
1

HDS: A Fast Hybrid Data Location Service for
Hierarchical Mobile Edge Computing
Deke Guo, Junjie Xie, Xiaofeng Shi, Haofan Cai, Chen Qian, Honghui Chen

Abstract—The hierarchical mobile edge computing satisfies the
stringent latency requirements of data access and processing
for emerging edge applications. The data location service is a
basic function to provide data storage and retrieval to enable
these applications. However, it still lacks research of a scalable
and low-latency data location service in the environment. The
existing solutions, such as DNS and DHT, fail to meet the
requirement of those latency-sensitive applications. Therefore,
in this paper, we present a low-latency hybrid data-sharing
framework, HDS. The HDS divides the data location service
into two parts: intra-region and inter-region. More precisely,
we design a data sharing protocol called Cuckoo Summary to
achieve fast data localization in intra-region. Furthermore, for the
inter-region data sharing, we develop a geographic routing based
scheme to achieve efficient data localization with only one overlay
hop. The advantages of HDS include short response latency, low
implementation overhead, and few false positives. We implement
the HDS framework based on a P4 prototype. The experimental
results show that, compared to the state-of-the-art solutions, our
design achieves 50.21% shorter lookup paths and 92.75% fewer
false positives.

Index Terms—Data location service, Cuckoo Summary, Greedy
routing, Mobile edge computing, SDN.

I. INTRODUCTION

IT is predicted that the number of edge devices will grow
up to 27 billion by 2021, including the Internet-of-Things

(IoT) devices, mobile personal devices, and wireless sensors
[1]. The prevailing cloud computing paradigm can hardly help
the latency-sensitive applications that run on edge devices,
such as virtual reality and emergency reactions. Mobile Edge
Computing (MEC) is a promising alternative that provides
computation and storage resources over a huge number of ge-
ographically distributed edge servers close to the edge devices.
Furthermore, the hierarchical edge computing architecture has
been proposed to provide data and computation support for
edge applications [1][2][3]. The hierarchy of edge servers
includes a traditional wide-area cloud Data Center (DC) at
its root and a large number of edge servers deployed at the
end of the network. Then, those edge servers are divided into
different regions where each region has a small DC to manage
those edge servers in the region, which is called the region DC.

Deke Guo and Honghui Chen are with the Science and Technology Lab-
oratory on Information Systems Engineering, National University of Defense
Technology, Changsha Hunan, 410073, China. E-mail: guodeke@gmail.com.

Junjie Xie is with the Institute of Systems Engineering, AMS, PLA, Beijing,
100141, P.R. China. E-mail: xiejunjie06@gmail.com.

Xiaofeng Shi, Haofan Cai and Chen Qian are with the Department of
Computer Science and Engineering, University of California Santa Cruz, CA
95064, USA. E-mail: cqian12@ucsc.edu.

Junjie Xie is the corresponding author.

The DCs in this paper includes the cloud DCs and the region
DCs. The cloud DC is also the remote Cloud, which has a
larger scale than a region DC. The hierarchical MEC infras-
tructure can be constructed by an organization or a company.
Besides, diverse MEC nodes deployed by different owners can
cooperate together to form the hierarchical MEC architecture,
which is called the edge federation[4]. The participants in the
edge federation can make more profit than before joining the
federation.

Data sharing among edge devices is a unique feature of
MEC, which can efficiently reduce the response latencies of
data requests in MEC [5][6]. Data sharing in MEC can mainly
be classified into two types. In the first type, the shared data is
collected by geographically distributed edge devices. The data
produced by an edge device could be used by another edge
device to perform some collaborative tasks. Meanwhile, the
data may also be used by the data collectors themselves. The
edge devices may move from their original area to another
area, which further complicates data sharing in MEC. In the
second type, the shared data is generated at the remote Cloud.
Then, the edge servers collaboratively deliver the data to edge
devices. In MEC, to achieve efficient data sharing, the data
location service is the key function and further provides data
support for many emerging applications. The data location
service is the process of finding an edge server that stores
a specific data item, which is used in both data storage and
retrieval.

Domain Name Service (DNS) [7] and Distributed Hash Ta-
ble (DHT) [8] could be the potential solutions to achieve a data
location service. However, they incur long latencies to respond
to the data lookup in MEC. For example, under the DNS-based
scheme, some data requests could be forwarded to the root
DNS server. In this case, those lookup requests will go through
long paths, which further incur long latencies. Meanwhile, the
DNS-based scheme faces also the challenges of scalability,
fault tolerance, and load balance. Another alternative method
is a DHT-based scheme, which has been extensively studied
in Peer to Peer (P2P) networks. However, the lookup requests
will go through up to log(n) overlay hops to locate the data.
Worsely, the physical path traversed by a lookup request in
MEC could be longer than the direct route to access the
remote Cloud. Recent work suggests a flat architecture of
MEC to reduce routing latency [9]. However, it faces a severe
scalability problem and fails to achieve efficient data sharing
across geographically distributed edge networks. Therefore,
there is an urgent need to investigate the data location service

2

problem under the hierarchical MEC architecture over a large
number of distributed edge servers.

In this paper, we leverage the features of the hierarchical
MEC architecture and propose a novel hybrid data-sharing
framework, called HDS, to achieve a low-latency and scalable
location service. The HDS partitions the data sharing into two
parts: intra-region and inter-region. In detail, a data request
is first processed in the local edge server. If the data can not
be founded, it is then forwarded to the corresponding region
DC, which will conduct the intra-region data lookup. If the
data have not been cached in the region, the data request
will be further processed by the inter-region data location
service. When a server stores a shared data item, it will first
publish its data index to the corresponding region DC. Then,
the data index is inserted into the global indices. Under the
HDS framework, the data from all edge servers, region DCs,
and the cloud DC can all be quickly located.

The challenges for intra-region data-sharing come from
three parts, namely, network bandwidth saving, fast data
location service, and low memory consumption. To save
the network bandwidth, the lookup messages should not be
broadcast to all other edge servers in the region. That is, the
region DC will maintain the information of all cached data in
the region. The alternative protocol is summary cache [10],
which uses Bloom filter to support data lookups and sharing.
However, the summary cache is inefficient due to a large
number of memory accesses as well as the high false-positive
rate. A false positive means the summary cache answer “yes”
for a data item that has not been cached in the region, which
causes a wasted lookup message and the processing cost. To
overcome the drawbacks of summary cache, we design Cuckoo
Summary to achieve efficient data sharing in intra-region. The
core component of Cuckoo Summary is a Cuckoo hash table
[11] where each entry includes the fingerprint of a cached
data item and the identifier of the edge server that stores
the data. The Cuckoo Summary can achieve not only higher
lookup throughput but also fewer false positives. By checking
the Cuckoo summary, the region DC can quickly know if a
requested data is stored in the region and which edge server
caches the data.

The challenges for inter-region data sharing include short
lookup path and low implementation overhead. To achieve
the data location service across regions, an alternative method
is the DHT-based solution [8]. However, it fails to meet the
low latency requirement of emerging applications in the MEC
environment. Meanwhile, the DHT-based solution requires
that a large number of forwarding entries are inserted into
switches/routers to support the data location service among
region DCs. Furthermore, the region DC needs to maintain
a lot of finger tables to implement the data lookup in inter-
region. To overcome the drawbacks of the DHT-based solution,
we design a geographic routing based scheme to fast obtain
the location of a requested data in inter-region. This method
utilizes the advantages of Multi-hop Delaunay Triangulation
(MDT) [12] and software-defined networking (SDN) [13], and

it is called MDT-based scheme. More precisely, a virtual space
is first maintained in the control plane of the network. Then
switches that are directly connected to region DCs will be
assigned coordinates in the virtual space. After that, the data
requests will be forwarded based on their positions in the
virtual space. Under the MDT-based scheme, a lookup request
can be directly delivered from the ingress region DC to the
destination region DC with only one overlay hop. Meanwhile,
the MDT-based scheme has low implementation overhead.
That is, only a few forwarding entries are needed in each
switch to support the MDT-based scheme.

We implement the HDS framework, which consists of the
Cuckoo Summary in intra-region and the MDT-based scheme
in inter-region, on a P4 prototype. The experiment results
demonstrate the advantages of HDS framework. More pre-
cisely, our design achieves 50.21% shorter lookup paths and
92.75% fewer false positives than the state-of-the-art solutions.
In summary, we make the following major contributions:

1) We propose a data sharing protocol, Cuckoo Summary,
for the intra-region data sharing among edge servers.
The Cuckoo Summary is effective and efficient due to
not only higher lookup throughput but also fewer false
positives.

2) We design the MDT-based scheme for the inter-region
data location service by utilizing the advantages of
Multi-hop Delaunay Triangulation and SDN. Under this
scheme, a lookup request can be directly delivered from
the ingress region DC to the destination region DC with
only one overlay hop.

3) We implement the hybrid data location service, HDS,
in P4, and further evaluate its performance through
large-scale simulations. The experiment results show the
efficiency and effectiveness of the HDS framework for
the hierarchical mobile edge computing .

The rest of this paper is organized as follows. Section
II introduces the system overview of this paper. In section
III, we detail the design of intra-region data sharing. We
present the design of inter-region data location service in
Section IV. In Section V, we discuss the critical attributes
of the HDS framework. Section VI shows the performance
evaluation including a prototype implementation and large-
scale simulations. We present the related work and conclude
this paper in Section VII and Section VIII, respectively.

II. SYSTEM OVERVIEW

The data sharing is essential to reduce the latency of data
retrieval, and the data location service is a crucial function.
First, a large amount of data produced by geographically
distributed edge devices need to be efficiently shared among
devices. Moreover, edge servers cache the data from the cloud
to serve requests of edge devices. The massive cached data
should also be shared. We summarize that the data sharing
in MEC faces three main challenges: (1) MEC requires a
stringent low latency; (2) a large amount of geographically
distributed data needs to be efficiently shared; (3) mobility of

3

edge devices is ubiquitous in MEC. To address these problems,
the traditional method of data sharing used in cloud computing
is not efficient enough to meet the demand of MEC. In cloud
computing, when an edge device produces a data item, the data
will be first transmitted to the cloud. When other edge devices
want to use the data, these edge devices need to retrieve the
data from the remote cloud, which will incur a long latency.
Therefore, there is a urgent need for a fast data location service
to support the emerging applications in MEC.

In this paper, we design the HDS framework by leveraging
the hierarchical infrastructure of MEC [1][14], as shown in
Figure 1. A large number of edge servers are deployed into
different regions. All edge servers in each region are usually
managed by one region DC, which has more computing
and storage capacity than an edge server. The region DC is
responsible to manage all involved edge servers and schedule
users requests in this region. When the requested data cannot
be found in the nearest edge server, the request will be first
forwarded to the region DC, which will search other edge
servers in the region. For fault tolerance, there could be
multiple region DCs in one region, and they can play the
same role in the hierarchical architecture. The main objectives
of the HDS framework include fast data location service, few
false positives, and low implementation overhead. Low-latency
data location service is essential to meet the low latency
requirement of MEC. To achieve this goal, we conduct our
design considering two main requirements in MEC. First,
the cached data in the same region should be locally shared
because it is faster to retrieve data from a neighboring edge
server than from the remote Cloud. In particular, an edge
server can quickly know if its neighbors have cached the
requested data. Second, the data from different regions should
also be efficiently shared. Furthermore, a data request should
be directly forwarded from the ingress region DC to the des-
tination region DC. Here no global information is maintained
in the ingress region DC.

In this paper, we provide a general data service and do not
add any more constraint on the data name or the data type. A
data item can be identified by a URL, or an IoT device can
identify the collected data by fitting the device ID, the date
and the data type together. Under the HDS framework, the
servers that have stored some shared data will publish those
data indices to related region DCs. The data index consists
of the identifier of data and its address, which can be the IP
address of the related server. More precisely, those indices of
shared data are distributed among all region DCs for the inter-
region data lookup. All region DCs collaboratively maintain
the global indices of all shared data items. After that, for any
shared data, its data location can be achieved in one of those
region DCs.

It is well-known that each region faces the dynamic join and
leave problem of data file. As shown in Figure 1, each region
DC maintains not only intra-region indices but also partial
global indices. When a data file joins in a region, its data
index will be first published into the corresponding region DC

Cloud

Cloud DC

Region DCRegion DC

Edge Server Base Station Camera Vehicle Phone Sensor

Partial Global Indices
1 Key Address
2 Key Address

Intra-Region Indices
(Cuckoo Summary)

Fig. 1. The data sharing framework under the hierarchical MEC topology.

and be used to respond to the intra-region lookup. Meanwhile,
the data index will also be inserted into the global indices for
the inter-region data lookup. Besides, when a data file leave
from a region, the related data indices will be deleted from
the intra-region and inter-region indices. Furthermore, when a
data request from an edge device comes, it is first forwarded
to the nearest edge server through a base station (BS) or an
access point (AP). If the edge server has cached the data, it
immediately returns the data to the related edge device. When
the requested data has not been cached in the nearest edge
server, the data request will be forwarded to the corresponding
region DC. The related region DC will check if itself or other
edge servers in the same region has cached the requested data.
If the data is still not cached in this region, it is necessary to
lookup the global indices, which are distributed among all
region DCs.

To achieve the intra-region data sharing, we design a sharing
protocol called Cuckoo Summary. Each edge server will send
the information of all of its cached data to the corresponding
region DC instead of all other edge servers in the same region.
That will efficiently reduce the bandwidth consumption inside
each region. Furthermore, to reduce the memory consumption,
the region DC only keeps a summary of all cached data in
the region. By checking the summary, the region DC can
immediately know if the data is cached in this region and
which edge server has cached the data. This operation is
called the multi-set membership filter and lookup. The core
component of Cuckoo Summary is a Cuckoo hash table [15],
which is maintained in related region DCs. Each entry in the
Cuckoo hash table is composed of the fingerprint of a cached
data item and the identifier of the related edge server. The
Cuckoo Summary is efficient due to not only less memory
usage but also less number of memory accesses, compared
with the well-known protocol of summary cache [10].

Another advantage of HDS is that a lookup request only
goes through one overlay hop from the ingress region DC to
the destination region DC for the inter-region data location
service. Meanwhile, it keeps a low implementation overload
in the related switches and region DCs. To achieve the fast
inter-region data location service, we design an MDT-based
scheme, which mainly consists of the control plane and
the switch plane. The control plane maintains a virtual 2-
dimensional (2D) space where each switch directly connected
to a region DC will be assigned a coordinate in the virtual
space. Furthermore, the control plane constructs a Delaunay

4

Triangulation (DT) graph [12] to connect those coordinates
of switches. Meanwhile, those shared data items will also be
mapped into the virtual space. Then, those data requests will
be forwarded based on the DT graph in the data plane. Note
that the MDT-based scheme is used for achieving the inter-
region data location service as well as publishing data indices.
That is, when publishing a data index, the data index will be
forwarded to the switch that is closest to the coordinate of the
data index in the virtual space. Last, the switch will send the
data index to its region DC to respond to all lookup requests
of the data item.

III. THE INTRA-REGION DATA SHARING

The data requests follow some locality patterns due to un-
derlying usage patterns and human interest [16]. The technical
report [17] from the University of Paderborn has shown that
between 40% and 70% of the total DNS queries have requested
locally registered domains (i.e., uni-paderborn.de and related
domains). The observation further motivates the data sharing
inside each region. First, users staying in the same region
exhibit similarities in their requested data. This effect can be
exploited by caching requested data from the remote Cloud
and serving subsequent requests with the cached copy in the
region. Second, users typically have a relatively high interest
in local data from their local region, which can respond to
requests with the intra-region data storage. That is called the
neighborhood effect. Furthermore, supporting data locality has
significant potential to reduce costly inter-region traffic, overall
network traffic, and latency.

The objective is to achieve data sharing among edge servers
inside each region. A straightforward way is that each edge
server can transfer the directory of cached data to all other
edge servers. However, this method will waste too much
network bandwidth. Therefore, we prefer to construct a cen-
tralized indexing scheme for each region and further design an
intra-region data sharing protocol of Cuckoo Summary. Each
edge server sends its indexing information to the correspond-
ing region DC, which is a small DC and has more capacity
than an edge server. Furthermore, the region DC maintains a
Cuckoo hash table [15], which consists of an array of buckets,
and each bucket can store multiple entries. For example, Fig.
2 shows a (2, 4)-Cuckoo hash table, where each entry has
2 candidate buckets, x and y, and each bucket has 4 slots.
Therefore, an entry can be stored in one free slot of 8 slots.
In addition, there can also be more candidate buckets for one
entry. However, in this case, to respond to a lookup request,
there will be more memory accesses, which will increase the
lookup latency. Furthermore, to reduce memory consumption,
we utilize the design of partial-key Cuckoo hashing [15].
Specifically, we store the fingerprint of a cached data in the
Cuckoo hash table with only a few bits instead of storing its
full identifier.

Furthermore, to fast know which edge server caches the
requested data, we concatenate the set ID with the fingerprint
of a cached data item. As shown in Fig. 2, the basic unit

Item d

Fingerprint Set ID

4
sl

ot
s p

er
 b

uc
ke

t

!x = h(d) !y = x ⊕ h(df)

0110110001 001

0 1 2 3

Fig. 2. (2, 4)-hash table in Cuckoo Summary where each entry consists of a
fingerprint (10 bits) and a set ID (3 bits).

stored in the Cuckoo hash table is an entry, which consists of
the fingerprint of a cached data item and its set ID. The set
ID is the serial number of the edge server storing the data in
the region. The size of the set ID is log2(s) bits where s is
the maximum number of edge servers in one region. Next, we
use the set ID to denote the identifier of the corresponding
edge server in intra-region. Although the set ID could add
a little memory consumption, it will efficiently improve the
lookup throughput. Meanwhile, our experiment results show
that Cuckoo Summary achieves higher lookup throughput
and fewer false positives than the state-of-the-art solutions in
Section VI. Note that the evaluation is conducted when they
get the same memory allocation. Under the Cuckoo Summary,
when a region DC receives a data request, it will first lookup
the summary to check if the data has been cached in the region.
If yes, it needs to answer which edge servers have this data.
We treat each edge server as a set and the cached data in the
edge server as the elements in the set. The procedure of data
checking is called a multi-set membership filter and lookup.
Next, we will describe how Cuckoo Summary performs Insert,
Lookup, and Delete operations for those cached data items.

A. Cache data items

In our design, we assume that each data item has a unique
data identifier. When an edge server caches a data item d, it
first gets the fingerprint d′f and the first candidate bucket x
of the data item by hashing its identifier. Then, it will send
the insertion information with the fingerprint and the value of
x to the corresponding region node. Note that the fingerprint
is significantly shorter than the identifier of a data item and
contains only a few bits, which can efficiently save the network
bandwidth consumption. When the region node receives the
insertion message, an entry is built by concatenating the
fingerprint with its set ID, which indicates which edge server
caches the data. According to Cuckoo hashing [11], each item
has two candidate buckets x and y that can be calculated
based on Equation (1). As shown in Algorithm 1, the region
node will insert the new item into its Cuckoo Summary. If
flag==true, the region node successfully inserts the new
data item. Otherwise, the Cuckoo Summary is considered too
full to insert. In this case, to accommodate more data items,
it is necessary to increase the number of buckets.

Fig. 2 shows the example of inserting a new item d into a
hash table of 4 buckets where each bucket has 4 slots and can
store 4 entries. In Fig. 2, item d can be placed in either bucket
0 or bucket 2. If one of d’s two buckets has an empty slot,

5

Algorithm 1 inserting df to the Cuckoo Summary.
Require: The fingerprint df , the first candidate bucket x, and the

set ID κ.
Ensure: The indication of successful operation flag = flase;

1: Construct the string µ by concatenating df with κ;
2: y = x⊕ h(df);
3: if there is an empty slot in bucket x then
4: Insert µ into bucket x;
5: flag = true; return;
6: else if there is an empty slot in bucket y then
7: Insert µ into bucket y;
8: flag = true; return;
9: else

10: i = randomly select x or y;
11: for j = 0; j < 300; j ++ do
12: Randomly select a slot ε;
13: Swap µ and the string in ε;
14: Get the fingerprint d′f from µ;
15: i = i⊕ h(d′f);
16: if there is an empty slot in bucket i then
17: Insert µ into bucket i;
18: flag = true; return;
19: end if
20: end for
21: end if

Cuckoo Summary inserts d to that free slot and completes the
insertion process. If neither bucket has a free slot, the Cuckoo
Summary randomly selects one of the candidate buckets, kicks
out an existing item and re-inserts it to another alternate
location. This procedure may repeat until an empty bucket is
found, or until a maximum number of displacements is reached
(e.g., 300 times). Although cuckoo hashing may execute a
sequence of displacements, its amortized insertion time is
O(1) [18].

x = h(d),

y = x⊕ h(df).
(1)

The xor operation in Equation (1) ensures an important
property: for any data item d, its alternate bucket y can be
directly calculated from the current bucket index x and the
fingerprint df stored in bucket x. Meanwhile, x can also be
calculated as follows.

x = y ⊕ h(df) (2)

Therefore, a re-insertion operation only uses information in
the hash table and never has to retrieve the original item d.

B. Respond to data requests

Under the Cuckoo Summary, when a region DC receives a
data request, it will lookup its Cuckoo hash table to answer if
the data is cached in the region. For any data item, the lookup
process against a Cuckoo Summary is simple. Recall that each
entry in the Cuckoo hash table consists of the fingerprint of a
data item and its set ID, which indicates the edge server storing
the data. Given an item d, the corresponding region DC first
calculates d’s fingerprint and two candidate buckets according
to Equation (1). Then these two buckets are checked. If any

existing fingerprint in either bucket matches d’s fingerprint, the
Cuckoo Summary returns the corresponding set ID. Otherwise,
the summary returns false. Notice that this ensures no false-
negative responses as long as bucket overflow never occurs
[18]. Besides, the same fingerprint may be matched with
multiple set IDs, which means multiple edge servers could
have the requested data. This scenario can also occur in
“summary cache” [10]. After that, the data request will be
forwarded to those matched edge servers at the same time.
If there are multiple data copies in this region, the user will
receive the data from the edge server that responds to the
request fastest.

C. Remove data items

Consider that the edge server has limited capacity. The
region DC needs to delete the corresponding entry from the
Cuckoo hash table when an edge server in the related region
removes a cached data item. The deletion process under the
Cuckoo Summary is as follows. When an edge server removes
a cached data item, it will send a deletion message to the
related region DC. The region DC first builds a queried
entry, which consists of the fingerprint of the deleted data
and its set ID. Then, it checks both candidate buckets for
the queried entry; if any bucket matches, one copy of that
matched entry is removed from that bucket. The deletion
operation completes. Note that the deleted item must have been
previously inserted. This requirement also holds for all other
deletion-supporting data structures [10][19][18]. Otherwise,
deleting a non-inserted item might unintentionally remove a
real, different item from the same edge server that happens to
share the same fingerprint. In addition, other data structures
with similar deletion processes exhibit higher complex than
Cuckoo Summary. For example, shifting Bloom filters [19]
and Summary cache [10] must use extra counters to prevent
the “false deletion” problem caused by hash collisions. Those
counters will further incur extra memory consumption.

D. Analysis of Cuckoo Summary

Cuckoo hashing ensures high space occupancy because it
refines earlier item-placement decisions when inserting new
items. Most practical implementations of cuckoo hashing
extend the basic description above by using buckets that hold
multiple items. The maximum possible load when using k hash
functions and buckets of size b assuming all hash functions
are perfectly random has been analyzed [20]. With proper
configuration of cuckoo hash table parameters, the table space
can be 95% filled with high probability [18].

Note that we utilize the partial-key cuckoo hashing [18]
to store the related data items into the Cuckoo hash table,
which consists of a given number of buckets. To save memory
consumption, we just store the fingerprint of a cached data
item instead of storing the full key in the Cuckoo hash table.
In particular, two different items d1 and d2 could have the
same fingerprint. The Cuckoo Summary can accommodate
the same fingerprint appearing multiple times in a bucket.

6

However, like cuckoo filter [18], Cuckoo Summary is not
suitable for applications that insert the same fingerprint more
than 2b times (b is the bucket size). Otherwise, the two buckets
for this duplicated item will become overloaded. There are
several solutions for such a scenario. On the one hand, we
can increase the bucket size. On the other hand, we can also
increase the length of the fingerprint to reduce the probability
of hash collision.

Furthermore, when we lookup a data item that has not been
cached in a region, a false positive occurs if this data has
the same fingerprint with a cached data item. Note that the
fingerprint size depends only on the desired false positive
probability. Like other filters, there is no false negative in our
Cuckoo Summary when there is no overloaded bucket.

The probability of false positive. With larger buckets, each
lookup checks more entries and thus has more chance to meet
fingerprint collisions. In the worst case, a query must probe
two buckets, each of which has b entries. For each entry, the
probability that a query is matched against the one stored
fingerprint and returns a false-positive successful match is at
most 1/2f where f is the fingerprint size. After making 2b
such comparisons, the upper bound of the total probability of
a false fingerprint hit is

1− (1− 1/2f)
2b ≈ 2b/2f ; (3)

which is proportional to the bucket size b. Given a target false-
positive rate ε, the Cuckoo Summary needs to ensure 2b/2f≤ε.
Thus the minimal fingerprint size required is approximately:

f ≥ dlog2(2b/ε)e = dlog2(1/ε) + log2(2b)e bits. (4)

We can determine the fingerprint size based on Equation (4).
For example, if we desire the false positive rate is lower than
1%, f≥dlog2(2b/0.01)e=d9.64e=10 bits, where each bucket
has b=4 slots, which is a recommended setting for many
Cuckoo hashing based designs [15][18] and achieves a good
trade-off between the space efficiency and the false positive
rate.

IV. THE INTER-REGION DATA SHARING

When a requested data can not be found in a local region,
it is necessary to lookup the data across other regions. In
MEC, a large amount of data is stored in those geographically
distributed edge servers and the remote Cloud. To efficiently
lookup those data, we will construct a distributed indexing
mechanism to publish those indices of shared data items to
the related region DCs instead of storing all data indices in
the remote Cloud. After that, those data indices are distributed
among those region DCs. When we need to retrieve a data
item across other regions, we first find the region DC, which
stores the corresponding data index. Then, we can achieve
the data location from its index. To retrieve the index of
requested data, prior hierarchical architectures [16] adopt the
typical DHT methods to realize the data lookup across regions.
However, those methods incur the long response latencies
because each lookup involves log(n) overlay hops. To achieve

Algorithm 2 Forward a data index d at switch v.
1: For each DT neighbor u, Ru=Dis(u, d), Euclidean distance

from u to d in the virtual space;
2: Ru∗=min{Ru};
3: if Ru∗<Dis(v, d) then
4: Forward d to the neighboring switch u∗;
5: else
6: Forward d to its destination region DC;
7: end if

fast data location service across regions, in this paper, we
design an MDT-based scheme by leveraging the advantages
of MDT [12] and SDN [21][22] to achieve O(1) DHT with
low implementation overload.

In SDN, the network consists of the control plane and the
data plane, which has been successfully deployed for the inter-
region or inter-data center communication [23][24]. Under the
HDS framework, we do not restrict the network type in the
intra-region, which can be a traditional IP based network or the
SDN. We just deploy SDN for the inter-region communication.
Consider that the number of region DCs is not too many, our
HDS framework has a good scalability. In this case, the main
functions of our MDT-based scheme run in the control plane
and the data plane as follows.

A. Publish data indices

The control plane maintains a virtual 2D space Ω. The
indices of all shared data items and those switches directly
connected to region DCs are assigned coordinates in the virtual
space. Note that the coordinate of a data index can be achieved
by hashing its identifier. Specifically, we use the hash function
SHA-256, whose output is a 32-byte binary value. We only
use the last 8 bytes of the hash value and convert them to
two 4-byte binary numbers as the coordinate of a data index
in the 2D space. Furthermore, a data index will be stored
in the region DC, which is directly connected to the switch
closest to the data index in the 2D virtual space. Assume that
z related switches are directly connected to region DCs and
have their coordinates {ri}zi=1 in the virtual space. For a data
index, it is mapped to point p in the virtual space. Then, the
data index will be stored in the region DC directly connected
to switch rj , where {|p−rj |<|p−ri|, i=1 . . . z, i6=j}. Accord-
ingly, those switches {ri}zi=1 partition the 2D space into z
convex polygons, which is called the Voronoi Tessellation.

B. Forward data indices

Those switches conduct greedy forwardings to keep a low
implementation overhead. That is, each switch forwards a data
index only based on the coordinates of the data index and its
neighboring switches. No more information is needed. More
precisely, a switch will forward a data index to its neighbor,
which is closest to the data index in the virtual space. However,
the greedy routing could be trapped in a local minimum. To
provide guaranteed delivery, we utilize the property of MDT
[12]. That is, given a position p in the 2D coordination, the

7

Switch/Router

Data

Routing

r1

r2
r3

r4

r5

r6

r7

r8

r9

r10

d1

Fig. 3. The greedy routing based on MDT in inter-region.

greedy forwarding always succeeds to find a point nearest to p.
To achieve this goal, the control plane constructs a Delaunay
Triangulation (DT) graph to connect those coordinates of
switches in the virtual space. Then, based on those connections
in the DT graph, the control plane inserts forwarding entries
into those switches where each forwarding entry indicates the
coordinate of a neighboring switch. As shown in Algorithm
2, switch v will forward the data index d to its neighboring
switch u∗, which is closer to the location of d in the virtual
space. Otherwise, switch v is closest to the location of d and
forward the data index to the region DC directly.

C. Optimize switches’ coordinates

Furthermore, to ensure that the path selected by the greedy
routing is equal to or close to the shortest path between the
ingress region DC and the destination region DC, we utilize the
theory of multidimensional scaling [25] to embed the network
paths among switches into the distances between coordinates
in the virtual space. Specifically, the coordinate matrix Q of
switches can be derived by the following equation.

QQ′ = −1

2
JB(2)J (5)

In Equation (5), B is the shortest path matrix among those
switches. The matrix J=I− 1

zA, where A is the squared
matrix with all elements are 1. Like other SDN applications
[23][24], the MDT-based scheme employs one or multiple
controllers in the cloud DC or a region DC to collect the
network state and link information among region DCs. The
information is used to calculate the shortest path matrix B
among those switches. Then, the coordinate matrix Q can be
calculated by the eigenvalue decomposition from matrix B.
By embedding the network paths, the switches’ coordinates
can be determined, and further, the distances between those
coordinates are proportional to the physical path lengths
among the corresponding switches.

D. Lookup data indices

When publishing a data index, the data index is first
forwarded to the switch that is nearest to the data index in
the virtual space. Then, the switch forwards the data index
to its region DC, which is directly connected to the switch.
After that, the region DC stores the data index and responds
to all requests of the data. The lookup procedure is similar
to the publishing of a data index. As shown in Fig. 3, the

coordinate of data d1 is closest to the coordinate of switch r7.
Therefore, the index of data d1 is stored in the region DC,
which is directly connected to switch r7. When the region
DC connected to switch r1 needs to lookup the index of
data d1, the lookup request is first forwarded to switch r1.
Switch r1 compares the distances from its neighbors to the
position of d1 in the virtual space and forwards the request
to switch r5 because switch r5 is nearest to data d1. Then,
switch r5 greedily forwards the request to switch r7, which
is closest to the coordinate of d1 in the whole virtual space.
Therefore, switch r7 forwards the data request to its region
DC. The region DC connected to switch r1 can achieve the
location of d1 based on its index. Then it can retrieve the data
by the shortest path routing or other more efficient routing
schemes, which is orthogonal with this paper. Based on the
above analysis, we can find that the data request can be
directly delivered from an ingress region DC to its destination
region DC. No other region DCs are involved in the process.
Therefore, the MDT-based scheme can achieve a O(1) DHT.

V. DISCUSSION

Data copies. To enhance the ability of fault tolerance and
improve the performance of the whole system, multiple data
copies could exist in the system. Our HDS framework can
efficiently accommodate multiple data copies in both intra-
region and inter-region. First, in intra-region, multiple edge
servers could cache the same data item to meet the stringent
latency demand. In this case, when the region DC receives
a lookup request, it finds multiple data copies in this region
and further forwards the lookup request to multiple related
edge servers. Then, the request will be served by the edge
server with the fastest response. Second, in inter-region, the
HDS framework is also easy to support multiple data copies.
If the system needs to maintain multiple data copies for some
shared data items among multiple regions. A serial number is
concatenated with each data copy. In this case, multiple data
indices exist in the system. Then, by hashing the updated data
identifier, we can get the position of each data index in the
virtual space. Based on their positions, those data indices will
be stored in different region DCs to respond to users’ requests.
An advantage of our HDS framework is that the nearest data
index can be easily found by comparing their positions in the
virtual space because the distance between switches in the
virtual space is proportional to their physical distances in the
underlying topology in Section IV-C.

The communication between region DCs. Consider that
the communication in inter-region spans long distances. There
are two solutions for the comunication between regions. The
first one is that SDN switches can be deployed for the commu-
nication. At current, there have been several successful SDN
deployments for the inter-region communication [23][24]. In
SDN environment, our MDT-based scheme in Section IV can
be easily deployed. The second one is that the traditional
routers can be employed for the long distance transmission.
In this case, Qian et al. present the possibility to implement

8

Edge Server P4 Switch

Fig. 4. The network topology consists of 40 edge servers and 10 P4 switches
on a small-scale testbed.

the MDT-based greedy routing in the traditional routers [26].
Therefore, our MDT-based distributed indices scheme can also
be implemented in the traditional routers.

The length of Cuckoo Summary. The length of Cuckoo
Summary will affect its performance. On the one hand, if
the length of Cuckoo Summary is too short, the latency of
inserting a new item will increase due to the frequent entry
displacement in Section III-A. Meanwhile, it is possible that
the Cuckoo Summary cannot accommodate all cached data
items. In this case, it is essential to increase the length of
Cuckoo Summary (i.e., the number of buckets), which will
cause the reinsertion of all cached data items. On the other
hand, if the length of Cuckoo Summary is too long, too
many buckets are empty, which will waste too much memory.
Therefore, we set the number of buckets based on the capacity
of edge servers. We first evaluate the number of data items,
which each edge server can cache. Then, the number of
buckets in Cuckoo Summary should be a little (e.g. 10%)
more than the maximum number of cached data items in edge
servers in the region. This setting can efficiently reduce the
frequency of increasing the number of buckets. Only when new
edge servers are deployed in the region, the Cuckoo Summary
could be updated.

VI. PERFORMANCE EVALUATION

We evaluate the performance of our HDS framework by a
prototype implementation and large-scale simulations.

A. Implementation and prototype evaluation

We implement our HDS framework consisting of the
Cuckoo Summary and the MDT-based scheme (CS+MDT)
on a small-scale testbed. As shown in Fig. 4, the network
consists of 10 physical machines. 4 virtual machines (VMs)
run in one physical machine and belong to one region. Each
VM is considered as an edge server. In total, the network
includes 10 regions and 40 VMs. Those physical machines
are connected by P4 switches [27], which are used to support
the functions of SDN. We compare our HDS framework with
the state-of-the-art solution, which consists of the summary
cache [10] and the DHT-based scheme [28] (SC+DHT). We
consider that 1 million data items are first stored in the edge
network. Note that the main objective of the HDS framework
is to fast locate a data item no matter how the data is stored

40K 60K 100K
No. of cached data items

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

A
ve
ra
ge
 la
te
nc
y
(m

s)

0.63
0.51

0.43

0.77
0.61

0.51

CS+MDT
SC+DHT

(a) The average latency of data requests.

40K 60K 100K
No. of cached data items

0

100

200

300

400

500

600

700

800

N
o.

 o
f f

al
se

 p
os

iti
ve

s

CS+MDT
SC+DHT

(b) The number of false positives.

Fig. 5. The data requests follow a Zipf distribution.

40K 60K 100K
No. of cached data items

0.0

0.5

1.0

1.5

2.0

A
ve
ra
ge
 la
te
nc
y
(m
s)

1.19 1.19 1.18

1.48 1.48 1.47

CS+MDT
SC+DHT

(a) The average latency of data requests.

40K 60K 100K
No. of cached data items

0

500

1000

1500

2000

2500

3000

N
o.

 o
f f

al
se

 p
os

iti
ve

s

CS+MDT
SC+DHT

(b) The number of false positives.

Fig. 6. The data requests follow a uniform distribution.

in the network. Each edge server uses the least-recently-used
(LRU) as the cache replacement algorithm. Note that other
cache replacement algorithms can also be employed under our
HDS framework and are orthogonal with our work.

Each edge server sends 100K data requests, and their
response latencies are recorded. Then, the average response
latency is calculated. Here, the response latency is the time
duration from sending out a data request to receiving the data
index of the requested data. Where the data request is 64 bit
indicating the data ID, and the data index is 32 bit indicating
the IP address of the related server. We vary the number of
cached data from 40K to 100K in one region. The number
of cached data will affect the lookup latency. Meanwhile,
we recorded the false positives of intra-region lookups under
different solutions. Note that the false positives will result
in wasted lookup messages and long response latencies. We
first send the data requests, which follow a Zipf distribution
[29] with the exponent α=1. Note that the distribution is
more intensive when α increases. In this case, more requests
can be served in the intra-region. Otherwise, more requests
will be forwarded into the inter-region. Fig. 5(a) shows that
our HDS framework (CS+MDT) achieves shorter response
latencies than the state-of-the-art solution (SC+DHT) under
different numbers of cached data. It is mainly because that
our MDT-based scheme achieves shorter inter-region lookup
paths than the DHT-based method. Meanwhile, we can find
that the number of false positives grows up as the number
of cached data increases from Fig. 5(b). Note that the same
memory space is allocated for our Cuckoo Summary and the
summary cache to conduct the intra-region data sharing.

Furthermore, we also measure the performance of HDS
framework when data requests follow a uniform distribution.

9

Fig. 6 shows the same trend as Fig. 5. More precisely, our
HDS framework (CS+MDT) always achieves shorter response
latency and less number of false positives than the state-of-the-
art solution (SC+DHT). Note that the differences in response
latencies under different solutions are not very large. It is
mainly because the scale of our testbed is small. In practice,
a large number of edge servers are geographically distributed
across wide area networks. In this case, the advantage of our
HDS framework will be more obvious due to shorter physical
paths to get data locations. In addition, compared Fig. 5(a)
with Fig. 6(a), we can find that the increasing number of
cached data can reduce the response latency of data requests
when those requests follow a Zipf distribution. However, the
reduction of response latency is not obvious when those
requests follow a uniform distribution. It is because those
cached data can efficiently reduce the inter-region lookups and
further reduce the response latency under the Zipf distribution.

B. Large-scale simulations

1) Evaluation for intra-region data sharing: We implement
Cuckoo Summary using Java code and compare it with al-
ternative data structures, Multiple Bloom filters adopted in
summary cache [10] and the state-of-the-art Shifting Bloom
filter [19], for multi-set membership filter and lookup. The
region DC keeps a compact summary of the cached data from
all edge servers in the same region. When a region DC receives
a data request, it first checks the summary to see if the request
can be matched at any edge server in the region. The compared
data structures are as follows.
• Cuckoo Summary (CS) consists of one (2, 4)-Cuckoo hash

table. Each cached data item has 2 candidate buckets, and
each bucket has 4 slots, each of which can accommodate
an entry. That is a recommended setting in many applica-
tions of partial-key Cuckoo hashing [15][18]. Per entry in
CS is the fingerprint of a data item and the set identifier
that indicates the involved edge server.

• Multiple Bloom filter (MBF) [10] is composed of s
Bloom filters, and each Bloom filter needs to use k hash
functions. Each Bloom filter is a compact summary of
the cached data in one edge server, and s denotes the
number of edge servers in one region.

• Shifting Bloom filter (SBF) [19] is composed of one
Bloom filter and k hash functions, and uses offsets to
record the information of the set identifier. To insert
an element, it maps the element to k positions in the
bit array, offsetting the k positions by a certain amount
relevant to the set identifier, and then set the k new
positions to 1. To query an element, it performs k hash
computations and checks s bits after these k positions.

A random number generator assigns each cached data a
64-bit data identifier. We did not eliminate duplicated data
identifiers because the probability of collision is very small
for the random integer generator. Meanwhile, multiple data
copies may exist in one region in MEC to meet the stringent
latency requirement. The performance metrics include the

false positive rate, the lookup throughput, and the update
throughput.

• A false positive means that an uncached data is reported
to be stored in some edge servers in the region. In this
case, there will be a wasted query message, which further
incurs a long response latency.

• The lookup throughput is very important for MEC. The
higher lookup throughput means those lookup requests
can be responded to faster.

• The update throughput is also important to the perfor-
mance of the data sharing system. Considering the limited
capacity of an edge server, some data is just temporarily
cached in the edge server. The data replacement is very
common in MEC.

False positive rate. There is a trade-off between the false
positive rate and memory consumption. For those Bloom
filter-based data structures, they can achieve a lower false-
positive rate when consuming more memory. Therefore, we
compare different data structures when they have the same
memory allocation. We test false-positive rates of different
data structures when varying the number of edge servers from
10 to 100 in one region. Accordingly, the number of cached
data items varies from 100K to 1M . Note that more memory
is allocated for each summary when more cached data needs
to be inserted into those summaries.

We can see that the false positive rate of our CS is almost
stable when the number of edge servers varies from Fig. 7(a)
and is lower than the false-positive rates of the other two data
structures. It is because that the false positive of the CS is
only related to the length of the fingerprint, as analyzed in
Section III-D. Note that the false-positive rates of MBF and
SBF decrease from 50 edge servers to 60 edge servers in Fig.
7(a). When the number of edge servers varies from 50 to 60
in one region, those summaries need to accommodate more
cached data. Therefore, we allocate more memory for those
data structures to accommodate those cached data items. After
that, those summaries have less level of occupancy when there
are 60 edge servers than that there are 50 edge servers. More
precisely, when there are 50 edge servers in the region, the
occupancy rate of CS is 95.37%. The occupancy rate is defined
as the ratio of used slots to the total amount of available
slots in the CS. Accordingly, there are 4.63% free slots in
the Cuckoo hash table for our CS. However, the occupancy
rate is only 57.22% when 60 edge servers exist in the region.
It is worth noting that when 50 edge servers exist in the
edge network, our CS achieves 92.28% and 92.75% less false
positives than SBF and MBF data structures, respectively.

Furthermore, we evaluate the the impact of the cache ratio
and the exponent α on the false positive rate where the region
has 100 edge servers, and each edge server can cache 10K
data items. As observed in literature [29], the distribution of
web requests generally follows Zipf-like distribution with the
exponent 0<α≤1. The authors analyse some traces and find
the exponent α is about between 0.6 and 0.8 in literature [29].
The higher α means that the requests is more concentrated.

10

20 40 60 80 100
The number of edge servers in one region

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16

Fa
ls

e
po

si
tiv

e
ra

te

MBF
SBF
CS

(a) The false positive rate.

20 40 60 80 100
The number of edge servers in one region

0.0

0.2

0.4

0.6

0.8

Lo
ok

up
 th

ro
ug

hp
ut
 (M

O
PS

)

CS
SBF
MBF

(b) The lookup throughput.

20 40 60 80
The number of edge servers in one region

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

U
pd
at
e
th
ro
ug
hp
ut
 (M

O
PS

)

0.67 0.68 0.68 0.700.67 0.63 0.61 0.61

0.86
0.73

0.91
0.85

MBF
SBF
CS

(c) The update throughput.

Fig. 7. The performance comparison of different solutions to the intra-region data sharing.

��� ��� ��	
��������������������������α

����

����

����

����

���	

����

����

����

�
���
��
��
���
��
��
��
�

�����
�����

���
	

�����
�����

���
�

����� ����� �����

��

��

��

(a) The impact of the value of α.

��� � ��
�������� ��� ���������� � ����� ��� ����

�����

����	

���	�

����	

�����

����	

���	�

����	

�����

��
���

��
��

� �
!�

��
�

�

���
�
���		

���
�

����
 �����

���
�

����� ����� ����	

���
���
��

(b) The impact of the cache ratio.

Fig. 8. The flase positive rate in intra-region.

Therefore, we vary the value of α from 0.6 to 0.8 to test the
impact of α on the false positive rate where the cache ratio
is 10%. As shown in Fig. 8(a), our Cuckoo Summary always
has the least false positive rate no matter what the value of α
is. Meanwhile, we can find that the false positive rate under
α= 0.6 is higher than that of α=0.8. It is because the requests
is more concentrated when α=0.8, and more requests can be
served by those cached data items in intra-region. Then, we
evaluate the impact of the cache ratio (i.e. the ratio of cached
data items to the total data items) on the false positive rate.
Here we vary the cache ratio from 0.1% to 10%, and the
exponent α=0.8. The region can cache 1 million data items.
The number of the total data items is 1 billion. As shown in
Fig. 8(b), the false positive rate under the Cuckoo Summary is
significantly less than the other two designs where the same
memory is allocated. Meanwhile, we can find that the false
positive decreases when the cache ratio changes from 0.1%
to 10% from Fig. 8(b). It is because the cached data items
respond to less users’ requests when the cache ratio is 0.1%.

Lookup throughput. This section compares the lookup
throughput, and each point is the average of 10 runs. We
first insert 1 million items into those summaries of different
data structures and then conduct massive lookup operations.
In Fig. 7(b), we can see that under our CS, the region DC
can achieve obviously higher lookup throughput than other
alternative data structures. Meanwhile, we can see that the
lookup throughputs under the SBF and MBF decrease as the
increase of the number of edge servers. It is because that the
MBF needs to check more Bloom filters, and the SBF needs
more memory accesses to get more bit values when there are
more edge servers. However, our CS is independent of the

number of edge servers. For any one data request, the lookup
in intra-region, the CS only needs 2 memory accesses to check
if the data is stored in this region.

Update throughput. The data replacement is very common
in MEC due to the limited capacity of the edge server and
the age of information. In this case, the region DC needs to
delete prior cached data item and insert a new data item into
the Cuckoo Summary. Therefore, the update throughput is also
crucial to the intra-region data sharing. Here, the main goal
is to evaluate the performance of the data structure itself. The
key metric is the number of conducted operations per second
under different data structures. The cache replacement policies
and the swapping frequency are the same under different data
structures and are orthogonal with our work. Fig. 7(c) shows
that our CS can achieve higher update throughput than MBF
and SBF structures. The update throughputs of the three data
structures have nothing to do with the number of edge servers
in Fig. 7(c). Meanwhile, we note that the update throughput of
the CS structure decreases when the number of edge servers
varies from 60 to 80. It is because that the Cuckoo hash table
has higher occupancy rate in the CS. In detail, the occupancy
rates are 57.22% and 76.29% when 60 and 80 edge servers
exist in the region, respectively. Therefore, to achieve a high
update throughput, we recommend that the occupancy rate of
the CS is under 90%.

2) Evaluation for hybrid data sharing: In this section, we
evaluate the performances of hybrid data sharing frameworks.
The performance metrics include the path length of lookup
requests and the number of forwarding entries in switches. If
a requested data can not be found in intra-region, its lookup
path consists of intra-region and inter-region paths. In intra-
region, the shortest path routing is employed. For data location
services across regions, the compared schemes are as follows.
• The MDT-based scheme is designed in Section IV. Each

switch conducts greedy forwarding based on the coordi-
nates of its neighbors and the requested data.

• The DHT-based scheme is implemented based on a
distributed hash table. Each region DC maintains its
fingertable [8][28] to realize the data location service.

• The DNS-based scheme is a hierarchical indexing mech-
anism. If a requested data can not be found in a local
region, the request will be forwarded to the Cloud DC.

The path length of lookup requests. We evaluate the path

11

20 40 60 80 100
The number of regions

5
10
15
20
25
30
35

A
ve

ra
ge

 p
at

h
le

ng
th

DHT-based
DNS-based
MDT-based

(a) The path lengths of different schemes where
each region includes 10 edge servers.

20 40 60 80 100
The number of edge servers in one region

5

10

15

20

25

30

35

A
ve

ra
ge

 p
at

h
le

ng
th

DHT-based
DNS-based
MDT-based

(b) The path lengths of different schemes where the
network consists of 100 regions.

20 40 60 80 100
The number of regions

0

20

40

60

80

A
vg

 n
um

be
r o

f e
nt

rie
s DHT-based

MDT-based
DNS-based

(c) The number of forwarding entries for the data
location service across regions.

Fig. 9. The performance comparision of hybrid data sharing frameworks under different network sizes.

length of lookup requests under different data sharing schemes
where the paths in the hybrid system include the paths in intra-
region and the paths across regions. The network consists of
one cloud DC, region DCs, and edge servers. Each edge server
is connected to the nearest region DC. Then, each edge server
lookups the data from all other edge servers. All lookup paths
are recorded, and then the average length of lookup paths is
calculated under each network setting. We first evaluate the
impact of the number of regions on the path length of lookup
requests. The number of regions varies from 10 to 100 where
each region include 10 edge servers. Fig. 9(a) shows that
our MDT-based scheme achieves significantly shorter paths
than DNS-based and DHT-based schemes. Consider those
edge servers are geographically distributed across wide area
networks, and shorter path length mean faster responses to
those data requests. Under the DHT-based scheme, the increase
of the number of regions results in the obvious increase of the
path length. It is mainly because the path length for inter-
region lookup increases under the DHT-based scheme.

Furthermore, we evaluate the impact of the number of edge
servers in one region on the path length of lookup requests.
The network consists of 100 regions, and the number of edge
servers varies from 10 to 100 in one region. That is, the total
number of edge servers varies from 1, 000 to 10, 000 in the
whole network. Fig. 9(b) shows that the path length under
the DNS-based scheme increase when the number of edge
servers increases in one region. It is because that the network
size is large and some lookup requests could be forwarded
to the remote Cloud that results in the long lookup paths.
However, the number of edge servers in one region has a little
influence on the path lengths of MDT-based and DHT-based
schemes. More precisely, when the network consists of 10, 000
edge servers that are divided into 100 regions, our MDT-based
scheme achieves 43.70% and 50.21% shorter path lengths than
DNS-based and DHT-based schemes, respectively.

The number of forwarding entries. Furthermore, we
evaluate the number of forwarding entries in switches for
supporting the data location service across regions where less
number of forwarding entries mean less implementation over-
head. Although the DNS-based scheme uses less forwarding
entries, it is a centralized scheme. Worsely, there is significant
load imbalance among switches under the DHT-based and

DNS-based scheme. That is, the number of forwarding entries
in some switches is significantly more than other switches. Fig.
9(c) shows that our MDT-based scheme costs less forwarding
entries to support the data lookup across regions than the DHT-
based scheme. Meanwhile, the numbers of forwarding entries
under DNS-based and DHT-based schemes grow up as the
increasing number of edge servers in Fig.9(c). In addition, the
number of edge servers has a modest impact on the number
of forwarding entries under the MDT-based scheme, and the
number of forwarding entries in a switch is only related to the
number of neighbors of the switch.

VII. RELATED WORK

In the MEC environment, a lot of edge servers are deployed
at the network edge to provide the computing and storage
capacity for edge devices. Meanwhile, the hierarchical edge
computing architecture has been proposed to provide data and
computation support for edge applications [2][3] Besides, di-
verse MEC nodes deployed by different owners can cooperate
together to form the hierarchical MEC architecture, which
is called the edge federation [4]. In this case, data sharing
among edge servers is essential to reduce the latency of data
retrieval, and the data location service is a crucial function for
many emerging applications in the MEC. However, it is still
lack of research. Recent work suggests a flat architecture of
MEC to reduce routing latency [9]. However, it faces a severe
scalability problem. Mollah et al. propose an efficient data
sharing scheme that allows smart devices to securely share
data with others at the edge of cloud-assisted IoT [30]. Those
works are orthogonal with our work. In this paper, we focus
on the data location service to achieve efficient data sharing
across geographically distributed edge networks. Furthermore,
we introduce the related work about the data location and the
cache sharing.

Data location. A well-known solution to the data location
service is the distributed hash table (DHT), which have been
extensively studied in P2P networks [31]. However, as pointed
by Cox et al. [32], those DHT systems suffer from high
latencies. It is because that a lookup request needs to go
through O(logN) overlay hops to retrieve data, and N is the
number of edge servers. Recently, to reduce the latency of
data retrieval, some researchers propose the hierarchical DHT

12

architecture for information-centric networks (ICN) [16][28].
However, those hierarchical DHT architectures still employ
the typical DHT scheme [8] for inter-region routing. They still
need O(logN) overlay hops to retrieve data across regions and
further incurs long latencies.

GHT incurs O(
√
N) routing cost for data-centric storage

[33]. Some work can achieve O(1) DHT, such as Beehive
[34]. However, they need to store a large amount of index
information or add many data duplicates in edge servers. They
are challenging to be deployed in practice. To achieve efficient
data location service, recent work suggests a flat data-sharing
mechanism for edge computing [9]. However, it faces a severe
challenge of scalability and fails to achieve efficient data
sharing across wide area networks. Therefore, in this paper,
we propose an MDT-based scheme with a low implementation
overhead to achieve O(1) DHT for data sharing across regions.

Cache sharing. The data sharing in intra-region can effi-
ciently reduce the latency of data retrieval. It is because that
requests for information follow some locality patterns due to
underlying usage patterns and human interest [16]. To achieve
cache sharing among Web proxies, Fan et al. propose a cache
sharing protocol called summary cache [10]. In summary
cache, each proxy keeps a summary of the cache directory of
each participating proxy and checks all these summaries for
potential hits before sending any queries. The summary cache
employs the data structure of multiple Bloom filter (MBF).
Assume that s cache proxy servers want to share their cached
data. Each proxy server needs to maintain s Bloom filters and
checks all these Bloom filters when it receives a data request.

Summary cache [10] incurs low lookup throughput and high
false-positive rate. That is, for some data that are not cached,
the summary cache could still answer “yes” due to false
positives[10]. If there is a “yes”, a lookup message will be first
forwarded to the corresponding edge server. If the requested
data can not be found in the edge server. Furthermore, a false
positive will incur a wasted lookup message and further incur
a long response latency. Instead, we hope to design a sharing
protocol to support the multi-set filter and lookups. That is,
after checking only one summary, we can know if a requested
data item exists in those collaborative edge servers in one
region and which edge server stores the data in the region.
Some variants of Bloom filter could support this operation,
such as coded Bloom filters [35], Combinatorial Bloom filters
[36], and shifting Bloom filters [19]. However, they suffer from
massive memory consumption, high false-positive rate, and
low lookup throughput.

In addition, some other data structures could be used to
conduct multi-set classification, such as Concise [37], Set-
Sep [38] and Coloring Embedder [39]. However, those data
structures only can be used to lookup cached data, and they
will return meaningless results for a large amount of uncached
data. To achieve efficient data sharing in intra-region, in this
paper, we design a sharing protocol called Cuckoo Summary by
utilizing partial-key Cuckoo hashing [18][15][40]. Compared

with alternative solutions, the advantages of Cuckoo Summary
include high lookup throughput, low memory consumption,
and low false-positive rate.

VIII. CONCLUSION

In this paper, we design the HDS framework to enable
the basic data location service for the hierarchical MEC. The
HDS consists of an intra-region data sharing protocol called
Cuckoo Summary and the MDT-based scheme for the data
sharing across regions. It is worth noting that the HDS frame-
work achieves shorter lookup path, fewer false positive, and
higher lookup throughput than the state-of-the-art solutions.
We evaluate our design by the prototype implementation and
large-scale simulations. The results of experiments show that
our design achieves 50.21% shorter lookup paths and 92.75%
fewer false positives than the state-of-the-art solutions. We
left the design of data copies and the load balance across
heterogeneous edge servers as the future work. In the MEC
environment, we will first investigate how to determine the
number of data copies and their locations under emerging
application scenarios. Furthermore, considering the hetero-
geneity of edge servers, it is a practical problem to achieve
the load balance of users requests across a large number of
geographically distributed edge servers.

ACKNOWLEDGMENT

This work is partially supported by the National Key Re-
search and Development Program of China under Grant No.
2018YFE0207600, the National Natural Science Foundation of
China under Grant No. U19B2024, and the Tianjin Science and
Technology Foundation under Grant No. 18ZXJMTG00290.

REFERENCES

[1] A. Tiwari, B. Ramprasad, S. H. Mortazavi, M. Gabel, and E. d. Lara,
“Reconfigurable streaming for the mobile edge,” in Proc. of ACM
HotMobile, 2019, pp. 153–158.

[2] S. H. Mortazavi, M. Salehe, C. S. Gomes, C. Phillips, and E. de Lara,
“Cloudpath: A multi-tier cloud computing framework,” in Proc. the
Second ACM/IEEE SEC, 2017, pp. 20:1–20:13.

[3] P. Cong, J. Zhou, L. Li, K. Cao, and K. Li, “A survey of hierarchical
energy optimization for mobile edge computing: A perspective from end
devices to the cloud,” ACM Computing Surveys, vol. 53, no. 2, p. 38,
2020.

[4] X. Cao, G. Tang, D. Guo, Y. Li, and W. Zhang, “Edge federation:
Towards an integrated service provisioning model,” IEEE/ACM Trans-
actions on Networking, vol. 28, no. 3, pp. 1116–1129, 2020.

[5] E. Bastug, M. Bennis, and M. Debbah, “Living on the edge: The role
of proactive caching in 5g wireless networks,” IEEE Communications
Magazine, vol. 52, no. 8, pp. 82–89, 2014.

[6] J. Xie, D. Guo, X. Shi, H. Cai, C. Qian, and H. Chen, “A fast hybrid data
sharing framework for hierarchical mobile edge computing,” in Proc. of
IEEE INFOCOM, July 2020.

[7] E. Nygren, R. K. Sitaraman, and J. Sun, “The akamai network: A
platform for high-performance internet applications,” SIGOPS Oper.
Syst. Rev., vol. 44, no. 3, pp. 2–19, Aug. 2010.

[8] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applications,”
in Proc. of ACM SIGCOMM, 2001, pp. 149–160.

[9] J. Xie, C. Qian, D. Guo, M. Wang, S. Shi, and H. Chen, “Efficient
indexing mechanism for unstructured data sharing systems in edge
computing,” in Proc. of IEEE INFOCOM, April 2019.

13

[10] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache: A
scalable wide-area web cache sharing protocol,” in SIGCOMM Comput.
Commun. Rev., vol. 28, no. 4. ACM, 1998, pp. 254–265.

[11] R. Pagh and F. F. Rodler, “Cuckoo hashing,” Journal of Algorithms,
vol. 51, no. 2, pp. 122 – 144, 2004.

[12] S. S. Lam and C. Qian, “Geographic routing in d-dimensional spaces
with guaranteed delivery and low stretch,” SIGMETRICS Perform. Eval.
Rev., vol. 39, no. 1, pp. 217–228, Jun. 2011.

[13] W. Xia, Y. Wen, C. H. Foh, D. Niyato, and H. Xie, “A survey on
software-defined networking,” IEEE Communications Surveys Tutorials,
vol. 17, no. 1, pp. 27–51, 2015.

[14] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile
Edge Computing A key technology towards 5G,” European Telecommu-
nications Standards Institute White Paper, 2015.

[15] H. Lim, B. Fan, D. G. Andersen, and M. Kaminsky, “Silt: A memory-
efficient, high-performance key-value store,” in Proc. the 23rd ACM
SOSP, 2011, pp. 1–13.

[16] M. D’Ambrosio, C. Dannewitz, H. Karl, and V. Vercellone, “Mdht: a
hierarchical name resolution service for information-centric networks,”
in Proc. the ACM SIGCOMM workshop on ICN, 2011, pp. 7–12.

[17] C. Dannewitz, H. Karl, and A. Yadav, “Report on locality in dns
requests–evaluation and impact on future internet architectures,” Uni-
versity of Paderborn, Paderborn, Germany, Tech. Rep. TR-RI-12-323,
p. 19, 2012.

[18] B. Fan, D. G. Andersen, M. Kaminsky, and M. D. Mitzenmacher,
“Cuckoo filter: Practically better than bloom,” in Proc. of ACM CoNEXT,
2014, pp. 75–88.

[19] T. Yang, A. X. Liu, M. Shahzad, Y. Zhong, Q. Fu, Z. Li, G. Xie, and
X. Li, “A shifting bloom filter framework for set queries,” Proc. the
VLDB Endowment, vol. 9, no. 5, pp. 408–419, 2016.

[20] N. Fountoulakis, M. Khosla, and K. Panagiotou, “The multiple-
orientability thresholds for random hypergraphs,” in Proc. of the 22ed
Annual ACM-SIAM SODA, 2011, pp. 1222–1236.

[21] J. Xie, D. Guo, Z. Hu, T. Qu, and P. Lv, “Control plane of software
defined networks: A survey,” ELSEVIER Computer Communications,
vol. 67, pp. 1–10, 2015.

[22] J. Xie, D. Guo, X. Li, Y. Shen, and X. Jiang, “Cutting long-tail latency
of routing response in software defined networks,” IEEE Journal on
Selected Areas in Communications, vol. 36, no. 3, pp. 384–396, 2018.

[23] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri,
and R. Wattenhofer, “Achieving high utilization with software-driven
wan,” in Proc. of the ACM SIGCOMM, 2013, pp. 15–26.

[24] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle, S. Stuart,
and A. Vahdat, “B4: Experience with a globally-deployed software
defined wan,” in Proc. of the ACM SIGCOMM, 2013, pp. 3–14.

[25] I. Borg and P. J. Groenen, Modern multidimensional scaling: Theory
and applications. Springer Science & Business Media, 2005.

[26] C. Qian and S. S. Lam, “Greedy routing by network distance embed-
ding,” IEEE/ACM Transactions on Networking, vol. 24, no. 4, pp. 2100–
2113, 2016.

[27] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming protocol-independent packet processors,” SIGCOMM
Comput. Commun. Rev., vol. 44, no. 3, pp. 87–95, Jul. 2014.

[28] R. Li, H. Harai, and H. Asaeda, “An aggregatable name-based routing
for energy-efficient data sharing in big data era,” IEEE Access, vol. 3,
pp. 955–966, 2015.

[29] L. Breslau, Pei Cao, Li Fan, G. Phillips, and S. Shenker, “Web
caching and zipf-like distributions: evidence and implications,” in IEEE
INFOCOM, vol. 1, March 1999, pp. 126–134.

[30] M. B. Mollah, M. A. K. Azad, and A. Vasilakos, “Secure data sharing
and searching at the edge of cloud-assisted internet of things,” IEEE
Cloud Computing, vol. 4, no. 1, pp. 34–42, Jan 2017.

[31] E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, S. Lim et al., “A
survey and comparison of peer-to-peer overlay network schemes.” IEEE
Communications Surveys and tutorials, vol. 7, no. 1-4, pp. 72–93, 2005.

[32] R. Cox, A. Muthitacharoen, and R. T. Morris, “Serving dns using a
peer-to-peer lookup service,” in International Workshop on Peer-To-Peer
Systems. Springer, 2002, pp. 155–165.

[33] S. Ratnasamy, B. Karp, S. Shenker, D. Estrin, R. Govindan, L. Yin, and
F. Yu, “Data-centric storage in sensornets with ght, a geographic hash
table,” Mobile Networks and Applications, vol. 8, no. 4, pp. 427–442,
2003.

[34] V. Ramasubramanian and E. G. Sirer, “Beehive: O (1) lookup perfor-
mance for power-law query distributions in peer-to-peer overlays.” in
Nsdi, vol. 4, 2004, pp. 8–8.

[35] F. Chang, W.-c. Feng, and K. Li, “Approximate caches for packet
classification,” in IEEE INFOCOM, vol. 4, 2004, pp. 2196–2207.

[36] F. Hao, M. Kodialam, T. V. Lakshman, and H. Song, “Fast dynamic
multiple-set membership testing using combinatorial bloom filters,”
IEEE/ACM Trans. Netw., vol. 20, no. 1, pp. 295–304, Feb. 2012.

[37] Y. Yu, D. Belazzougui, C. Qian, and Q. Zhang, “A concise forwarding
information base for scalable and fast name lookups,” in IEEE 25th
ICNP. IEEE, 2017, pp. 1–10.

[38] D. Zhou, B. Fan, H. Lim, D. G. Andersen, M. Kaminsky, M. Mitzen-
macher, R. Wang, and A. Singh, “Scaling up clustered network appli-
ances with scalebricks,” in SIGCOMM Comput. Commun. Rev., vol. 45,
no. 4. ACM, 2015, pp. 241–254.

[39] Y. Tong, D. Yang, J. Jiang, S. Gao, B. Cui, L. Shi, and X. Li, “Coloring
embedder: a memory efficient data structure for answering multi-set
query,” in IEEE 35th ICDE, 2019, pp. 1142–1153.

[40] S. Shi, C. Qian, and M. Wang, “Re-designing compact-structure based
forwarding for programmable networks,” in Proc. IEEE ICNP, 2019.

Deke Guo received the B.S. degree in industry engi-
neering from the Beijing University of Aeronautics
and Astronautics, Beijing, China, in 2001, and the
Ph.D. degree in management science and engineer-
ing from the National University of Defense Tech-
nology, Changsha, China, in 2008. He is currently a
Professor with the College of System Engineering,
National University of Defense Technology, and a
Professor with the School of Computer Science
and Technology, Tianjin University. His research

interests include distributed systems, software-defined networking, data center
networking, wireless and mobile systems, and interconnection networks. He
is a senior member of the IEEE and a member of the ACM.

Junjie Xie received the B.E. degree in computer
science and technology from the Beijing Institute of
Technology, Beijing, China, in 2013. He received
the M.E. and Ph.D. degrees in management science
and engineering from the National University of
Defense Technology, Changsha, China, in 2015 and
2020, respectively. He is currently an engineer with
the institute of systems engineering, AMS, PLA,
Beijing, China. His research interests include dis-
tributed systems, software-defined networking and

mobile edge computing. Email: xiejunjie06@gmail.com

Xiaofeng Shi is currently a second-year Ph.D. stu-
dent in the Department of Computer Science and En-
gineering, UC Santa Cruz. He received the Bachelors
and Masters Degree from the Department of Com-
puter Science and Technology, Nanjing University,
China in 2014 and 2017 respectively. His research
interests mainly include Wireless Sensing, Computer
Networks and Learning Augmented Algorithms and
Systems.

14

Haofan Cai is now a third-year Ph.D student in the
Department of Computer Science and Engineering,
University of California, Santa Cruz. She received
her B.S. at Southern University of Science and
Technology, Shenzhen, China in 2016. Her research
topics mainly focus on RFID and wireless network-
ing.

Chen Qian is an Associate Professor at the De-
partment of Computer Science and Engineering, UC
Santa Cruz. He received the B.Sc. degree from Nan-
jing University in 2006, the M.Phil. degree from the
Hong Kong University of Science and Technology
in 2008, and the Ph.D. degree from the University
of Texas at Austin in 2013, all in Computer Science.
His research interests include computer networking,
data-center networks and cloud computing, Internet
of Things, and software defined networks. He has

published more than 60 research papers in a number of top conferences
and journals including ACM SIGMETRICS, IEEE ICNP, IEEE ICDCS, IEEE
INFOCOM, IEEE PerCom, ACM UBICOMP, ACM CCS, IEEE/ACM Trans-
actions on Networking, and IEEE Transactions on Parallel and Distributed
Systems. He is a member of IEEE and ACM.

Honghui Chen received the MS degree in opera-
tional research and the PhD degree in management
science and engineering from the National Univer-
sity of Defense Technology, Changsha, China, in
1994 and 2007, respectively. Currently, he is a pro-
fessor of College of System Engineering, National
University of Defense Technology, Changsha, China.
His research interests include information system,
cloud computing and Information Retrieval.

	Introduction
	System overview
	The intra-region data sharing
	Cache data items
	Respond to data requests
	Remove data items
	Analysis of Cuckoo Summary

	The inter-region data sharing
	Publish data indices
	Forward data indices
	Optimize switches' coordinates
	Lookup data indices

	Discussion
	Performance Evaluation
	Implementation and prototype evaluation
	Large-scale simulations
	Evaluation for intra-region data sharing
	Evaluation for hybrid data sharing

	Related work
	Conclusion
	References
	Biographies
	Deke Guo
	Junjie Xie
	Xiaofeng Shi
	Haofan Cai
	Chen Qian
	Honghui Chen

