcili-

ation method avoids comparing nodes within the pruned
subtries, assuming they are identical for the two sets.

3.2 Reconciliation of unsorted multisets

Following the six steps presented in Section 2.2, once receiv-
ing TrieB from HostB , HostA compares TrieA and TrieB
to identify those elements in DEA and DMA

. Similarly,
HostB will derive DEB and DMB

by comparing TrieA and
TrieB . After exchanging the diverse elements in DEA and
DEB , the reconciliation will be accomplished.

Encoding. The encoding operation for an unsorted mul-
tiset is to represent a multiset by correctly building a re-
designed Trie. Given the Id of each element, according to
the definition, a Trie for a multiset can be easily constructed.
Note that the same set of hash functions should be em-
ployed when calculating the Id of each element at HostA
and HostB . An identical element at HostA and HostB will
result in the same Id. Besides, to lessen the potential hash
conflicts, the length of Id should be long enough.

Subtracting. The mission of subtracting at each host is
to prune the pairs of subtries which stand for the same set
of elements. As a result, only those different elements will
remain in the Tries. Generally, two schemes are available
to traverse the Tries, i.e., the breadth-first search (BFS) and
the depth-first search (DFS). Note that, the BFS scheme
can prune the subtries early. By contrast, the DFS scheme
will locate the first different element quickly, allowing to
transmit the different elements early. We employ the BFS
scheme since it prunes the subtries more quickly.

Taking the subtraction atHostA as an example, the detail
is given in Algorithm 1. Note that, if an Id consists of I bits,
then the Trie includes at most I`1 levels of nodes. The BFS
scheme searches the Trie level by level. In each level, the
algorithm first calculates the locations of those same nodes
in the two Tries (Line 3). The vector Location records the
locations of such pairs in TrieA and TrieB , respectively.
Then we prune those same nodes in both TrieA and TrieB .
Eventually, the resultant TrieA and TrieB just represent the
different elements.

Decoding. After pruning those same elements, HostA
and HostB decode the remaining Tries to derive the differ-
ent elements. Since the Id in each leaf node identifies the
element, the decoding operation can be realized by compar-
ing the Id part of the left leaves. Note that by traversing the
Tries, we cannot only search out the difference between the
two multisets, but also distinguish DE from DM . For any
pair of internal nodes, if their Prefix and CHash are the same
but have diverse MHash, those elements covered by the two
nodes belong to DM . On the contrary, if neither Prefix nor
CHash is the same, then at least one of the elements covered
by the two nodes belongs to DE . Differentiating DE and
DM is of great significance in decreasing the communication
overhead, since only those elements in DE are required to
be sent to the other host. As for those elements in DM , the
host just needs to generate given numbers of replicas. For
example, if mApxq“3 and mBpxq“5, HostA just needs to
derive 2 additional instances of x, instead of receiving two
copies of x from HostB .

With the above operations and following the steps in
Section 2.2, Trie supports the reconciliation of two unsorted
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Fig. 4. A toy example of representing a sorted multiset with FT.

multisets reasonably. During the reconciliation, the two Tries
should be transmitted to derive the different elements. The
transmitting strategy is later introduced in Section 3.5.

3.3 Representation of sorted multisets
The redesigned Trie structure for an unsorted multiset,
however, is not necessary for a sorted multiset. The reason
is that all elements have already formed a given order in
a sorted multiset. For this reason, we redesign the Fenwick
Tree (FT) to represent and reconcile sorted multisets near
accurately.

As shown in Fig. 4, an FT consists of two kinds of nodes,
i.e., the Carry nodes and the Array nodes. The Carry nodes
are responsible for recording the aggregation information of
the elements they represent, and Array nodes store the raw
information of each element. Each Array node includes two
fields, i.e., the hashV alue that identifies each element, and
theMultiplicity field that counts the number of instances of
an element. The hashV alue is generated by hashing the ele-
ment to a specific interval, e.g., r0, 220´1s. As for each Carry
node, it consists of the CHash and MHash fields. Similar
with the internal nodes in Trie, the CHash is also calculated
by hashing the combination of the hashV alue or CHash of
all its children. The MHash field is derived by hashing the
combination of its children’s MHash or Multiplicity to be
an integer. In this way, a sorted multiset can be represented
by our redesigned FT.

When comparing two FTs, the CHash field judges
whether the two subtrees stand for the same elements, and
the MHash field tells if they have the same multiplicity.
The different elements will be reflected in the CHash fields.
Therefore, to reconcile sorted A and B, HostA and HostB
establish and exchange FTA and FTB , respectively. During
traversing, the same subtrees in FTA and FTB are pruned
and thereby exposing the different elements. The specific
operations will be detailed thereafter.

3.4 Reconciliation of sorted multisets
In this section, we begin our proposal with the design of en-
coding, subtracting and decoding operations for FTs. Since
the elements are pre-ranked, we only need to aggregate the
elements together to speed-up the reconciliation processes.

Encoding. The encoding operation means to represent
a multiset as an FT structure. This encoding task is simple
since the children of each Carry node are determined and
can be calculated directly. To ensure that the same elements

Algorithm 2 Subtracting FTs at HostA
Require: The generated FTA and FTB , the number of levels in

the FT L.
1: for i“0 to L´1 do
2: Let Location be a vector of integers;
3: Location “ LocateSameNode(FTA, FTB , i);
4: % The locations of the same node in TrieA and TrieB

are saved in the even and odd positions of Location,
respectively.

5: for j “ 0 to Location.sizepq{2´1 do
6: FTA “ PruneTrie (FTA, Locationr2js);
7: FTB “ PruneTrie (FTB , Locationr2j`1s);
8: return FTA and FTB ;

have the same hashV alue, HostA and HostB should em-
ploy the same hash function to derive the unique fingerprint
of each element.

Subtracting. As stated in section 2.2, after exchanging
the resulted FTs, the two hosts will traverse both FTA and
FTB to distinguish the different elements. Similar with the
traverse algorithm used by Tries, we employ the BFS scheme
to compare the nodes in FTs. In this way, the algorithm will
prune the same subtrees rapidly. Without loss of generality,
we elaborate the subtracting operation at HostA. As illus-
trated in Algorithm 2, if the maximum number of levels
in FTA and FTB is L, the algorithm will be repeatedly
executed for L rounds. In each round, we first find out the
same nodes and denote them in the integer vector Location
(Line 3). Then, for each same pair of nodes, we prune the
same subtree from FTA and FTB . For any pair of Carry
nodes, if they share the same CHash and MHash, we believe
that they represent the same elements. Otherwise, they have
at least one different element. After pruning, the remained
elements in FTA and FTB are just those elements in DA

and DB .
Decoding. After the subtracting operations, the resultant

FTA and FTB only contain those elements in D. By judging
the hashV alue and theMultiplicity of the left Array nodes,
the reconciliation algorithm will recognize those different
elements. At last, HostA and HostB exchange the distinct
elements in DA and DB , and the reconciliation process is
completed. Note that, by comparing the nodes in FTs, the
reconciliation algorithm can also distinguish DE from DM .
Specifically, if two nodes share the same CHash but differ
in the MHash field, these two nodes only cover elements
in DM . If the CHash fields are distinct, these two nodes
must cover at least one element belongs to DE . Also, to
save bandwidth and shorten reconciliation time, only the
elements in DE should be transmitted. The elements in DM

will be reconciled via producing replicas at each host.
By executing the designed operations and following the

reconciliation steps, the redesigned FT enables the sorted
multiset reconciliation. Also, the FTs need to be exchanged
between the two hosts. To further save bandwidth, the
partial transmission strategy is introduced.

3.5 Bandwidth-saving exchanging

As stated above, the redesigned Trie and FT are employed
to represent and reconcile multisets near-accurately. Dur-
ing the reconciliation process, HostA and HostB exchange
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TrieA and TrieB (or FTA and FTB), to distinguish the
different elements in multisets A and B. A straightforward
way is to transmit the whole data structure to the other
host directly. This method, however, leads to inefficient
communication, since it transmits all nodes in the associated
data structures. Typically, it is unacceptable in bandwidth-
scarce networks.

Fortunately, we notice that the nodes in Trie or FT can
be transmitted one by one or part by part. By determin-
ing whether the nodes in the subtrie or subtree should
be transmitted, unnecessary communication overhead can
be avoided. Consider the situation that HostA sends an
internal node TrieAris to HostB . Upon receiving TrieAris,
HostB searches TrieB with the BFS searching scheme and
decides whether there exists a node that is exactly the
same with TrieAris. If the result is true, it means both
A and B have the same elements, which are represented
by the subtrie rooting from TrieAris. Hence, the nodes in
the subtrie rooted from TrieAris will be deleted from both
TrieA and TrieB . Note that, HostA will send the root node
first, then the internal nodes in level 1, thereafter internal
nodes in level 2, so on and so forth. In this order, the same
subtries will be pruned and the underlying nodes will not
be exchanged anymore. Similarly, FT will also benefit from
this strategy. To enable the least amount of communication
overhead, the internal nodes or Carry nodes covering more
elements will be transmitted first.

Definitely, the partial transmitting method results in
multiple rounds of communication. However, we argue that
this strategy has no severe requirement of bandwidth, which
is of great importance for opportunistic or bandwidth-scarce
networks, e.g., Internet of Vehicles and Wireless Sensor
Networks. Employing the partial transmission strategy or
not, depends on the users’ network circumstances and their
requirement of reconciliation delay.

4 ANALYSIS OF COMMUNICATION OVERHEAD

Note that, the communication overhead of multiset recon-
ciliation consists of two components, i.e., the exchanging
of the employed data structure and the transmission of
different elements. As stated in Section 2.2, the reconcili-
ation methods should only transmit the elements in DE

for once. Therefore, this kind of communication overhead
is determined by DE and thus has merely optimization
space. Especially, when the two multisets are totally disjoint,
all the elements in both A and B should be transmitted.
Therefore, the lower bound of transmitting elements can be
formulated as pnA`nBq¨pI`Cq, where nA and nB are the
number of elements in root sets A˚ and B˚, while I and C
are the number of bits for each element in the employed data
structure and the maximum number of bits to express an
element’s content. In practice, there are little things we can
do to reduce the transmission of elements. Consequently,
we focus on optimizing the exchanging of the employed
data structures.

Typically, our methods exchange the generated FT or
Trie between the two hosts to derive the different elements.
Definitely, the FTs or Tries can be transmitted entirely in
one communication round, with communication overhead
of Opnq, where n is the number of elements in the multiset.

4096 2048 1024 512 256 128 64 32 16 8 4 2 1
0

0.2

0.4

0.6

0.8

1

Number of elements a node represents

P
ro

ba
bi

li
ty

d=1

d=5

d=9

d=100

d=200

Fig. 5. The relationship between the probability that a node aggregates
no information of elements in D and the number of elements covered
by this node (both Trie and FT), with given the number of elements in a
multiset as n“4096.

Specifically, there are 2n´1 and 2n nodes in Trie and FT.
Consider that each node has a constant number of bits,
the total communication overhead can be approximate as
Opnq. Note that, the transmission overhead of both Trie
and FT will not be affected by the total cardinality of the
involved elements, or the real volume of each element, but
only determined by the number of elements in the root set.
That is, the transmission cost is robust when the root sets
are given. Alternatively, as stated in Section 3.5, the nodes
in both Trie and FT can be transmitted with a partial manner.
We suppose that the elements in DA and DB are randomly
distributed in the derived Trie and FT, and an element inDE

will not appear in DM . With this assumption, we analyze
the communication overhead of the partial transmission
strategy as follows.

4.1 Communication overhead of exchanging Tries
The communication overhead depends on the probability
that two internal nodes are the same in the resulted Tries
and FTs. In this section, w.l.o.g, we consider TrieA as an
example. Let EApT risq denote the elements that rooted from
an internal node TrieAris, where iPr1, n´1s. Moreover,
nT ris records the number of elements in EApT risq, and αi

counts the number of elements in the set EApT risq X DA.
In other words, αi denotes the number of different elements
that covered by the subtrie rooted from the internal node
TrieAris. Consequently, αi“0 means the subtrie rooted
from TrieAris covers no different elements. Then we have:

ppαi“0q “

`

n´dA
nT ris

˘

`

n
nT ris

˘ , (1)

where n is the number of elements in the multiset’s root set.
Basically,

`

n´dA
nT ris

˘

implies choosing nT ris elements from the
n´dA elements in AXB.

As depicted in Fig. 5, we note that, with the increase of d,
the nodes in a Trie are more likely to record the information
of elements in D. By contrast, with given n and d, the nodes
that represented more elements have a higher probability
of including an element in D. We conclude that higher
level of nodes will be transmitted with a higher probability
during the reconciliation process. That is, given a Trie, the
probability that an internal node should be transmitted is
related to the number of different elements in its subtrie.

After calculating the probability of αi“0, then according
to the structure of the established Trie, we can derive the
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number of elements that each internal node stands for.
Hence, the expectation of communication overhead can be
calculated as follows:

CT “ bT ˆ
n´1
ÿ

i“1

p1´ppαi“0qq, (2)

where bT is the number of bits for each internal node. In
practice, the exact communication overhead depends on
the distribution of the different elements in the Trie. For
example, if the different elements are neighbouring with
each other in the Trie leaves, then the caused communication
overhead is low. By contrast, when the different elements
are fully dispersed among the leaves, more internal nodes
should be transmitted. Surely, when the number of different
elements are large enough, all the internal nodes have to
be transmitted. Theoretically, when d“n{2, it is possible we
need to transmit the whole Trie.

4.2 Communication overhead of exchanging FTs
Given a Carry node F ris in an established FT called FTA,
let EApF risq denote the elements represented by the sub-
tree that rooted from F ris, where iPr1, ns. Moreover, nF ris
records the number of elements in EApF risq, and βi counts
the number of elements in the set EApF risq X DA. Similar
with αi, βi“0 implies the subtree contains none of the
elements in DA, and this Carry node is unnecessary to be
transmitted to HostB . With these notations, we have:

ppβi“0q “

`

n´dA
nF ris

˘

`

n
nF ris

˘ , (3)

where n is the number of elements in the multiset’s root set.
Fig. 5 also plots the relationship between ppβi“0q and

the value of nF ris, as well as DA. In fact, ppαi“0q and
ppβi“0q follow the same distribution function. That is,
ppβi“0q is proportional to both nF ris and dA. Based on
the calculated probability, the expectation of communication
overhead can be determined as:

CFT “ bFT

n
ÿ

i“1

p1´ppβi“0qq, (4)

where bFT is the number of bits for each Carry node. FT is
structurally different with Trie. As a result, given the same
value of d, they may need to exchange diverse amount of
nodes. Also, in the cases where all the elements in D are
totally dispersed among the Array nodes, more Carry nodes
should be transmitted than the case where the different
elements are neighbouring with each other.

From the above analysis, the partial transmission strat-
egy can significantly reduce the communication overhead
to deduce the elements in D. Typically, larger d leads to
higher communication overhead for both Trie and FT. It is
possible that all the nodes in Trie and FT should be trans-
mitted. However, the different scale between two multisets
is usually small so that the communication overhead is
acceptable. Moreover, when d is larger than n{2, we advice
the users to exchange the Tries and FTs entirely. Since in
that case, our partial transmission strategy may not save
much communication overhead but consumes considerable
reconciliation delay.

5 EVALUATION

In this section, we implement the proposed methods to
evaluate the reconciliation accuracy, communication over-
head, and time-consumption. Especially, we measure our
proposals based on the real CAIDA trace. Thereafter, we fur-
ther quantify the reconciliation performance with synthetic
datasets to specify the impact of each parameter.

5.1 Experiment methodology

Implementation. In our experiments, a testbed with 2.5
GHz CPU and 8 GB RAM is employed as a host. We explore
the impact of three varied parameters on the reconciliation
performance, including the number of elements n, the size
of difference between two multisets d, and the difference
ratio r“dE{d. Note that, r ranges from 0 to 1. Extremely,
r“0 means all different elements stem from the diverse
multiplicities of elements. By contrast, when all differences
are caused by the diverse elements, r“1. For simplicity,
in the following experiments, we set nA“nB“n, and the
CHash and MHash fields are given as 30 bits.

Measurements. To quantify the three design rationales,
we evaluate the performance of our proposals in terms of
three measurements, i.e., reconciliation accuracy, communi-
cation overhead, and time-consumption, respectively. As a
fundamental metric, reconciliation accuracy is defined as the
ratio of the number of correctly identified elements (both the
elements and their multiplicities should be correct) to the
number of elements in D. Note that, bandwidth is usually a
scarce resource in many networks. Hence, we compare the
communication overhead of exchanging counters or nodes
in CBFs, Tries, and FTs. Besides, time-consumption is a
fatal metric for delay-sensitive or online applications. In our
evaluation, we only quantify the time-consumption caused
by the reconciliation process and don’t take into account the
delay due to the network latency. We report all the metrics
on average after 100 rounds of tests.

Datasets. The employed CAIDA dataset (anonymized
Internet traces 2016 dataset [26]) contains anonymized pas-
sive traffic traces from CAIDA’s equinix-chicago monitor on
high-speed Internet backbone links. We slice the dataset into
15 subsets based on the timestamps. For each subset, we
extract the source IP, destination IP and protocol to label
each packet. In this manner, we construct a multiset, in
which an element is an Internet flow which has multiple
packets with same source IP, destination IP and protocol,
and the multiplicity is the number of the contained packets.
Therefore, we have 15 trace-driven multisets. By reconciling
these multisets pairwisely, we have 105 real trails. Addition-
ally, we also generate synthetic multisets by adjusting the
length and characters in strings to generate varied multisets.
The multiplicity of an element is chosen randomly from
a dedicated range of integer. We vary the total number
of elements n, the number of different elements d and
the difference ratio r (the ratio between dE and d), and
hence generate diverse multisets. By running the algorithms
upon these synthetic multisets, we uncover the performance
impact of these parameters.
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Fig. 6. The trace-driven comparisons in terms of reconciliation accuracy and time-consumption. The values are calcualted for 105 trials.

5.2 Performance evaluation with real trace

In this section, we implement our proposals and compare
them by reconciling real Internet traces. The results are
depicted in Fig. 6. As shown in Fig. 6(a), both the Trie-based
method and the FT-based method achieve near-accurate
reconciliations. The reason for the failures of searching out
a few different elements is the inherent hash collisions. We
implement 30-bit MHash and CHash fields in both Tries and
FTs. As a result, the probability of a collision-free MHash is
q0“1´1{2

30. Thereby, the probability that all MHash fields
in a Trie which records nA elements will be qnA0 . By jointly
considering both MHash and CHash, the probability of a
collision-free Trie is, therefore, q2nA0 . In our experiments, the
value of nA is at the level of 105. As a result, the recon-
ciliation accuracy is around 0.9999. The FT-based method
achieves a similar accuracy.

As for the CBF-based method, we set the counters per
element (cpe) as 20 and 50 respectively. The resultant ac-
curacy fluctuates around 0.70 and 0.86 respectively. Corre-
spondingly, Fig. 6(b) records the false positive rate (FPR)
and false negative rate (FNR) for the CBF-based method.
Note that the quantified accuracy is right 1´FNR since
the accuracy is defined as the ratio between the number of
identified difference and the total number of real difference.
Unlike the Trie-based method and the FT-based method, the
CBF-based method fails to achieve near-accurate multiset
reconciliation. Intuitively, the reconciliation accuracy of the
CBF-based method can be improved at the cost of more
space. The temporal distribution of the multisets leads to
a diverse scale of difference between the two reconciled
multisets. Usually, two temporal neighboring multisets may
share more elements than two multisets with a large time
interval. As a result, the accuracy of CBF-based method
will be affected. Take the “CBF-FNR-20” in Fig. 6(b) as an
example. The FNR increases from 0.283 in trail 1 (which
reconciles multisets at time period 0 and time period 1) to
0.302 in trail 14 (which reconciles multisets at time period 0
and time period 14). Other curves in Fig. 6(b) also experience
similar fluctuation.

Furthermore, Fig. 6(c) depicts the time-consumption
for the proposed methods to search out the different el-
ements. Generally, CBF needs more time to execute the
subtracting operation and thereafter query the elements.
Sure, with more counters introduced in, the subtracting
will consume more time. This explains why “CBF-50” is
more time-consuming than “CBF-20”. Additionally, both the

redesigned Trie and FT spend much less time to recognize
the different elements than CBF. Trie even outperforms FT
with 0.468 seconds less time-consumption on average. The
reason is that the Prefix field in Trie identifies different inter-
nal nodes directly so that Trie needn’t compare the CHash
and MHash fields further. Generally, the Prefix has much
fewer bits than the CHash and MHash fields. As a result,
checking the Prefix is much faster than checking CHash and
MHash. For CBF, the time-consumption is proportional to
the number of elements in the multisets. Therefore, the
curves “CBF-50” and “CBF-20” undulate accordingly. Trie
and FT, in effect, cost more time when the difference is
large. In our trails, the difference scale d varies, but the gaps
among them are not sufficient to bring significant impact to
the time-consumption of the redesigned Trie and FT.

For “CBF-20”, the bits per element is 20¨4“80. Similarly,
the bits per element is 200 for “CBF-50”. The Carry nodes
in a redesigned FT consumes only 60 bits in our experi-
ments. Therefore the bits per element is 60 since there are
n Carry nodes to represent n multiset elements. As for
the redesigned Trie, there are n´1 internal nodes each of
which costs more than 60 bits but hopefully less than 80 bits
(the Prefix field can be less than 20 bits). Consequently, our
experiments are fair enough to the CBF-based method. Even
with such setting, the trace-driven evaluations demonstrate
that both the redesigned Trie and FT achieve near-accurate
multiset reconciliation, with 4.31 and 2.96 times faster on av-
erage than the CBF-based method, respectively. By contrast,
to improve the reconciliation accuracy, CBF has to initialize
more counters to represent the multisets.

5.3 Performance evaluation with synthetic datasets

In this section, we further quantify the impact of parameters
towards our proposals. We mainly consider the number of
elements n, the number of different elements d and the ratio
r between dE and d.

5.3.1 The impact of varied set cardinality n
We first evaluate the impact of n, i.e., the number of ele-
ments in each multiset, on the reconciliation performance.
Given d“800 and r“0.5, the reconciliation accuracy and
time-consumption when n increases from 1,000 to 20,000
are depicted in Fig. 7(a) and Fig. 7(b), respectively. Note
that, for the CBF-based method, the size of CBF table m is
set as 20¨n and the number of hash functions is fixed as
k“3. Apparently, except for the CBF-based method, other
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Fig. 7. The impact of varied n on the performance of our proposals, where d“800, r“0.5.
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Fig. 8. The impact of varied d on the performance of the proposals, where n“5000, r“0.5.

reconciliation strategies realize near 100% accuracy. As de-
picted in Fig. 7(a), the accuracy of the CBF-based method
remains growing with the increase of n. The tendency of
the CBF-based method can be explained with literature [27],
which realize simple set reconciliation with CBF. For the
800 different elements, larger n means larger m, thus the
probability that any of different element involves hash con-
flicts gets lower. Additionally, the CBF-based method has
lower accuracy when dealing with multiset reconciliation
than the simple set reconciliation scenario. This is because
multiset reconciliation needs to derive what the different
elements are, as well as the associated multiplicities. After
subtracting, the counters in CBF may report the different
elements correctly but may return an inaccurate multiplicity.

The corresponding time-consumption of our methods
are reported in Fig. 7(b). All these methods take more time to
query, compare, prune, or decode the counters or nodes with
the increase of n. Among these methods, Trie costs the least
time, while the CBF-based method needs the most time.
The time-consumption of the CBF-based method is linearly
increased when n grows. The hosts query the local elements
against the subtracting result CBFC . Consequently, more
elements means more queries. For the redesigned FT, the
children of any Carry node are certain and the range of
elements that it represents can be derived directly (shown
in Section 2.1.4). Therefore, when traverse or prune, the
children can be accessed directly. Again, the reconciliation
process for a redesigned Trie is much faster since the prefix
field helps to identify most of the different internal nodes.

Moreover, we calculate the caused communication over-
head when n increases from 1,000 to 20,000. The CBF-based
method has to exchange the entire counter vector. In our
setting, a CBF vector has 20n counters each of which con-

sumes 4 bits. Therefore, the total communication overhead
of exchanging CBFs is 80n bits. The Trie-based and FT-
based methods transmit the nodes partially and therefore
saving bandwidth. Indeed, with given d and increased n,
the communication overhead of transmitting Trie and FT
nodes grows gradually. The reason is that to accommodate
more elements, both the redesigned Trie and FT have more
levels of nodes. As a result, the 800 different elements will
affect more upper-level nodes.

Generally, the value of n affects both the time-
consumption and communication overhead of exchanging
the data structures for all the proposals. The reconciliation
accuracy of our Trie and FT based method is always near
100% when n varies. The CBF-based method, on the con-
trary, realize lower reconciliation accuracy than our propos-
als and its performance varies when n grows.

5.3.2 The impact of varied difference scale d

Similarly, we also evaluate the impact of d on the recon-
ciliation performance with given r“0.5 and n“5, 000. We
increase d from 400 to 3,600 and record the resultant recon-
ciliation accuracy, time-consumption, and communication
overhead in Fig. 8. As depicted in Fig. 8(a), due to the
intrinsic false positive and false negative errors of recon-
ciliation, the CBF-based method fails to achieve accurate
reconciliation. With more differences are introduced into the
multisets, the accuracy of the CBF-based method decreases
from 0.96 to 0.75, while the other methods always remain
almost 100% accuracy. With the increase of d, the subtracting
result CBFC will contain more elements. As a consequence,
more elements will suffer from the false positive or false
negative errors. This intuitively explains why the CBF-
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Fig. 9. The impact of varied r on the performance of the Trie-enabled
method, where n“5000, d“800.

based method experiences the accuracy degradation when
d grows.

Correspondingly, as depicted in Fig. 8(b), the CBF-based
method takes constant time to accomplish the reconciliation
process since its time-consumption is only determined by
the value of n. However, all the other methods suffer from
increasing time-consumption with the growth of d. For the
Trie-based method, the traverse algorithm must compare
more Trie nodes to identify these different elements for
larger d. Naturally, larger d means more different Carry
nodes in the subtracted FTs; hence, the FT-based method
needs more time to distinguish these nodes. When dě1, 000,
the redesigned FT costs more time than CBF. Still, Trie
consumes the least time due to the Prefix field.

Fig. 8(c) further plots the communication overhead of re-
lated multiset reconciliation methods with n“5, 000, when
d ranges from 400 to 3,600. With each counter in CBF as 4
bits, and the size of the CBF table m“20n, the bpe (bits per
element) of CBF is derived as 80. Consequently, the CBF-
based method incurs constant communication overhead for
each host, i.e., 1.6¨106 bits. By contrast, for both the Trie-
based and FT-based method, using the partial transmission
strategy brings an incremental communication cost when
d grows. Additionally, with the growth of d, the increasing
trends of both the Trie-based and FT-based methods become
smooth. The reason is that Trie and FT are typical tree-like
data structures, and distinct leaf nodes may share common
ancestors. An ancestor has to be transmitted, no matter how
many of its children belongs to D. As a result, the value
of d has a marginal impact on the communication overhead.
Note that, with the growth of d, the incurred communication
overhead for both the redesigned FT and Trie may reach
their upper bound, i.e., all the nodes in the redesigned FT
and Trie should be transmitted.

Generally, for the near-accurate reconciliation methods,
their accuracy will be merely affected by the value of d,
but their communication overheads, as well as the time-
consumption, are proportional to d. For the CBF-based
method, on the other hand, more different elements lead to
lower reconciliation accuracy, stable time-consumption and
constant communication overhead.

5.3.3 The impact of diverse difference ratio r
As aforementioned, the difference between two multisets
consists of DE and DM . Thus in this section, we explore
whether the ratio between dE to d will bring significant
influence to the reconciliation performance of our proposals.
We set the value of n and d as 5,000 and 800, but vary r

from 0 to 1. Fig. 9(a) and Fig. 9(b) report the corresponding
reconciliation accuracy and time-consumption, respectively.
Note that, the communication overhead of identifying the
difference is determined by the values of n and d, but not
related to r. Hence, we only quantify the impact on the
reconciliation accuracy and time-consumption.

As shown in Fig. 9(a), the reconciliation accuracy of the
CBF-based method exhibits a dramatic decrease along with
the growth of r. In contrast, both the other methods keep
near 100% reconciliation accuracy, in spite of the variation
of r. In effect, larger r brings more diverse elements in the
root sets A˚ and B˚. As a result, the resulted CBFC must
accommodate more diverse elements, which causes a higher
probability of false positive and false negative errors. We
can see from Fig. 9(b) that the CBF-based method, the Trie-
based method and the FT-based method experience stable
time-consumption when r grows. The reason is that no
matter the difference is caused by diverse multiplicities or
elements, the corresponding nodes in the redesigned Trie
and FT will be distinct. Therefore, we conclude that the
value of r impacts the accuracy of the CBF-based method
but will not affect the performance of the redesigned Trie
and FT.

As a summary of the simulations, the redesigned Trie
and FT always achieve near-accurate reconciliation in spite
of the variations of parameters. The CBF-based method,
however, requires much more space overhead to realize
high reconciliation accuracy. The time-consumption of all
the compared methods will be affected by n and d, but
not r. The communication overhead of the three methods,
increase significantly with the growth of n and d. With
the above results, we believe our proposals outperform the
CBF-based method in terms of reconciliation accuracy, time-
consumption, and communication overhead at most time.

6 DISCUSSION

In this section, we further discuss several related issues
about the proposed methods.

The unsorted and sorted multisets. In this paper, we
distinguish the unsorted multiset with sorted multiset and
then redesign Trie and FT to achieve near-accurate reconcili-
ations. One may hold that by hashing the unsorted multisets
elements into a integer range and thereafter ranking these
hash values, the unsorted multisets can be changed as sorted
multisets. However, if we employ the FT-based method to
reconciles the generated sorted multisets, extra elements
may be misclassified as different elements. The reason is
that FT recognize the different elements according to their
locations in the Array nodes. Consequently, same elements
in diverse locations will be treated as different ones.

The impact of hash collisions. Note that, we employ
the hash functions to derive the CHash and MHash fields.
An inherent characteristic of hash functions is hash collision
where two or more distinct inputs generate a common hash
value. In practice, with the given length of both CHash
and MHash as 30 bits, the probability of hash collision is
negligible. In each field, the probability of a hash collision is
1{230. Correspondingly, the probability that both the CHash
and MHash fields are collision-free will be p1 ´ 1{230q2«1.
We declare that our methods are near accurate since they
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node, with given reconciliation accuracy.

may miss some different elements due to the potential hash
collisions.

Bits in each field. Consider that the accuracy of our
method is p1´1{2bq2n, we can inversely derive how many
bits should be allocated to each field of the nodes in Trie
and FT, with respect of the given reconciliation accuracy. As
shown in Fig. 10, with given accuracy, the number of bits
for each field logarithmically increases to represent more
elements. Moreover, to enable more accurate reconciliation,
Trie and FT require more bits for each field to reduce the
probability of hash collision. Therefore, in real use, the
number of bits for each field in both Trie and FT can be
adjusted to realize the accuracy guarantee.

The construction and maintenance of Tries and FTs.
Inserting an element into a Trie costs OpIq time-complexity,
where I is the length of the identifiers. To represent a
multiset with n elements, the total time-complexity will be
OpI¨nq. The value of I is usually a given constant, thus
the time-complexity can be simplified as Opnq. By contrast,
both inserting and updating an element in FT cost Oplog nq
time-complexity. Both Trie and FT support dynamic update
of the recorded elements, which makes them practical in
real systems. Despite the support of element deletion, CBF
will incur increasing false positive and false negative errors
during reconciliation when n grows. Once the Trie or FT in
a host has been initialized, the later update only needs to
insert or delete related elements, rather than reconstruct the
whole Trie or FT. The CBF, however, calls for reconstruction
when n exceeds its capacity.

Partial transmission strategy. Indeed, based on our par-
tial transmission strategy, there is a trade-off between the
communication overhead and the delay of subtracting pro-
cess. On one hand, a fine-grained transmission (transmitting
the nodes one by one in an extreme case) generates the least
communication overhead since almost all the same nodes
will be recognized and pruned. However, this calls for the
most rounds of communication sessions, thereby leading
to the longest delay. On the other hand, a coarse-grained
transmission (e.g., exchanging all the nodes together) results
in high communication overhead, with the least delay. An
eclectic solution is to transmit the nodes in a batched man-
ner. For instance, we can transmit 10 nodes together in each
round of communication, such that the total rounds of com-
munications will be decreased significantly and the pruning
process can be completed with acceptable delay. Besides, if

the user can evaluate the value of d in advance, the internal
nodes with high probability to cover the elements in D will
be transmitted together with one communication session.
By contrast, the internal nodes may not aggregate elements
in D with high probability will be sent partially. As a result,
the delay will be further controlled.

7 CONCLUSION

In this paper, we motivate to characterize and tackle the
reconciliation problem of two multisets, which is an es-
sential task for various distributed applications. We argue
that the methods based on probabilistic data structures
fail to achieve satisfying reconciliation accuracy, due to the
unavoidable false positives and false negatives. Accord-
ingly, we redesign the Trie and FT data structure to rep-
resent unsorted and sorted multisets, respectively. Besides,
to further reduce the communication overhead, we design a
partial transmission strategy for the redesigned Trie and FT.
The trace-driven evaluations demonstrate that Trie and FT
achieve near-accurate multiset reconciliation (at the level of
1´10´4), with 4.31 and 2.96 times faster than the CBF-based
method, respectively. The simulations based on synthetic
datasets further indicate that our proposals outperform the
CBF-based method irrespective of the parameter setting at
most time.
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