
1

Efficient Multiset Synchronization
Lailong Luo, Deke Guo, Jie Wu, Fellow, IEEE , Ori Rottenstreich, Qian He, Yudong Qin, Xueshan Luo

Abstract—Set synchronization is an essential job for distributed applications. In many cases, given two sets A and B, applications
need to identify those elements, which appear in set A but not in set B, and vice versa. Bloom filter, a space-efficient data structure
for representing a set and supporting membership queries, has been employed as a lightweight method to realize set synchronization
with a low false positive probability. Unfortunately, bloom filters and their variants can only be applied to simple sets other than more
general multisets, which allow elements to appear multiple times. In this paper, we first examine the potential of addressing the multiset
synchronization problem based on two existing variants of the bloom filters: the invertible bloom filter (IBF) and the counting bloom filter
(CBF). We then design a novel data structure, invertible counting bloom filter (ICBF), which represents a multiset using a vector of cells.
Each cell contains two fields, id and count, which record the identifiers and number of elements mapped into them, respectively. Given
two multisets, based on the encoding results, ICBF can execute the dedicated subtracting and decoding operations, to recognize the
different elements and differences in multiplicities of elements between the two multisets. We conduct comprehensive experiments to
evaluate and compare the three dedicated multiset synchronization approaches proposed in this paper. The evaluation results indicate
that the ICBF-based approach outperforms the other two approaches in terms of the synchronization accuracy, time-consumption, and
communication overhead.

Index Terms—multiset synchronization, counting bloom filter, invertible bloom filter, invertible counting bloom filter.

F

1 INTRODUCTION

CONSIDER a pair of hosts HostA and HostB , each hold-
ing a set A and B. The goal of set synchronization

for HostA and HostB is to deduce by each of the hosts
to calculate the differences between the two sets A and B
to calculate the union AYB. In fact, set synchronization is
a common and fundamental task in a variety of systems
[1]. For example, in a distributed file system, files usually
need to be duplicated for disaster recovery via set syn-
chronization. In peer-to-peer networks [2], any pair of peers
only needs to exchange those missing blocks of a file from
each other. For wireless sensor networks [3] , the sink node
only needs to collect those unobserved results from other
hosts. For software-defined networks (SDN) [4], flow tables
generated by the controller must be synchronized with the
corresponding switches in a timely manner. In this case,
only those updated flow entries should be delivered. In
cloud computing applications, local devices (smartphones,
laptops, robotics, and wearable equipment) only upload or
download the nonexistent data from the Cloud [5].

In the above cases, a straightforward method of set
synchronization between any two hosts is to exchange all
elements with each other. The amount of transferred data
is proportional to the total number of elements at the two
hosts [1]. This method is inefficient when the two sets differ

‚ Lailong Luo, Deke Guo, Yudong Qin, and Xueshan Luo are with the
Science and Technology Laboratory on Information Systems Engineering,
National University of Defense Technology, Hunan, 410073, China.

‚ Jie Wu is with the Department of Computer and Information Science,
College of Science and Technology, Temple University, Philadelpha,
Pennsylvania, USA.

‚ Ori Rottenstreich is with the Department of computer science, Princeton
University, Princeton, New Jersey, USA.

‚ Qian He is with the Key Lab of Cloud Computing and Complex System,
Guilin University of Electronic Technology, Guilin, 541004, China.

in just a few elements. Moreover, such a method also incurs
non-trivial and unnecessary communication overhead and
additional latency. If the hosts cannot identify the difference
between the involved sets, unnecessary transmission of the
shared elements may burden the networks. Especially for
the latency-sensitive applications and the bandwidth-scarce
networks, the increasingly frequent synchronization can be
fatal. What’s worse, since the volume of the common ele-
ments in the sets is unpredictable, the hosts cannot manage
the additional transmission cost.

Essentially, set synchronization can be classified into two
categories. The first one is simple set synchronization, where
both A and B are simple sets. By contrast, multiset synchro-
nization concerns two multisets, each of which allows that
an element has multiple duplicates, i.e., the multiplicity of
each element can be larger than one. Note that, multiset is
a generalization of a set, and simple set is a special case of
multiset where all of elements only appear once.

Simple set synchronization is relatively easy since any
element in the set is unique; hence, the difference between
two simple sets stems only from the diverse elements that
appear in exactly one of the sets. However, for multisets
A and B, the difference between them stems from two
sources. The first kind of difference is dE , which denotes that
the elements only exist in either A or B. Specifically, dEA

denotes the elements that only exist in A, and dEB denotes
that the elements that only exist in B. Thus, dE“dEAYdEB .
The second kind of difference, denoted as dM , includes the
elements which appear in both A and B, but with diverse
multiplicities, i.e., number of duplicates of an element. Typ-
ically, dMA denotes the common elements such that their
multiplicities in A are larger than those in B. Meanwhile,
dMB denotes the common elements such that their multi-
plicities in A are less than those in B. Thus, dM“dMAYdMB .
An efficient multiset synchronization method should iden-
tify dE and dM . Then, to save bandwidth, only the elements

2

TABLE 1
The applicability of existing simple set synchronization methods.

Data structure BF ComBF CBF SBF ShBF
Representation No No Yes Yes Yes
Inverse decoding No No No No No
Identifying dE No No No No No
Data structure CM DCF IBF IBLT ICBF
Representation Yes Yes No No Yes
Inverse decoding No No Yes Yes Yes
Identifying dE No No No No Yes

in dE should be transmitted.
Some lightweight methods are proposed for efficient set

synchronization. The insight is to employ bloom filters (BF)
[6] and its variants, e.g., counting bloom filter (CBF) [7],
compressed bloom filter [8], invertible bloom filter (IBF) [9]
and invertible bloom lookup table (IBLT) [10] [11]. Such
methods represent all elements of a set using a vector of
cells, each of which can be one bit or a dedicated data
structure. After exchanging the resultant bloom filters of
two sets, those unique set elements can be identified via
a process of operations, such as query and subtracting.
Consequently, large numbers of common elements are not
required to be delivered to each other.

We argue that the existing BF-like synchronization meth-
ods for simple sets are inapplicable to the multiset synchro-
nization problem. Table 1 shows the details. Among BF-like
structures, only CBF and its variants (including Spectral
Bloom Filter (SBF) [12], Dynamic Count Filter (DCF) [13],
Shifting Bloom Filter (ShBF) [14] and Count Min Sketch
(CM) [15]), can represent element multiplicity in a multiset
by augmenting the bit in each cell to be an integer, but they
are not inversely decodable, and cannot distinguish dE from
dM . IBF and IBLT can be decoded inversely, but they fail to
represent multiset, since the XOR operations will eliminate
it when the element is mapped into the same cells again.

Accordingly, in this paper, we first confirm the potential
of synchronizing multisets with CBF and IBF by following
a common framework. CBF can record the multiplicity of
each set element and a query-based decoding process can
finally discover the different elements between two multi-
sets. However, the CBF-based method cannot decode the
elements inversely. For the IBF-based method, the resul-
tant IBF after subtracting one IBF from another one may
decode the different elements in a recursive manner. In each
round, the IBF only decodes those elements in the root
sets (see Definition 2) of the current two multisets. After
each round of decoding, the two multisets will be updated
via eliminating the root sets from them. In this recursive
method, multiset synchronization can be realized with high
probability. However, the IBF-based method invokes the IBF
processes round by round, and thus suffers from a massive
computation time. Note that both the IBF-based method and
the CBF-based method cannot distinguish dE and dM , and
thus they will suffer from vast communication overhead.
The intrinsic reason is that they must query all elements to
uncover d and treat dE and dM with no difference.

To avoid the inherent weakness of the CBF and IBF-
based methods, we design a novel data structure, invertible
counting bloom filter (ICBF), which consists of a vector of
cells. Each cell contains two fields, i.e., the id and count,
which record the element mapped into that cell and its

multiplicity, respectively.
We then propose an efficient method based on ICBF for

the multiset synchronization problem. Our method depends
on three operations for ICBF: the encoding, subtracting, and
decoding. For the encoding operation, a family of inde-
pendent hash functions are utilized to map each element
of a multiset into the cell vector, and a special identifier
mechanism is introduced to identify this element. For two
ICBFs, the subtracting operation eliminates those common
elements, and results in a new ICBF. Accordingly, the resul-
tant ICBF can decode all elements from its cell vector via
referring to the local id table, which records the mapping
relationship of id and the real content of each element.
To be specific, ICBF records the multiplicity of an element
with its count field, decodes the elements inversely from
the cells with the help of id field and the local id table,
and distinguishes dE from dM with joint consideration of
count and id in ICBFC and ICBFC1 . Consequently, only
the elements in dE will be transmitted to the other host.

Furthermore, we conduct comprehensive experiments
to evaluate the performance of the ICBF-based and IBF-
based methods. The results indicate that our ICBF-based
method achieves better accuracy and incurs much less time-
consumption than the IBF-based method. We also measure
the additional communication overhead when the multi-
plicities follow different distribution patterns. We find that
our ICBF-based method outperforms the IBF-based method,
and requires much less communication overhead. The major
contributions of this paper can be summarized as follows:

‚ We propose a novel data structure called ICBF to
represent a multiset. Furthermore, we design an effi-
cient method based on ICBF to synchronize a pair of
multisets.

‚ We reveal that the existing CBF and IBF can theo-
retically realize multiset synchronization. According-
ly, we propose dedicated multiset synchronization
methods based on CBF and IBF, respectively.

‚ Comprehensive experiments demonstrate that the
ICBF-based method outperforms the IBF-based
methods in terms of the synchronization accuracy,
time-consumption and communication overhead.

The remainder of this paper is organized as follows.
Section 2 summarizes preliminaries about multisets and
bloom filters. Section 3 reports the CBF-based and IBF-based
methods for multiset synchronization. Section 4 introduces
a new data structure, ICBF, and accordingly designs an effi-
cient and accurate multiset synchronization method. Section
5 evaluates the performance of proposed synchronization
methods. We then elaborate related work in Section 6, and
discuss several practical concerns in Section 7. Finally, We
conclude this paper in Section 8.

2 PRELIMINARIES

We introduce the basic concept of multiset and then summa-
rize the standard bloom filters and two of its variants in this
section. The important symbols and notations in this paper
are given in Table 2.
2.1 Multiset
Unlike a simple set, multiset allows an element to appear
multiple times [16]. To characterize the features of multiset,
several parameters can be employed to describe a multiset.

3

TABLE 2
Symbols and notations.

Term Definition
A,B Two multisets that need synchronization
HostA Hosts that hold multiset A
A˚, B˚ Root set of A and B
nA, nB Number of elements in A˚ and B˚

CpAq Cardinality of A
mApxq The multiplicity of x in A

k Number of hash functions
m Number of cells in bloom filters and its variants

CBFA Encoding result of A for CBF
IBFA Encoding result of A for IBF
ICBFA Encoding result of A for ICBF
IBFC˚ Subtracting result of IBFA˚ and IBFB˚

EA Elements sent from HostA to HostB
EB Elements sent from HostB to HostA
dE Difference due to the diverse elements
dM Difference due to the distinct multiplicities

Definition 1. Let x be an element of a multiset A. The
multiplicity of x is denoted by mApxq, which denotes
the number of instances of x in A.

Definition 2. Given a multiset A, a simple set A˚ is defined
as the root set of A such that A˚“txPA|mApxqą0u.
Hence, different multisets might have the same root set.

Definition 3. Let CpAq denote the cardinality of a multiset
A, i.e., the sum of multiplicity of each element. We have
CpAq“

řn
i“1 mApxiq, where xi is an element of A˚ and

n denotes the cardinality of the root set A˚.
According to such definitions, a multiset A can be

characterized as its root set and the multiplicity of each
element. That is, A can be represented as a set of pairs,
i.e., A“txx1,mApx1qy, ¨ ¨ ¨ , xxi,mApxiqy, ¨ ¨ ¨ u. For example,
A“txx, 3y, xy, 2y, xz, 1yu stands for tx, x, x, y, y, zu.

2.2 Bloom filters

Given a set A“tx1, x2, ..., xnu with n elements, a bloom
filter (BF) [6] represents such n elements with a bit vector of
length m. All of m bits in the vector are all initially set to 0.
A group of k independent hash functions, ăh1, h2, ..., hką,
are employed to randomly map each set element into k
positions, ăh1pxq, h2pxq, ..., hkpxqą, in the bit vector. Those
bits at such k positions in the vector are all set to 1. In the
same way, all the elements can be represented by the same
BF. According to the m-bit vector and the k hash functions,
we can realize the membership query against any element.
If any bit at the k hashed positions of the element is set to
0, the BF judges that this element does not belong to the set.
Otherwise, the BF believes that the queried element belongs
to the set with a low probability of false positive. That is, for
an element not in the set, all of its k hash positions in the bit
vector may be 1, due to the unavoidable hash conflicts.

Bloom filters have been used in many fields [17] [18]
[19]. Regarding various applications, several variants are
proposed to make them more effective and efficient. We
further discuss two mainstream variants, counting bloom
filters and the invertible bloom filters.

2.3 Counting bloom filters

One drawback of bloom filters is that they are just suitable
for static sets, while a dynamic set has to tackle the element
insertion and deletion operations. It is clear that bloom
filters naturally support the element insertion operation by

setting the hashed k bits to 1. It, however, cannot simply
reset all the hashed bits to 0 when an element is removed
from the corresponding set, since the k hash bits may be
shared by other elements in the set, so resetting can lead to
false negatives.

To address this issue, the counting bloom filter [7] was
proposed to improve the bloom filters. It naturally supports
the deletion and insertion of any element by replacing each
bit in the vector with a counter consisting of multiple bits.
In this way, the value of each cell can exceed 1. Assume
element x is hashed into the 4th, 10th and 15th cells, while
element y is hashed into the 5th, 15th and 24th cells, respec-
tively. Consequently, the count value is 1 for the 4th, 5th,
10th and 24th cells, but is 2 for the 15th cell. If the element
x is deleted from the set, the values of the 4th, 10th and
15th cells are decreased by 1, but the value of the 15th cell
is still positive other than 0. That is, a query of y would
result in a correct positive indication, since the membership
information of element y is still kept in the updated CBF.

Several variants of CBF have been proposed to optimize
the size of each cell, or enhance the query accuracy, e.g.,
SBF [12], DCF [13], ShBF [14] and CM [15]. SBF and DCF
adjust the size of the used bits in each cell according to the
maximum multiplicity of elements. By contrast, ShBF and
CM devote to more efficient query. We elaborate more on
this in the related work section (Section 6).

2.4 Invertible bloom filters

It is well-known that a bloom filter cannot decode those
elements represented by its bit vector, due to the use of one-
way hash functions. To enable the set synchronization, the
query-based method is used to identify and then exchange
different elements between two sets. The insight is to query
a BF of one set against each element in another set. Such
a query-based synchronization method is inefficient and
time-consuming. Invertible bloom filters (IBF) [9] extend
bloom filters from several aspects such that the subtracting
operation of IBFs for two sets provides the opportunity to
decode those different elements between the two sets. Each
cell of IBF contains three fields:

‚ idSum, the XOR of element ids hashed into that cell.
‚ hashSum, the XOR of elements mapped by an extra

hash function g into that cell.
‚ count, the amount of elements hashed into that cell.

To decode the set elements from an IBF with high prob-
ability, its parameters have to be configured carefully. Let d
denote the amount of total difference between two sets. The
number of cells for an IBF is m“α ¨ d, where αą1. It has
been also confirmed that 3 or 4 hash functions are sufficient
in practice [9]. Consequently, the communication overhead
of elements is Opdq, and the computation complexity of
synchronization is Opn`dq, where n is the amount of as-
sociated elements, if we do not consider the overhead due
to estimating the total number of different elements [9].

3 MULTISET SYNCHRONIZATION VIA VARIANTS OF
BLOOM FILTERS

In this section, we start with a framework of multiset syn-
chronization. We then explore how IBF and CBF can be used
to realize multiset synchronization based on this framework.

4

A={<x,2>,<y,3> }

B={<x,1>,<z,2> }

2

3

1

4

5

1

HostA HostB

1

2

3

4

5

6

Enc

Sen

Sub, Dec

Sen

Dec

Sen

Sen: Sending

Dec: Decoding

Sub: Subtracting

Enc: Encoding

6

Fig. 1. An illustrative example of the proposed framework.

3.1 Framework of multiset synchronization
Assume that two hosts, HostA and HostB , host two
multisets, A and B, respectively. Multiset synchronization
means to identify and exchange those different elements
between A and B such that the two hosts will have the
same elements with the same multiplicity at last. The mul-
tiset synchronization must handle both the dE and dM .
For example, for two multisets, A“txx, 1y, xy, 2y, xz, 3yu,
and B“txy, 1y, xz, 2y, xw, 1y, xu, 2yu, the result of A´B
is a new multiset: txx, 1y, xy, 1y, xz, 1y, xw,´1y, xu,´2yu.
Similarly, the result of B´A can be easily derived as:
txx,´1y, xy,´1y, xz,´1y, xw, 1y, xu, 2yu.

To enable fast and accurate multiset synchronization,
we propose a general framework for the design of multiset
synchronization methods as depicted in Fig. 1. The frame-
work contains three processes: encoding, subtracting and
decoding. Given HostA and HostB , the following six steps
are required to accomplish the multiset synchronization.

1) Each host executes the encoding operation, which
maps its elements to the cell vector by the k inde-
pendent hash functions.

2) HostB sends the encoding result of B to HostA.
3) Given the two encoding results, HostA executes the

subtracting and decoding operations to derive those
elements that need to be transmitted to HostB .

4) HostA sends the subtracting result of the two en-
coding results, as well as EA, to HostB .

5) HostB receives EA and the subtracting result; it
then executes the decoding operation to identify the
elements in EB , which need to be sent to HostA.

6) HostB sends EB to HostA and the synchronization
will be accomplished.

Note that, for those elements in dM , a dedicated number
of replicas will be generated to ensure the consistency of
A and B. This general framework will guide the design of
dedicated multiset synchronization methods. They usually
differ in the encoding, subtracting, and decoding operations.
In the following sections, we evaluate the possibility of real-
izing multiset synchronization using the variants of bloom
filters. Note that, the standard bloom filter is not feasible
since it neither records the multiplicity of each element nor
is inversely decodable. For this reason, we only explore IBF
and CBF to realize the multiset synchronization.

3.2 The IBF-based synchronization method
Although IBF is very efficient in enabling the synchroniza-
tion of simple sets, it cannot be directly used to address
the synchronization problem of multisets. Recall that the

idSum field of each cell in IBF records the XOR result of
those elements, which are mapped into that cell by one of
the k independent hash functions. It is easy to find that the
XOR operation ensures that each idSum field can record
an element only once. If the multiplicity of an element
is even, the XOR operation makes the idSum fields of k
involved cells eliminate this element. For the same reason,
the idSum field of cells will record an element only once if
its multiplicity is odd. As a consequence, the IBF cannot
directly represent a multiset, not to mention realize the
multiset synchronization.

Fortunately, it is reasonable to view a multiset as the
“union” of several simple sets. For example, a multiset
A“txx, 1y xy, 2y xz, 3yu can be considered as the “union” of
three simple sets, i.e., A“tx, y, zu Z ty, zu Z tzu. Inspired by
this observation, IBF may successfully enable the multiset
synchronization by performing the traditional set synchro-
nization round by round. Basically, the IBF-based method
also calls for encoding, subtracting and decoding operations
to identify the different elements during each round.

The functionality of IBF stems from three operations: the
encoding, the subtracting, and the decoding. During the
encoding process, for any element xPA, k hash functions
are employed to map x to the cell vector. The idSum field
of the mapped cell demonstrates the XOR of elements that
are hashed into this cell. Meanwhile, the hashSum field
of the mapped cell records the output of an additional
hash function of x for the purpose of checking during the
decoding process. To subtract those different set elements,
IBF performs the XOR operation on the encoding results of
sets A and B to eliminate the common elements between
the two sets. Consequently, the resultant IBF vector just
represents the information of those different elements.

Then we can simply decode those different elements.
The basic idea is to locate a cell with only one element
denoted as x. We then insert x again into the resultant IBF.
The XOR operation will eliminate the encoded information
of x at the involved k cells. By executing this operation
recursively, IBF will finally decode all distinct elements with
high probability. However, as discussed in [9], IBF may fail
to find a cell with only one element in each round, even
after carefully setting parameters. The above method can be
embodied in the following steps.

Note that, the IBF-based method also follows the general
framework in a recursive manner. HostA and HostB map
their root sets A˚ and B˚ into IBFA˚ and IBFB˚ via
k independent hash functions, respectively (Step 1 of the
framework). Then HostB sends IBFB˚ to HostA (Step 2
of the framework) and HostA executes the subtracting and
decoding operations to identify the elements in EA in this
round (Step 3 of the framework). The next step is that,
according to the framework, HostA sends the elements in
EA as well as the subtracting result IBFC˚ to HostB such
that those elements only appearing in A˚ are synchronized
to B (Step 4 of the framework).

Upon receiving IBFC˚ , HostB executes the IBF decod-
ing operation [9], thus deriving the elements in EB of this
round (Step 5 of the framework). At last, HostB delivers
the elements in EB to HostA such that A˚“B˚ eventually
(Step 6 of the framework). In this way, the six steps in
the framework are accomplished and the IBF-based method

5

synchronizes A˚ and B˚ with dedicated probability. This
method will continue to be performed in the next round,
and can only be terminated when at least one set is identi-
fied as empty.

For two multisets A“txx, 1y, xy, 2y, xz, 2y, xw, 1yu and
B“txy, 1y, xz, 1y, xw, 3y, xu, 2yu, we illustrate an example to
clarify the aforementioned synchronizing processes. Their
root sets are A˚“tx, y, z, wu and B˚“ty, z, w, uu, respec-
tively. In the first round, the different elements of the two
root sets are identified as tx, uu. After deleting the root sets,
the original two multisets are updated as A“txy, 1y, xz, 1yu

and B“txw, 2y, xu, 1yu.
We then recursively execute the synchronization process.

After one more round, set A becomes empty while set
B is txw, 1yu. Thus, this method will terminate with the
identified difference between the original A and B, i.e.,
txx, 1y, xy, 1y, xz, 1y, xw, 2y, xu, 2yu. To be specific, the IBF-
based method derives dA1“txu and dB1“tuu in the first
round of decoding. In the second round, the decoding
operation deduces the different elements as dA2“ty, zu

and dB2“tw, uu. Note that, the third round will not be
executed, since A is already empty, and HostB will send
the remained element, i.e., w, to HostA directly. In this case,
dM“txy, 1y, xz, 1y, xw, 2yu, and dE“txx, 1y, xu, 2yu. Howev-
er, the IBF-based method fails to distinguish dM from dE ,
as a result, all the different elements must be transmitted
between HostA and HostB .

This special method, however, still suffers from other
weaknesses. First, it is inefficient and must be executed
for η“mintηA, ηBu rounds, where ηA and ηB denote the
maximum multiplicity of elements in A and B, respectively.
The computation complexity of each round is Opn`dq [9],
where n is the amount of associated elements. Moreover, the
parameters of IBF have to be reset in each round, according
to the estimated size of the difference between updated A
and B. Such an estimation process will bring additional
computation overhead. Although accurate estimation can
improve the decoding probability of this method, it cannot
absolutely guarantee the success of the entire decoding pro-
cess. The reason is that decoding failures may occur during
each round. This weakness stems from the IBF mechanism
even under the best setting of parameters [9].

Let pi for 1ďiďη denote the probability that the ith

round of IBF process successfully decodes the difference.
The probability of a successful multiset synchronization is
given by p“

śη
i“1 pi and is much less than the pi of any

round. For example, even if each round can succeed with
pi“0.99, the probability of a successful multiset synchro-
nization is only p0.99q20«0.818 when η“20. That is, the IBF-
based method is not suitable for high multiplicity multisets.

3.3 The CBF-based synchronization method
Our research finds that CBF is a candidate for realizing
the multiset synchronization, since it offers an indirec-
t way to record the multiplicity of each element. After
encoding the element xPA, the minimum count among
CBFArh1pxqs, ¨ ¨ ¨ , CBFArhkpxqs will be regarded as an
estimation for mApxq [7]. Conflicts may occur in such k
dedicated cells, because other elements may be mapped into
these cells too. However, the probability that all the k cells
experience conflict at the same time is negligible. Thus, the

Algorithm 1 Decoding operation of CBF at HostA
Require: The subtracting result CBFC“CBF pAq´CBF pBq,

any element x P A and k hash functions.
1: flag Ð 0;
2: for x P A do
3: for i“0 to k´1 do
4: Calculate the hash value of hipxq;
5: if CBF rhipxqs.countą0 then
6: flag``;
7: if flag““k then
8: add x into EA for later transmission;
9: return EA;

minimum value among such cells for an element can tell the
correct multiplicity of x with high probability.

Note that, such a CBF-based method still follows the set
synchronization framework proposed in Fig. 1. Two hosts,
HostA and HostB , first encode their multisets as CBFA

and CBFB by using CBF, respectively. For any xPA with
a multiplicity β, the k cells h1pxq, ¨ ¨ ¨ , hkpxq in CBFA will
be increased by β. The same result holds for any element
in multiset B. Then HostB sends the resultant CBFB to
HostA. The subtracting of CBFB from CBFA can be easily
implemented by HostA since each cell in CBF has only one
field, i.e., the count. It records how many elements have
been mapped into that cell. Let CBFC denote the new
CBF resulting from the subtracting operation. The value
of each cell in CBFC is simply the minus result of the
corresponding count in CBFA and CBFB .

Apparently, there may be conflicts due to the hash
functions, i.e., different elements are mapped into the same
cells, with a rather small probability. Note that the resulting
CBFC is significantly affected by the hash conflicts. If there
are no conflicts for both CBFA and CBFB , a zero cell
means that all of elements in A and B are not mapped into
that cell, or x is mapped into that cell but mApxq“mBpxq.
When the value of a cell is a positive integer, it demonstrates
that for the element x that has been mapped into this cell,
mApxqąmBpxq. Otherwise, if the value is a negative integer,
it implies mApxqămBpxq.

However, if any i-th cell occurs conflict either in CBFA

or CBFB , the corresponding cells in CBFC will be mean-
ingless. If both x and y are hashed into the 5th cell
in CBFA and CBFB , then the value of the 5th cell in
CBFC is decided by the difference of mApxq ` mApyq and
mBpxq`mBpyq. If mApxq`mApyqąmBpxq`mBpyq, then
CBFCr4s is a positive integer. Meanwhile, CBFCr4s is
negative when mApxq`mApyqămBpxq`mBpyq and 0 when
mApxq`mApyq“mBpxq`mBpyq. As a result, we cannot
judge which one is larger among mApxq and mBpxq as
well as mApyq and mBpyq. This is because the probability
of conflict-free encoding of CBF is the same with invertible
counting bloom filters that we will introduce later. We
discuss the probability issue and our solution in Section 4.5.

HostA and HostB encode the elements of A and B via
the same set of hash functions. After receiving the CBFB ,
HostA calculates the result of CBFC“CBFA´CBFB via
performing the minus operations on corresponding cells in
CBFA and CBFB . However, unlike IBF, CBF is not inverse-
ly decodable. Accordingly, we cannot derive the difference
between multisets A and B just according to the resultant

6

CBFC . Thus, we still employ the query-based mechanism
to identify those different elements.

As depicted in Algorithm 1, at HostA, for an el-
ement xPA, the decoding process maps x by the k
hash functions. If the values in the resulting cells,
i.e., CBFCrh1pxqs, CBFCrh2pxqs, ¨ ¨ ¨ , CBFCrhkpxqs, are
all positive, then x will be added into EA, which will be
further delivered to HostB . In this way, all elements in
EA can be derived. EA and CBFC will be sent to HostB
according to the fourth step in our general framework.
Similarly, HostB will execute the same algorithm to dis-
tinguish the elements in EB based on CBFC . Note that
EB includes any element x which satisfy the constrain-
t that CBFCrh1pxqs, CBFCrh2pxqs, ¨ ¨ ¨ , CBFCrhkpxqs are
all negative rather than positive.

After identifying EA and EB , they should be delivered
to HostB and HostA, respectively. Note that, all of ele-
ments in EA and EB only need to be transmitted once.
To complete the process of multiset synchronization, HostB
queries each element in xPEA from CBFC to derive how
many replicas of x should be created to keep accordance
with A. For instance, if HostB queries an element xPEA

against CBFC , and finds out that the minimal value among
CBFCrh1pxqs, CBFCrh2pxqs, ¨ ¨ ¨ , CBFCrhkpxqs is 3, then
HostB will add x and 2 extra replicas of x into B. Similarly,
Given CBFC and EB , HostA will execute the query opera-
tions to derive how many extra replicas of xPEB should be
added into A so that we get AYB eventually.

Such a method, however, suffers non-trivial time con-
sumption. CpA˚q and CpB˚q queries have to be executed
at HostA and HostB during the decoding process, respec-
tively. Moreover, the CBF suffers the inherent false positive
probability, which may cause a serious negative impact
on the performance of multiset synchronization. Given the
value of k and the number of elements, the only way to
lessen the false positive probability, is to utilize more cells.
However, more cells will cause more storage overhead. Note
that, to minimize the transmission overhead, only those di-
verse elements should be transmitted, while those common
elements with distinct multiplicities can be synchronized
by generating a dedicated number of replicas at each host.
However, the CBF-based method fails to distinguish dM
from dE , and thus it incurs unnecessary transmission costs.

For example, given A“txx, 1y, xy, 3y, xz, 1yu and
B“txy, 1y, xz, 2yu, HostA decodes CBFC and derives that
A´B“txx, 1y, xy, 2y, xz,´1yu. Then HostA sends x and
y to HostB because the multiplicity of both x and y are
positive in CBFC . Similarly, HostB delivers z, whose
multiplicity in CBFC is negative, to HostA to realize
synchronization. However, the fact is that y should not be
transmitted to HostB and z need not to be delivered to
HostA since y and z have already existed in HostB and
HostA, respectively.

In summary, IBF and CBF can indirectly solve the mul-
tiset synchronization problem. The CBF based methods are
not inversely decodable; hence, a query-based method is the
only choice to recognize the elements in the cells. The IBF-
based method is inversely decodable but must be executed
for multiple rounds to achieve multiset synchronization. So,
they suffer from high time complexity and limited accuracy.
Besides, the IBF-based method and the CBF-based method

fail to distinguish dE and dM ; thus, they suffer additional
communication overhead. Thus, we need another novel data
structure to represent the multiset and detach dM from dE
to realize fast and accurate multiset synchronization.

4 INVERTIBLE COUNTING BLOOM FILTERS FOR
MULTISET SYNCHRONIZATION

In this section, we propose a novel dedicated data structure,
called invertible counting bloom filters (ICBF), to represent
multiset and tackle the multiset synchronization problem.

4.1 Invertible counting bloom filters

We find that each count in CBF is capable of recording how
many elements have been mapped into it. That is, CBF can
record the multiplicity of each element in a multiset via
the count value in each cell. It, however, fails to decode
the elements from the counter vector, due to the well-
known “one way property” of hash functions. That is, a CBF
requires additional information besides the counter vector
to decode all of the elements in a set represented by it. For
this reason, we design the invertible counting bloom filters
(ICBF) with a new cell vector, each of which contains a count
field and an extra id field.

For each cell, the id field is responsible for record-
ing a generated identifier for each element that has been
hashed into the cell. The count field memorizes how many
elements have been encoded into that cell, i.e., the mul-
tiplicity of a particular element if there are no conflicts.
For an element x, we employ the minimal value among
ICBFArh1pxqs.count, ¨ ¨ ¨ , ICBFArhkpxqs.count as mApxq.
What is more, we also measure the probability of such
a conflict-free event, and adjust m and k to ensure high
conflict-free probability in Section 4.5.

To decode the elements from a cell vector inversely, the i-
dentifier of each element should not only record the element
but also identify which set the element belongs to. Thus for
the ICBF-based method, the identifier of any set element
is constructed as two parts. The prefix part identifies the
set this element belongs to, while the suffix part indicates
the element itself. The details about the identifier will be
introduced later in Section 4.2.

Note that there exist potential conflicts under the encod-
ing process, i.e., multiple diverse elements may be hashed
into a same cell with a given probability. If the number
of cells is m, the probability that two diverse elements
are mapped into a same cell is given by 1{m. Indeed,
bloom filters and their variants always suffer this weakness.
ICBF, however, can tackle the potential hash conflicts via
the id field. For example, an element x has been hashed
into the ith cell of a ICBF. When the ICBF encodes an-
other element y into the ith cell, the count field needs to
be increased but the id field remains unchanged. That is,
CBFAris.count“mApxq`mApyq.

It is clear that ICBF can naturally support the element
insertion, fast membership-query. However, ICBF can not
only realize the element deletion operation, but also inverse-
ly decode the elements. Furthermore, we show in Section
5 that ICBF consumes fewer storage resources and incurs
less communication overhead than IBF; this is because it
employs only two fields, while IBF needs three fields.

7

id

count

00

2

01

1

01

1

00

2

0

0

0

0

0

0

00

2

01

1

A={<x,2>,<y,1>}

id

count

100

2

101

2

101

2

100

1

110

1

0

0

110

1

100

1

101

2

B={<x,1>,<y,2>,<z,1>}

id

count

00

0

01

-1

01

-1

00

1

110

-1

0

0

110

-1

00

1

01

-1

C=A-B={<a,1>,<b,-1>,<c,-1>}

x

x

x

x

x

x

y y y

y

y

y

y

y

y

x xx z z

x x xy y y zz

x y y yx x

z

Fig. 2. An example of ICBF encoding and subtracting process with
A“txx, 2y, xy, 1yu and B“txx, 1y, xy, 2y, xz, 1yu.

4.2 The identifier generation mechanism of set element

Given two multisets, A and B, id assignment of each
element in A or B only cares about the value of CpA˚q

or CpB˚q (the cardinality of the multiset), rather than that
of CpA˚q`CpB˚q. For any element in set A or set B, we
employ the first digit (the leftmost digit) of its id to record
the set it belongs to, i.e., the red digit in Fig. 2. We use other
binary bits of an identifier to distinguish each element in a
multiset. The length of such an identifier is determined by
the cardinality of the root set of each multiset. For example,
in Fig. 2, a 2-digit identifier (the black digits in the id field)
is employed for A, since the root set A˚ only has three
elements. In this way, our ids can identify each element in
any multiset and can be used to realize the subtracting and
decoding operations. For instance, in Fig. 2, the red 0 means
that all related elements belong to A, while the red 1 declares
that this id is used for elements in B.

The identifiers are represented as binary bits in memory.
Hence, one vital issue is how to distinguish the empty cells
with non-empty cells in ICBF. In real implementation, there
are two differentiated solutions. One possible strategy is to
augment an additional bit as the flag. If the cell is non-
empty, this flag will be set as 1; otherwise, 0. In this way,
the algorithm will check the flag during synchronization.
In contrast, another solution is to leave a default suffix (e.g.
00¨ ¨ ¨ 00) of identifier as the sign of empty cells. For instance,
if there are 3 diverse elements in a multiset, the suffix 00
imply the empty cells. By contrast, 01, 10 and 11 represent
the 3 elements, respectively. We prefer the first strategy since
only one bit must be checked, which will significantly ease
the cost of distinguishing the empty cells.

4.3 id table at each host

To accomplish the synchronization, HostA (HostB) trans-
mits the elements in EA (EB) to HostB (HostA). However,
the ICBF can only derive the ids of these elements. Hence, to
know what the content of an id really refers, we maintain an
id table at each host to record the mapping relationship be-
tween each element and its identifier. When our algorithms

Algorithm 2 Encoding operation of ICBF
Require: A multiset A, any element x P A, k hash functions

and a cell vector ICBF .
1: Initialize the ICBF vector of cells;
2: for x P A do
3: for i“0 to k´1 do
4: Calculate the hash value of hipxq;
5: if ICBF rhipxqs.id is not empty then
6: ICBF rhipxqs.count``;
7: else
8: ICBF rhipxqs.id Ð x.id;
9: ICBF rhipxqs.count``;

10: return ICBF ;

TABLE 3
The space overhead of id table (MB).

n 1000 3000 5000 7000 9000 11000
Array 0.064 0.192 0.321 0.450 0.580 0.708

Hash Table 1.875 5.625 9.375 13.125 16.875 20.625

need to know the original element behind an id, they can
refer to the id table at that host. By maintaining the relation-
ship between ids and elements locally, the synchronization
will incur less bandwidth than IBF does, which remotely
transmits the original elements between hosts.

Undoubtedly, the introduction of id table will bring
extra storage overhead. However, we argue that, the storage
overhead is controllable and acceptable. Firstly, the id table
only records the information of local elements, and never
cares about the elements at other remote hosts. Secondly,
the existing key-value storage techniques can be employed
to optimize the storage strategy and speed up the query
request, e.g., Dynamo [21], Redis [22] and Memcached [23].
Thirdly, instead of saving the original content of elements
with id table, we prefer to store the location or directory of
elements in the local file system. In this way, the id table
costs much less storage resource.

To quantify the space overhead, we consider two storage
strategies, i.e., storing id table with an array and storing
id table with hash table (Dynamo, Redis and Memcached).
For the array, the space overhead is n˚prplog2nqs`1`s̄q{8
(MB), where n is the number of elements in the root set, and
s̄ denotes the maximum number of bits that the directory
used. As for the hash table, the required space overhead
can be calculated as m˚s̄ (MB), where m is the number of
cells the hash table has. Table 3 records the space overhead
of both storage strategies, when s̄“500 bit and m“30n.
Apparently, with the increase of n, both strategies cost
more space overhead, and storing the id table with array
consumes much less space overhead. But we argue that,
the time-complexity of querying an element in an array
and a hash table is Opnq and Op1q, respectively. Hence, to
speed up the synchronization process, storing the id table
with hash table is more advisable, and the resulted space
overhead is acceptable for the nowadays’ hosts.

4.4 The ICBF operations for synchronizing multisets
Note that the synchronization result of two multisets is the
union of them at both hosts. For any element x appearing
in both multisets, we generate |mApxq´mBpxq| replicas of
x at the host that holds the less multiplicity of x, such that
mApxq“mBpxq. Besides, for those elements appearing only

8

Algorithm 3 Subtracting operation for ICBF
Require: The encoding results ICBFA and ICBFB , the length

of cell vectors m.
1: Initialize a cell vector, denoted as ICBFC ;
2: for i“0 to m´1 do
3: if ICBFAris.id is not empty then
4: ICBFCris.idÐICBFAris.id;
5: ICBFCris.countÐICBFAris.count´ICBFBris.count;
6: if ICBFAris.id is empty and ICBFBris.id is not then
7: ICBFCris.idÐICBFBris.id;
8: ICBFCris.countÐICBFAris.count´ICBFBris.count;
9: return ICBFC ;

in one multiset, they need to be sent to another host, and a
given number of replicas will be generated for consistency.
For example, if mApxq“3 while x doesn’t belong to B,
the element x will be delivered from A to B and 2 extra
replicas will be generated at HostB . Similarly, our ICBF-
based method also follows the proposed synchronization
framework, as shown in Fig.1, consisting of three opera-
tions: the encoding, subtracting, and decoding.

Consider that HostA and HostB need to synchro-
nize two multisets A and B. First of all, each host
executes the encoding operation and establishes an
id table. Secondly, HostB sends its encoding result, i.e.,
ICBFB , to HostA. Thirdly, HostA performs the subtract-
ing operation to derive ICBFC“ICBFA´ICBFB and
ICBFC1 “ICBFB´ICBFA. HostA employs the decoding
operation to identify elements in EA and dMA

. According to
the fourth step in the framework, HostA sends EA, ICBFC

and ICBFC1 to HostB . In the fifth step, HostB decodes
ICBFC and ICBFC1 to identify the elements in EB and
dMB

. Finally, HostB sends the decoding result, i.e., EB to
HostA, and thus, the synchronization is accomplished.

Encoding. Given a pair of multisets, A and B, when
encoding any multiset, each of its elements is mapped into k
cells via the k independent hash functions. What is different
from the encoding process of IBF is that ICBF need not
know the size of the difference between A and B. This will
save the additional overhead resulting from estimating the
difference, compared to the IBF-based method. Fig. 2 depicts
the encoding process for multiset A and B. As reported in
Algorithm 2, when an element is mapped into a given cell,
if the id field is empty, then the id of such an element will
be kept in that id field, and the associated count field will
be increased by 1. Otherwise, only the count field needs to
be increased by one. Reasonably, according to the minimal
value among the k count fields, we can estimate whether an
element has been mapped into this cell, and if so, how many
times. Note that, in Fig. 2, there is a hash conflict in ICBFB

since x and z are mapped into a same cell. In this case, the
id field only records the identifier of x, while the count field
counts mBpxq`mBpzq.

Subtracting. After encoding multisets A and B, the two
corresponding hosts will exchange the resultant ICBFA

and ICBFB . So far, the next process of synchronization is
to subtract the different elements from the two ICBFs, each
of which is a vector of cells. Note that the set of used hash
functions and the length of the cell vectors for A and B
must be the same, such that any common element will be
mapped into the same set of k locations in the two vectors.

Algorithm 4 Decoding ICBFC and ICBFC1 at HostB
Require: The subtracting result ICBFC and ICBFC

1 , as well
as the number of cells m.

1: dMB Ð NULL, EB Ð NULL;
2: for i“0 to m´1 do
3: if ICBFCris.id.r0s““1 and the element is not in EB

then
4: Push the element into EB ;
5: if ICBFC

1 ris.id.r0s““1, ICBFC
1 ris.countă0 and the

element is not in dMB then
6: Push the element into dMA ;
7: return EB and dMA ;

Algorithm 3 describes the subtracting process. It traverses
the cell vectors of A and B from beginning to end. For the
ith cell in both ICBFA and ICBFB , if both ICBFAris.id
and ICBFBris.id are empty, Algorithm 3 just moves to-
wards the next cell. If ICBFAris.id and ICBFBris.id are
not empty, the algorithm only remains ICBFAris.id in the
resultant cell vector. If either ICBFAris.id or ICBFBris.id
is not empty, the algorithm will remain the nonempty one
to identify the corresponding element.

The operation on the count field of each cell in ICBFA

and ICBFB is relatively simple. It just executes the oper-
ation of ICBFAris.count´ICBFBris.count, calculating the
difference of multiplicity of an element in both A and B.
Through the two operations on the id and count fields of
each cell, Algorithm 3 can subtract the different elements
between A and B. In the resulting cell vector, the id field
identifies what the different elements are, and the count
field records how many times the elements differ from each
other. Fig.2 presents a successful subtracting process be-
tween A“txx, 2y, xy, 1yu and B“txx, 1y, xy, 2y, xz, 1yu. The
resultant multiset C“A´B can be calculated via the afore-
mentioned rules. The common elements, i.e., x and y, are
mapped into the same locations in ICBFA and ICBFB .
In the resulting cell vector ICBFC , the id field of each
cell stems from either ICBFA or ICBFB (only when
ICBFAris.id is empty), while the count field of each cell
is derived by ICBFAris.count´ICBFBris.count.

During the subtracting process, if both ICBFAris.id and
ICBFBris.id are non-empty or ICBFAris.id is non-empty
but ICBFBris.id is empty, we remain the ICBFAris.id
in the ICBFC vector. Only when ICBFAris.id is emp-
ty but ICBFBris.id is non-empty, ICBFC would record
ICBFBris.id. Note that the decoding process will benefit
from this special discipline. When HostB decodes ICBFC ,
it can identify those elements that only belong to B. Thus,
EB will be determined since all elements appearing in A can
be found by checking the first digit of each identifier, i.e., 0.
Also, if HostA decodes ICBFC , it will be aware of those
elements in dMA , by estimating whether their identifiers
begin with 0 and whether their count fields are negative.
The specific decoding process will be discussed as follows.

Decoding. In fact, HostA is also able to derive the
set C

1
“B´A via the designed subtracting process. By de-

coding ICBFC and ICBFC1 , each host can distinguish
the elements that should be copied at the local host from
the elements that call for transmission to another host.
In ICBFC , only those elements appearing in B but not

9

0 20 40 60
0

0.2

0.4

0.6

0.8

1

The value of k

Pr
ob

ab
ili

ty
 o

f s
uc

ce
ss

p
e

p
A

(a) Impact of k when m“1000, nA“50.

500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

The value of m

Pr
ob

ab
ili

ty
 o

f s
uc

ce
ss

p
e

p
A

(b) Impact of m when nA“50, k“4.

100 200 300 400
0

0.2

0.4

0.6

0.8

1

The value of n

Pr
ob

ab
ili

ty
 o

f s
uc

ce
ss

p
e

p
A

(c) Impact of nA when m“1000, k“4.
Fig. 3. The changing trends of successful representation probability of an element (pe) and the entire multiset (pA), with different parameter options.

in A are identified with the id fields, beginning with 1.
In contrast, in ICBFC1 , only those elements that appear
in A, but never appear in B are identified via those id
fields, which start with 0. That is, EA can be derived from
ICBFC1 at HostA, while EB can be derived from ICBFC

at HostB , respectively. Furthermore, HostA can decode
ICBFC and discover those elements which belong to A, but
the count fields are negative. Such elements belong to dMB

and |count| replicas of these elements will be generated at
HostA. Similarly, HostB decodes ICBFC1 and recognizes
those elements, which belong to B while the count fields
are negative, and |count| replicas will be required. As a
result, the hosts only need to exchange all of the elements
appearing in only one set for realizing the synchronization.

To handle the potential hash conflicts, when decoding
the elements, ICBF employs the mode value (the value
appears most often) of the k count fields as the multiplicity
of an element in d. The reason is that, the hash conflicts in
ICBFA and ICBFB will affect the minimal value of the
count field in ICBFC , as well as ICBFC1 . Consequently,
the minimal value of the k count fields in ICBFC and
ICBFC1 is not reliable any more. By contrast, even if k´2
cells of an element occurs hash conflicts, it is still possible for
the mode value of the k cells to infer the correct multiplicity
of an element.

As an example, Algorithm 4 reports the decoding oper-
ation at HostB . It decodes ICBFC to find out the elements
that need to be transmitted to HostA, i.e., EB . If the id of
a cell in ICBFC begins with 1, then the associated element
belongs to EB and should be transmitted to HostA. With
the help of the local id table, HostB knows the content of
each element in EB . Afterward, HostB chooses each cell
from ICBFC1 , whose id field starts with 1 and in which the
count field is negative, and then generates replicas of the
associated elements. In this way, dMA

is derived and syn-
chronized without any additional transmission overhead.

Note that, for the ICBF-based method only, EA is equal
to the root set of dEA and EB records the root set of dEB .
Besides, dM can be calculated as dMA Y dMB . But the IBF-
based method and the CBF-based method fail to distinguish
dE and dM . Thus, for these two methods, EA represents the
elements in dEA Y dMA , while EB involves the elements in
dEB Y dMB . Thus, the ICBF-based method transmits fewer
elements than the IBF-based and CBF-based methods.

4.5 Probability of correct representation

In this section, we measure the probability of conflict-free
representation of an element x in a given multiset A, i.e.,

mintCrhjpxqsu“mApxq, where jPr1, ks. Indeed, even with
a set of random and independent hash functions, ICBF may
still incur some false behaviors with a given probability dur-
ing the process of set synchronization. ICBF can accurately
represent an element iff the minimal value of the k count
fields in the mapped cells is equal to its multiplicity. Hence,
with given m, nA and k, we calculate the false-positive
probability of representing an element x using an ICBF.

We note that any multiset A is the “union” of
several subsets of its root set A˚. For example,
A“txx, 1y xy, 2y xz, 3yu can be considered as the “union”
of three standard sets, i.e., A“A˚ Z A1 Z A2, where
A˚“tx, y, zu, A1“ty, zu, and A2“tzu. Hence, hashing all
elements in A to the ICBF cells can be realized by mapping
the elements in such simple sets round by round, i.e., first
A˚, then A1, and at last A2.

Theorem 1. Given the value of m, nA and k, the necessary
and sufficient condition of xPA that is correctly repre-
sented by ICBF is that x can be validly represented by
ICBF in the first round, i.e., in A˚. Mathematically,

ppmintCrhjpxqsu“mApxqq“prpmintCrhjpxqsu“1q

(1)
where jPr1, ks, and prpmintCrhjpxqsu“1q means x is
correctly represented by ICBF in the first round.

Proof: We can infer from Theorem 1 that If the element
x is correctly represented in the first round, the final ICBF
cells satisfy mintCrhjpxqsu“mApxq with jPr1, ks, regard-
less of how many replicas x still has.

On one hand, the element x has been mapped for
mApxq rounds into ICBF cells. If mintCrhjpxqsu“mApxq

holds, for any cell whose counter part is mApxq, at each
round only x is mapped into the cell. At each round,
k hash functions map x into the cell vector; hence, the
minimum count filed in these cells record the multiplicity
of x, i.e., mApxq“mintCrhjpxqsu. If any other element y
also has been mapped into this cell, the counter part is
mApxq`mApyq, which is definitely larger than mApxq. So,
it can be concluded that for the cells whose final state is
mApxq, the counter part is increased by 1 at each round
(certainly including the first round which handles the root
set of A). Thus, the sufficiency of the conditions is proved.

On the other hand, if in the first round Crhjpxqs’s
counter part is only added by 1 due to mapping x with
hj , then in the remaining rounds, no other elements but
x will be hashed into this cell. The reason is that, the
root set A˚ contains all elements that occur in A, and we

10

have A˚ĚA1 ¨ ¨ ¨ ĚAi ¨ ¨ ¨ ĚAγ , where γ denotes the maxi-
mum multiplicity of elements in A. Hence, at last, the cell
Crhjpxqs’s counter part must be mApxq. Thus, the necessity
of the conditions is proved.
Theorem 2. Given the value of m, nA, k, and jPr1, ks, the

probability that an element xPA can be validly repre-
sented by ICBF in the first round is:

prpmintCrhjpxqsu“1q“1´p1´p1´
1

m
qnA˚k´1qk. (2)

Proof: In the first round, an element x has defi-
nitely been mapped k times by the k independent hash
functions. For any position hjpxq in the cell vector, we
have prpCrhjpxqs“1q“p1´ 1

m qnA˚k´1. There exist k such
positions for x; hence, the probability that x is correct-
ly represented in the first round can be calculated as
prpmintCrhjpxqsu“1q“1´p1´p1´ 1

m qnA˚k´1qk. Thus The-
orem 2 is proved.

Based on Theorems 1 and 2, the probability that ICBF can
rightly represent an element is derived. Then the nA-th Pow-
er of prpmintCrhjpxqsu“1q demonstrates the probability
that all elements in A are correctly recorded. Fig. 3 specifies
the impact of k, m, and nA, in terms of the probability of
correctly representing a single element (denoted as pe), and
the entire multiset A (denoted as pA). In Fig. 3 (a), given
m“1000 and nA“50, when k increases from 1 to 60, both pe
and pA first increase to nearly 1, then drop to a low level. By
taking the derivative and equaling to zero, the optimal value
of k can be derived. It is difficult to calculate the analysis
formula of the optimal k, and we employ the result in [25]
as a reference, i.e., k« m

nA
ln 2. The reason is that our pe is

much more complicated than the probability in [25]. But
we can still determine the optimal k for ICBF by searching
around m

nA
ln 2.

Besides, Fig. 3 (b) and Fig. 3 (c) confirm the impact of
m and nA with n“50, k“4 and m“1000, k“4, respectively.
Apparently, pe and pA benefit from larger m, since more
cells can degrade the chance of hash conflicts. The impact
of m shows a marginal effect. In the experiment, when
m is larger than 1000, pe and pA increase more slowly.
In contrast, nA shows a totally opposite influence on the
evaluated probabilities. With given m and k, fewer elements
result in higher probability of successful representation of
elements. This is reasonable, since more elements call for
more hash operations and lead to more chances for failure.
Note that, pA is calculated as pnA

e , and thus shows more rad-
ical increases or decreases in our experiments. Indeed, with
respect to k, according to the means introduced in [25], the
best option of m can be derived as m“´2.081n ˚ lnp1´peq;
hence, we omit the details here.

Furthermore, Table 4 records the performance of syn-
chronization, as well as the conflict rate at HostA (Coll-A)
and HostB (Coll-A). Note that, the conflict rate is calcu-
lated by dividing the total times of hash operations by the
number of hash conflicts. Apparently, with the increase of
m, less hash conflicts will be caused. And HostB suffers
from more hash conflicts than HostA, since nA“400 but
nB“500. Besides, note that, the accuracy of both the CBF
and ICBF grows with the drop of conflict rate. Generally,
with more hash conflicts, the resultant ICBF will record
less meta information of the elements. The reason is that

TABLE 4
Comparison between CBF and ICBF with nA“400, nB“500, and

d“1000, in terms of synchronization accuracy and time-consumption.

m 3000 5000 7000 9000 11000 13000 15000
CBF-a 0.912 0.943 0.971 0.978 0.981 0.986 0.992
ICBF-a 0.913 0.940 0.969 0.979 0.981 0.985 0.989
CBF-t 0.265 0.290 0.297 0.293 0.309 0.325 0.327
ICBF-t 0.174 0.194 0.210 0.228 0.238 0.248 0.260
Coll-A 0.172 0.107 0.079 0.059 0.054 0.047 0.039
Coll-B 0.204 0.134 0.095 0.077 0.065 0.055 0.049

each conflicted cell only save the information of the earliest
element that mapped into it. As a result, maybe even the
mode value in the k cells cannot tell the actual multiplicity
of the associated element.

5 PERFORMANCE EVALUATION

In this section, we implement IBF and ICBF to evaluate the
synchronization accuracy and time-consumption. The syn-
chronization accuracy is defined as the ratio of the number
of decoded differences to the amount of real difference. By
contrast, the time-consumption records the time lasting from
the very beginning of the encoding operation to the end
of the decoding operation. We also compare the additional
communication overhead caused by transmitting the IBF or
ICBF cell vectors.

5.1 Experiment methodology

A virtual machine with 2.5 GHz CPU and 8 GB RAM is
employed as a host. We augment the strings with lengths
and characters that differ from those of elements in mul-
tisets. Note that one challenging issue for bloom filter-like
data structure is the generation of a group of k independent
hash functions. In our experiments, the hash functions are
generated with the method employed in [24], i.e.,

hipxq “ pg1pxq ` i ˚ g2pxqq mod m (3)

where g1pxq and g2pxq are two random and independent
integers in the universe with a range r1,ms. The integer i
belongs to the range r0, k´1s.

In Table 4, we compare the performance of the syn-
chronization methods based on CBF and ICBF, in terms of
the synchronization accuracy and time-consumption, with
given nA“400, nB“500, and d“1000. Apparently, more
cells result in obvious improvement of the synchronization
accuracy for both CBF and ICBF, at the cost of more time-
consumption. Note that, CBF and ICBF lead to similar
accuracy under the same parameter setting. The intrinsic
reason is that they follow same encoding, subtracting and
decoding framework; hence they suffer from the same false
positive. However, compared with CBF, ICBF costs less
time-consumption. Consider that, CBF must query all the
elements in A˚ and B˚ to deduce d, but ICBF only needs the
information of elements recorded in ICBFC or ICBFC1 .
Thus, ICBF outperforms CBF in term of the synchronization
time-consumption. More importantly, CBF is not inversely
decodable and fails to identify dE and dM . Consequently,
it cannot minimize the transmission of elements between
two hosts. For this reason, we just evaluate the IBF-based
and ICBF-based synchronization methods. We also verify
the influence of parameter settings on the synchronization
performance, and subsequently report all the performance
metrics on an average of 100 rounds of tests.

11

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

Jaccard similarity

Sy
nc

hr
on

iz
at

io
n

ac
cu

ra
cy

ICBF based method
IBF based method

(a) Accuracy when J varies.

500 1000 1500 2000 2500 3000 3500
0.75

0.8

0.85

0.9

0.95

1

Difference

Sy
nc

hr
on

iz
at

io
n

ac
cu

ra
cy

ICBF based method
IBF based method

(b) Accuracy when d varies.

200 400 600 800 1000 1200
0.6

0.7

0.8

0.9

1

The value of n
B

Sy
nc

hr
on

iz
at

io
n

ac
cu

ra
cy

ICBF based method
IBF based method

(c) Accuracy when nB varies.
Fig. 4. The synchronization accuracy of ICBF and IBF under different parameter settings.

0 0.2 0.4 0.6 0.8 1
Jaccard similarity

-1

0

1

2

3

Lo
g1

0
of

 T
im

e-
co

ns
um

pt
io

n

ICBF based method
IBF based method

(a) Time-consumption when J varies.

500 1000 1500 2000 2500 3000 3500
Difference

-1

0

1

2

3

Lo
g1

0
of

 T
im

e-
co

ns
um

pt
io

n
ICBF based method
IBF based method

(b) Time-consumption when d varies.

200 400 600 800 1000 1200
The value of n

B

0

1

2

3

Lo
g1

0
of

 T
im

e-
co

ns
um

pt
io

n

ICBF based method
IBF based method

(c) Time-consumption when nB varies.
Fig. 5. The time-consumption of ICBF and IBF under different parameter settings.

5.2 Synchronization accuracy and time-consumption

The IBF-based method and ICBF-based method are capable
of achieving multiset synchronization, but result in different
time-consumption and communication overhead. In this
section, we evaluate their performance in terms of the syn-
chronization accuracy and time-consumption under diverse
parameter settings. Typically, the Jaccard similarity of root
sets A˚ and B˚, i.e., J“|A˚XB˚|{|A˚YB˚|, is employed to
measure the similarity of A and B based on their root sets.

We measure the impact of different settings of mul-
tisets on the performance of the two methods. Fig. 4(a)
and Fig. 5(a) report the synchronization accuracy and
time-consumption of the ICBF-based and IBF-based meth-
ods, respectively, when J varies from 0 to 1, given
nA“500, nB“500, d“2000. With the increase of J , the syn-
chronization accuracy of the IBF-based method grows up
from 0.523 to 0.999, while the time-consumption decreases
from 345s to 165s. Also, the ICBF-based method shares the
similar changing trends of accuracy and time-consumption.

However, the ICBF-based method achieves higher syn-
chronization accuracy and incurs less time-consumption,
compared with the IBF-based method. Indeed, larger J
causes more common elements in the two root sets of A
and B, which means that fewer kinds of elements will be
involved in the synchronization processes. As a result, the
IBF-based method will be executed for more rounds, but
only involves fewer elements in each round, which leads
to better accuracy and less time. This explains why when
J increases, the synchronization accuracy of the IBF-based
method continues to increase while the time-consumption
reduces continuously.

Fig. 4(b) and Fig. 5(b), report the impact of d (the size of
the difference among two mulitsets) on the changing trends
of performance metrics. Given nA“500, nB“500, J“0.8,
we vary the value of d from 500 to 3500. It is clear that

the two metrics always fluctuate within a narrow interval
with the increase of d. That is, the ICBF-based method
is insensitive to the difference that is caused by different
multiplicities of same elements. The root cause is that, the
two metrics of the ICBF-based synchronization are actually
determined by the size of the difference between the two
corresponding root sets, irrespective of the multiplicity of
each element.

On the contrary, both performance metrics under the
IBF-based method grow up as d increases. The larger value
of d means that the IBF-based method will be executed for
more rounds, thus increasing the execution time. In effect,
among 100 rounds of failed IBF processes, most failures
occur within the first five rounds. Accordingly, the involved
elements become scarce as the round order increases; hence,
this eases the successful decoding of such elements. In our
experiment settings, nA and nB are constant. Thus, more
differences result in higher multiplicity for elements on
average. So the IBF-based method will be executed with
high frequency, and more elements will be identified. Thus,
the synchronization accuracy of the IBF-based method keeps
increasing and approaches to 1.

Let the value of nB range from 100 to 1200, with
nA“600, J“0.1 and d“6000. As shown in Fig. 5(c), the
ICBF-based and IBF-based methods always result in increas-
ing time-consumption along with the growing nB . Note that
the ICBF-based method saves the consumed time consider-
ably more than the IBF-based method. In Fig. 4(c), the syn-
chronization accuracy of the ICBF-based method decreases
from 0.956 to 0.873, while that of IBF-based decreases from
0.916 to 0.690. So the ICBF-based method outperforms the
IBF-based method in terms of the synchronization accuracy.

5.3 Communication overhead of cell vector
As depicted in Fig. 1, three interactions are needed to realize
multiset synchronization, and undoubtedly, each round of

12

4000 6000 8000 10000 12000

1

2

3

4

5

x 10
6

The value of n

C
om

m
un

ic
at

io
n

co
st

(b
)

IBF−B
IBF−P
IBF−G
ICBF−O
ICBF−L

(a) Communication overhead when n varies.

4 6 8 10 12

5

10

15

x 10
6

The value of α

C
om

m
un

ic
at

io
n

co
st

(b
)

IBF−B
IBF−P
IBF−G
ICBF−O
ICBF−L

(b) Communication overhead when α varies.

0.2 0.4 0.6 0.8 1

2

4

6

8

10

12

14
x 10

6

The value of difference ratio

C
om

m
un

ic
at

io
n

co
st

(b
)

IBF−B
IBF−P
IBF−G
ICBF−O
ICBF−L

(c) Communication overhead when d{n varies.
Fig. 6. The communication overhead of IBF and ICBF for multiset synchronization with different parameter settings. Apparently, unlike IBF, ICBF is
insensitive to α or d, but is only decided by the maximum number of elements in the root sets.

communication cost is dedicated to communication over-
head. In this section, to reveal the efficiency of different
synchronization methods, we assess the communication
overhead caused by transmitting cell vector used by d-
ifferent methods. We do not consider the communication
overhead that has been caused by transmitting elements.
This is because only our ICBF-based method can distinguish
dM from dE and thus eliminate unnecessary transmission,
while other methods cannot. Compared with the ICBF-
based method, other methods definitely suffer from in-
creased communication overhead of transmitting elements.

According to the analysis in [25], with respect to the
optimal value of k, the best option of m is given as
m“´2.081n ˚ lnp1´peq. In our evaluation, the value of pe
is set as 0.999; hence, m can be derived as 14.3776n. Thus
the communication overhead of ICBF, i.e., COICBF , can be
calculated as:

COICBF “p16`2` log2 nqm“14.3776˚p18` log2 nqn. (4)

where n denotes the maximum of nA and nB , and m
denotes the number of cells. Additionally, the count field
cost 16 bits, while the prefix and the flag (empty or not)
need 1 bit, respectively. Meanwhile, the suffix cost log2 n
bits. Note that, in this parameter setting, the majority of the
cells are empty. To save the consumed memory by ICBF
and reduce the resultant communication overhead, we use
a double linked list to save the cell vector. Linked list saves
those nonempty cells with two pointers, the prior and the
next, to identify the position of each cell in the vector. Here,
each pointer is 16 bits. So, when the ICBF cells are stored
with linked list, the communication overhead turns to be:

COICBF´l“p32`16`2` log2 nq˚n“p50` log2 nq˚n. (5)

As for the IBF-based method, the communication over-
head of each round, i.e., COIBF , can be calculated by the
following equation:

COIBF “α˚d̄˚plog2 n`2˚ log n` log d̄`16q (6)

where d̄ denotes the size of estimated difference, n denotes
the maximum of nA and nB in this round, and α is a
coefficient that controls the length of the IBF vector. In this
equation, log2n, 2˚ log d̄` log d̄ and 16 denote the overhead
caused by the idSum, hashSum [20] and count fields in
an IBF, respectively. The part of 2˚ log n` log d̄ is the least
bit length of hashSum to identify single-element cells for
further decoding use [9].

Fig. 6 plots the communication overhead caused by the
two synchronization methods under different parameter
settings. In our experiments, three mainstream discrete dis-
tributions for the multiplicity in the multiset are employed,
i.e., the Binomial, Poisson and Geometric distributions. We
keep the average of multiplicity the same under these distri-
butions. In fact, these distributions never affect the commu-
nication overhead caused by the ICBF-based method, which
is decided by the value of n, i.e., the maximum number of
elements in the two root sets. By contrast, IBF decodes all of
its elements via round-robin processes, which implies that
its communication overhead will be affected by the distribu-
tion of multiplicity. Note that, in Fig. 6, the legends “IBF-B”,
“IBF-P”, and “IBF-G” denote the additional communication
overhead of the IBF-based method when the multiplicity
of elements follow Binomial, Poisson and Geometric dis-
tributions. “ICBF-O” and “ICBF-L” identify the additional
communication overhead of ICBF-based method with the
original storage strategy and employing double linked list.

In Fig. 6(a), we vary n from 3000 to 12000, while α“3 and
d{n“0.3. Compared with the IBF-based method, the ICBF-
based method causes less overhead under each multiplicity
distribution, since both “ICBF-O” and “ICBF-L” outperform
others. By contrast, we keep n“10000, while varying α
and d{n in Fig. 6(b) and Fig. 6(c), respectively. To be exact,
d{n“0.3 while α increases from 3 to 12 in Fig. 6(b) and
α“3 while d{n rises from 0.1 to 1 in Fig. 6(c). Obviously,
the communication overhead of ICBF is much less than IBF
and stays constant in both Fig. 6(b) and Fig. 6(c). The reason
is that the employed linked list only records the nonempty
cells in ICBF. Meanwhile, the number of nonempty cells in
ICBF can be calculated as k ¨ n. Thus the variables α and d
cannot affect the additional communication overhead of the
ICBF-based method. Moreover, Fig. 6 also indicates that the
double linked list can significantly save storage and degrade
the communication overhead of ICBF.

The communication overhead caused by the IBF-based
method is very close under the Binomial and Poisson dis-
tributions, since they hold the similar statistical character-
istics. Furthermore, the IBF-based method incurs the least
communication overhead under the long-tailed Geometric
distribution, because most multiplicities of elements are less
than the average value, and thus, execute fewer rounds of
the synchronization processes.

Note that, to execute the subtracting and decoding oper-
ations, the received double linked list should be recovered
as a vector of ICBF cells. This mission can be easily achieved

13

by using the pointers in the linked list. For example, in the
linked list, if ICBFlris.next“9 and ICBFlri`1s.prior“4,
then four empty cells ranging from ICBF r5s to ICBF r8s

should be added between ICBFlris and ICBFlri`1s to
recover the ICBF. After recovering all of the m cells, the
host will follow the designed steps to deduce the different
elements between multisets A and B.

6 RELATED WORK

As an essential task, set synchronization has been exten-
sively studied in the fields of database, networking, and
information theory. We classify the existing work into two
categories according to what they synchronize, i.e., specific
contents or general elements.
6.1 Synchronization of specific contents
We note that researchers take advantages of the intrinsic
features of the content to model the synchronization prob-
lems. Accordingly, the synchronization mechanism will be
designed, and the upper and lower bound of the communi-
cation complexity can be reasonably derived.

Synchronization of random variables. To synchronize
two discrete random variables, one model is proposed to
calculate the upper and lower bound of the communication
complexity [26]. Thereafter, Alon and Orlisky reveal the
connection between synchronization of random variables
and minimal coloring problem of the corresponding charac-
teristic graph [27]. Furthermore, Orlisky also propose a linear
error-correcting codes-based method to realize data syn-
chronization [28]. Based on the well-studied coloring and
error-correcting theories, the communication complexity of
synchronization can be accurately evaluated.

Synchronization of files or strings. The synchroniza-
tion of files (or strings) on two distributed hosts has been
modeled as the well-known edit-distance problem [29]. The
error-correcting code-based method has been developed
to settle this issue with nearly optimal communication
overhead by ranking the strings in sorted order [30]. The
efficiency of the error-correcting based method is closely
related to the code mechanism, including linear codes [31],
Reed-Solomon codes [30], and non-linear codes [29]. Given
two sets, each with a set of bit-strings, a characteristic poly-
nomial is generated to represent each set [32]. By evaluating
the rational function of the characteristic polynomials, the
different strings will be decoded.

Synchronization of pictures. [11] denotes itself to syn-
chronize two sets of pictures by evaluating the similarity
between two pictures with Earth Mover’s Distance (EMD).
Based on the observation that close points in the Euclidean
space often represent the same element, [11] utilizes the
Invertible Bloom Lookup Tables (IBLTs) to record the infor-
mation of points in the space. After exchanging the IBLTs
of the other set, an EMD-enabled decoding algorithm is
sufficient to derive the different elements.

These methods realize communication-saving synchro-
nization by modelling the synchronization problem of spe-
cific contents; hence, their strength may not be popularized
in other fields.
6.2 Synchronization of general elements
In fact, this kind of synchronization method employs the
bloom filters and their variants to record the information of
each set, regardless of what the involved elements are.

Bloom Filter has been employed to realize set synchro-
nization, due to the space efficiency and constant query
delay [6]. Each host employs a bit vector to represent all
of its elements, and delivers the bit vector to the other
host for synchronization [1]. However, if multiple elements
have been hashed into any bit in BF, the BF may fail
to identify all elements. To settle this problem, the CBF-
based set synchronization method records the information
of its elements via a cell vector [19]. Note that, the time-
complexity of synchronization is OpnA`nBq due to a num-
ber of nA`nB queries. The former two methods failed to
decode the elements inversely, thus they need additional
query operations to identify the different elements from
the vectors. IBF [9], which records the elements via three
dedicated fields, i.e., idSum, hashSum and count, can
synchronize two sets and inversely decode the elements
from cells. But the parameters need to be carefully designed,
and it costs additional computation and space overhead to
evaluate the difference.

The aforementioned methods are all inefficient to syn-
chronize multisets, allowing elements to appear multiple
times. Thus, for the first time, we propose a novel variant
of bloom filters and utilize it to achieve fast and accurate
multiset synchronization in this paper.

7 DISCUSSION

To fully understand the proposed methods, we discuss the
following issues further.

Synchronization in extreme cases. Undoubtedly, it is
true that the ICBF-based method can realize bandwidth-
saving synchronization. However, in some extreme cases,
representing multisets with ICBFs to discover the different
elements between two multisets may be not cost-effective.
Firstly, if the amount size of all elements in a multiset is
smaller than the size of the used ICBF, it is not advisable
to employ the ICBF-based method. Basically, each host cal-
culates the size of ICBF with Equation 5. If the calculated
result is no less than the total size of the elements in a
multiset, the host will send the multiset to the other host
directly. The second extreme case is that there are enormous
differences between two multisets. In this case, we believe
that the ICBF-based method is still recommendable since it
distinguishes dE from dM . As a result, only the elements in
dE will be transmitted for once. By contrast, the elements in
dM will be synchronized by generating dedicated number
of replicas at the local host. In this way, ICBF-based method
transmits the least elements.

The hash conflicts. We cannot avoid the hash con-
flicts when encoding a multiset with BF and its variants.
However, towards different missions, the impact of hash
conflicts can be controlled and mitigated. To represent a
multiset for query, the minimal count value in the k cells
can infer the multiplicity of an element with rather high
probability (see Section 4.5). By contrast, to synchronize
two multisets, during the decoding operation, the minimum
value of the k involved count fields may underestimate the
multiplicity. Hence, it is better to employ the mode value
of the k count fields as the multiplicity. For example, in
the resulted ICBFC in Fig. 2, the minimum value of the k
cells for both x and z is 0. However, their real multiplicities
in C“A´B are 1 and -1, respectively. Hence, the mode

14

value is more reliable than the minimum value during the
decoding operation. Indeed, it is complicated to qualify the
relationship between the conflict rate and synchronization.
However, by employing the mode value as the multiplicity
of each element, the ICBF can still synchronize this element
successfully with dedicated probability.

Future work. Due to the importance of multiset synchro-
nization, more comprehensive endeavor should be made
to further improve the synchronization techniques. First-
ly, note that the proposed methods can only synchronize
multisets with high probability, but fail to realize 100%
synchronization accuracy. To address this problem, other
outstanding data structures may be useful to represent and
synchronize multisets. Moreover, how to achieve accurate
and fast multi-party synchronization is also a challenging
issue to be solved in the future.

8 CONCLUSION

In this paper, we focus on the essential problem of multiset
synchronization, which has not been addressed in the litera-
ture. We first examine the potential of the IBF-based method
and the CBF-based method for multiset synchronization,
using a general framework. However, they are either time-
consuming or inefficient. To realize multiset synchronization
efficiently, we further propose a novel data structure named
invertible counting bloom filters (ICBF). Accordingly, we
design the ICBF-based method that synchronizes two mul-
tisets both quickly and accurately. Typically, the localized
ids are employed to identify each kind of element in A
and B. Additionally, an associated id table is established
in each host to record the mapping relationship between
ids and elements. The evaluating results show that, com-
pared with the IBF-based method, our ICBF-based method
synchronizes the multisets more accurately within a shorter
time period. Moreover, the communication cost of the ICBF-
based method is much less than the IBF-based method, and
is only decided by the value of n. Accordingly, we believe
that our ICBF-based method is effective and practical to
synchronize multisets.

ACKNOWLEDGMENTS

The authors thank all the anonymous reviewers for their
insightful feedback. Besides, this work is supported by
the National 973 Basic Research Program under grant
No.2014CB347800, the National Natural Science Foundation
of Outstanding Youth Fund under grant No. 61422214.

REFERENCES

[1] D. Guo and M. Li, “Set reconciliation via counting bloom filters,”
IEEE Transactions on Knowledge and Data Engineering, vol. 25, no.
10, pp. 2367–2380, 2013.

[2] J. Liu, S. Ahmad, E. Buyukkaya, R. Hamzaoui, and G. Si-
mon,“Resource allocation in under-provisioned multi-overlay
peer-to-peer live video sharing services,” Peer-to-Peer Networking
and Applications, pp. 1–15, 2014.

[3] Y. Liu, L.M. Ni, and C. Hu, “Generalized probabilistic topology
control in wireless sensor networks,” IEEE Journal on Selected Areas
in Communications, vol. 30, no. 9, pp. 1780–1788, 2012.

[4] V. Stefano, L. Vanbever and O. Bonaventure, “Opportunities and
research challenges of hybrid software defined networks,” ACM
SIGCOMM Computer Communication Review, vol. 42, no. 2, pp.
2770–75, 2014.

[5] K. P. N. Puttaswamy, C. C. Marshall, V. Ramasubramanian, P.
Stuedi, D. B. Terry, and T. Wobber, “Docx2go: collaborative editing
of fidelity reduced documents on mobile devices,” in Proc. of ACM
MobiSys, 2010.

[6] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” ACM Communications, vol. 13, no. 7, pp. 422–426, 1970.

[7] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache:
a scalable wide-area web cache sharing protocol,” IEEE/ACM
Transactions on Networking, vol. 8, no. 3, pp. 281–293, 2000.

[8] M. Mitzenmacher, “Compressed bloom filters,” IEEE/ACM Trans-
actions on Networking, vol. 10, no. 5, pp. 604–612, 2002.

[9] D. Eppstein, M. T. Goodrich, F. Uyeda, and G. Varghese, “Whats
the difference?: efficient set reconciliation without prior context,”
ACM SIGCOMM Computer Communication Review, vol. 41, no. 4,
pp. 218–229, 2011.

[10] M. T. Goodrich and M. Mitzenmacher, “Invertible bloom lookup
tables,” in Proc. of 49th Annual Allerton Conference on Communica-
tion, Control, and Computing, 2011.

[11] D. Chen, C. Konrad, K. Yi, W. Yu, and Q. Zhang, “Robust set
reconciliation,” in Proc. of ACM SIGMOD International Conference
on Management of Data, 2014.

[12] S. Cohen, and Y. Matias, “Spectral bloom filters,” in Proc. of ACM
SIGMOD International Conference on Management of Data, 2003.

[13] J. Aguilar-Saborit, P. Trancoso, V. Muntes-Mulero, and J. L.
Larriba-Pey, “Dynamic count filters,” ACM SIGMOD Record Home-
page, vol. 35, no. 1, pp. 26-32, 2005.

[14] T. Yang, A. X. Liu, M. Shahzad, Y. Zhong, Q. Fu, and Z. Li, “A
shifting bloom filter framework for set queries,” Proceedings of the
VLDB Endowment, vol. 9, no. 5, pp. 408-419, 2016.

[15] G. Cormode, and S. Muthukrishnan, “An improved data stream
summary: the count-min sketch and its applications,” Journal of
Algorithms, vol. 55, no. 1,pp. 58-75, 2005.

[16] D. Singh, A. Ibrahim, T. Yohanna, and J. Singh, “An overview of
the applications of multisets,” Novi Sad Journal of Mathematics, vol.
37, no. 3, pp. 73–92, 2007.

[17] D. Guo, Y. He, and P. Yang, “Receiver-oriented design of bloom
filters for data-centric routing,” Computer Networks, vol. 54, no. 1,
pp. 165–174, 2010.

[18] D. Guo, Y. He, and Y. Liu, “On the feasibility of gradient-based
data-centric routing using bloom filters,” IEEE Transactions on
Parallel and Distributed Systems, vol. 25, no. 1, pp. 180–190, 2014.

[19] A. Broder, and M. Mitzenmacher, “Network applications of bloom
filters: A survey,” Internet Mathematics, vol. 1, no. 4, pp. 485–509,
2004.

[20] D. Eppstein and M. T. Goodrich, “Straggler identification in
round-trip data streams via newtons identities and invertible
bloom filters,” IEEE Transactions on Knowledge and Data Engineer-
ing, vol. 23, no. 2, pp. 297–306, 2011.

[21] G Decandia, D Hastorun, M Jampani, G Kakulapati and A Laksh-
man, “Dynamo: amazon’s highly available key-value store,” Acm
Sigops Operating Systems Review, vol. 41, no. 6, pp. 205-220, 2007.

[22] http://redis.io.
[23] http://memcached.org.
[24] A. Kirsch, and M. Mitzenmacher, “Less hashing, same perfor-

mance: building a better bloom filter,” Random Structures and
Algorithms, vol. 33, no. 2, pp. 187-218, 2006.

[25] S. Tarkoma, C. Rothenberg, and E. Lagerspetz, “Theory and prac-
tice of bloom filters for distributed systems,” IEEE Communications
Surveys and Tutorials, vol. 14, no. 1, pp. 131-155, 2012.

[26] P. Koulgi, E. Tuncel, S. Regunathan, and K. Rose, “On zero-error
source coding with decoder side information,” IEEE Transactions
on Information Theory, vol. 49, no. 1, pp. 99–111, 2003.

[27] N. Alon and A. Orlitsky, ”Source coding and graph entropies,”
IEEE Transactions on Information Theory, vol. 42, no. 5, pp. 1329-
1339, 1996.

[28] A. Orlitsky, “Interactive communication: balanced distributions,
correlated files, and average-case complexity,” in Proc. of IEEE
Annual Symposium on Foundations of Computer Science, 1991.

[29] G. Karpovsky, and B. Levitin, “Data verification and reconciliation
with generalized error-control codes,” IEEE Transactions on Infor-
mation Theory, vol. 49, no. 7, pp. 1788–1793, 2003.

[30] K. Abdel-Ghaffar and A. Abbadi, “An optimal strategy for com-
paring file copies,” IEEE Transactions on Parallel and Distributed
Systems, vol. 5, no. 1, pp. 87-93, 1994.

[31] A. Orlitsky, “Communication issues in distributed computing,”
Ph.D. thesis, Stanford University, 1986.

[32] Y. Minsky, A. Trachtenberg, and R. Zippel, “Set reconciliation with
nearly optimal communication complexity,” IEEE Transactions on
Information Theory, vol. 49, no. 9, pp. 2213-2218, 2004.

