Minimizing Traffic Migration During Network
Update in laaS Datacenters

Ting Qu, Deke Guo, Yulong Shen, Xiaomin Zhu, Lailong Luo, Zhong Liu

Abstract —The cloud datacenter network is consistently undergoing changing, due to a variety of topology and traffic updates, such as
the VM migrations. Given an update event, prior methods focus on finding a sequence of lossless transitions from an initial network
state to an end network state. They, however, suffer frequent and global search of the feasible end network states. This incurs
non-trivial computation overhead and decision-making delay, especially in large-scale networks. Moreover, in each round of transition,
prior methods usually cause the cascaded migrations of existing flows; hence, significantly disrupt production services in laaS data
centers. To tackle such severe issues, we present a simple update mechanism to minimize the amount of flow migrations during the
congestion-free network update. The basic idea is to replace performing the sequence of globally transitions of network states with
local reschedule of involved flows, caused by an update event. We first model all involved flows due to an update event as a set of new
flows, and then propose a heuristic method Lupdate. It motivates to locally schedule each new flow into the shortest path, at the cost of
causing the extra migration of at most one existing flow if needed. To minimize the amount of migrated traffic, the migrated flow should
be as small as possible. To further improve the success rate, we propose an enhanced method Lupdate-S. It shares the similar designs
of Lupdate, but permits to migrate multiple necessary flows on the shortest path allocated to each new flow. We conduct large-scale
trace-driven evaluations under widely used Fat-Tree and ER data center. The experimental results indicate that our methods can
realize congestion-free network with as less amount of traffic migration as possible even when the link utilization of a majority of links is

very high. The amount of traffic migration caused by our Ludpate method is 1.2 times and 1.12 times of the optimal result in the

Fat-Tree and ER random networks, respectively.

Index Terms —laaS Datacenter, network update, traffic migration, congestion-free

1 INTRODUCTION

NFRASTRUCTURE as a Service (IaaS) is a form of cloud
Icomputing, which enables tenants to multiplex comput-
ing, storage and network resources in data centers. With the
rapid growth of IaaS, service providers have to rent or build
a large-scale data centers. Inside each data center, thousands
of switches and hundreds of thousands of servers are in-
terconnected using a specific data center network (DCN).
A cloud data center frequently occurs DCN updates, such
as topology update and traffic update triggered by opera-
tors, applications, even switches failures [1]. For example,
data center operators routinely upgrade existing switches
and introduce new switches to interconnect more servers;
hence, they cause the topology updates. For applications,
the normal migration of VMs and reconfiguration of load
balancers incur the traffic updates.

DCN updates are very challenging due to the complex
nature. First of all, an update process consists of multiple
stages, each of which must be well performed so as to
guarantee the per-flow and per-packet consistency of the
network configuration [2]. Thus, a plan for each update
stage should be calculated in advance to arrange the update
order of those involved flows [1-4]. Secondly, the update
process has to ensure that any flow or packet is forward-
ed according to either old network configuration or new

o T. Qu, D. Guo, X. Zhu, L. Luo and Z. Liu are with the Key laborato-
ry for Information System Engineering, College of Information System
and Management, National University of Defense Technology, Changsha
410073, PR. China. E-mail: dekeguo@nudt.edu.cn.

e Y. Shen is with the School of Computer Science and Technology, Xidian
University, Xian 710071, P.R. China. E-mail: ylshen@mail.xidian.edu.cn.

configuration, not the combination of them. Thirdly, it is
time-consuming to perform an update in large-scale data
center network [4-7]. Rapid network update is beneficial
for achieving high network utilization and enhancing the
network flexibility.

Reitblatt et al. propose a two-phase commit mechanism
to implement a consistent update. A simple label is used to
judge which configuration should be employed to forward
a flow, using either new or old network configurations [2].
This mechanism can ensure the per-packet and per-flow
consistency, but is incapable when the traffic matrix and
the network topology change jointly. Hong et al. divide
a flow into several segments, which are delivered along
multiple feasible paths so as to improve the utilization of
link bandwidth [4]. Even the traffic matrix varies a little
bit, the time-consuming method needs to recalculate all
possible network states again. Liu et al. prefer to calculate
a complex update plan for each update event in advance
to perform a congestion-free update [1]. Undoubtedly, it is
time-consuming to derive an update plan and consumes
non-trivial space to store the update sequences. For any
update event, Jin et al. aim to fasten the process of consistent
update by dynamically adjusting the preferred update plan
among all feasible update plans [8].

Given a DCN update event, previous methods focus on
finding a sequence of lossless transitions from an initial
network state to a feasible end network state. They, how-
ever, suffer frequent and global search of the feasible end
network states by taking a long time to solve an optimiza-
tion problem. This incurs non-trivial computation overhead
and decision-making delay especially in large networks.

Moreover, some involved flows have to be rerouted and
migrated during each round of transition of network state,
and usually cause cascaded migrations of other flows, and
so on. Such kind of cascaded flow migration incurs con-
siderable extra overhead and significantly disrupts existing
applications. That is, this cascaded behavior results in a
mass of unnecessary traffic migration and installation of
flow rules. This will not only causes serious link congestion
and packet loss, but also increases the delay of completing
a network update event. To solve such severe issues, we
design a simple update mechanism to minimize the amount
of flow migrations during the process of congestion-free
network update. For an update issue, the basic idea is to
replace performing the globally transitions of network state
with dynamic but local reschedule of involved flows.

We first model all involved flows due to a network
update as a set of new flows, and then propose a heuristic
method Lupdate, where “ L ” stands for migrating the least
amount of traffic to accommodate a set of new flows. With
Lupdate, operators neither need to consider the search of the
feasible end network state nor carefully design and perform
an update order of involved flows. The reason is that Lupdate
motivates to locally schedule each new flow into the shortest
path at the cost of causing the extra migration of at most one
existing flow in most cases. As you can imagine, increased
number of migrated flows means more flow rules will be
installed on switches, which achieves update with more
cost. To improve the update affection, we should select
migrated flow which passes through all bottleneck links.
To minimize the amount of migrated traffic, the removed
flow for the new flow should be as small as possible. Thus,
Lupdate migrates the least amount of traffic and the least
number of flows to other routing paths, according to the
real-time network state.

In reality, there may exist some new flows that cannot be
accommodated through our Lupdate method timely. The root
cause is that the available capacity of each desired shortest
path for a new flow is not sufficient to accommodate that
new flow, if we just migrate one existing flow in those bottle-
neck links. To improve the success rate of a network update,
we further propose an enhanced method Lupdate-S. It shares
the similar design methodology of Lupdate, but permits
to migrate multiple necessary flows on the shortest path
allocated to each new flow. Similarly, any migrated flow
should be rerouted to another appropriate shortest path.
To avoid cascaded flow migrations, the new flow should
not be injected immediately if any migrated flow could not
find another appropriate shortest path. Considering that
flows by an update events may be updated concurrently,
as well as update events. Thus, our methods have room
to be improved on the update speed in the future while
facing multiple flows or update events. To achieve it, we
face two main challenges: conflicts between migrated flows
and update events. In concrete terms, the migrated sequence
of existing flows will affect whether a new flow could be
transmitted in the network. That is, the occupied or emptied
link space of migrated flows will block or cannot satisfy
the requirements of the new flow. Similarly, the update
sequence of multiple update events will be affected each
other.

The major contributions of this paper are summarized as

follows:

o We propose the problem of minimizing the traffic mi-
gration during network update in IaaS data centers
and formulate it as an optimization problem.

e After modeling involved flows due to a network
update event as a set of new flows, we present a
simple update method Lupdate to resolve the defined
optimization problem with high success rate, at the
cost of migrating at most one existing flow.

o To improve the success rate of network update, we
further enhance the Lupdate by designing a general
update method Lupadte-S. It may migrate multiple
existing flows to ensure that the scheduled path for
a new flow has sulfficient capacity. We also define a
delay update scheme to ensure the success updates.

o We evaluate the performance of previous and our
update methods via large-scale trace-driven simula-
tions under widely used Fat-Tree and ER random
datacenter networks. The results indicate that our
methods can realize congestion-free network update
with as less amount of traffic migration as possible
even when the proportion of links with high uti-
lization is very high. More precisely, the amount of
traffic migration caused by the Ludpate method is
1.2 times and 1.12 times of the optimal result in
the Fat-Tree network and the ER random network,
respectively. Additionally, the Lupdate-S method can
accommodate update flows with higher success rate
than the Lupdate method as expected.

The remainder of this paper is organized as follows.
Section 2 introduces the related work and Section 3 proposes
the network update problem with minimal amount of traffic
migration and formulates network update problem as an
optimization model under given constraints. In Section 4,
we propose two dedicated update methods to resolve the
defined network update problem. We discuss some impor-
tant issues of our model and methods in Section 5. Finally,
we evaluate the performance of our methods and conclude
this paper in Section 6 and Section 7, respectively.

2 RELATED WORK

IaaS DCNs has become an increasingly hot topic, along
with several existing studies, ranging from bandwidth al-
location and performance guarantee. Guo et al. propose
several effective methods to guarantee bandwidth for VMs
and balance the tradeoff between bandwidth guarantee and
bandwidth sharing [9]. To improve system performance,
Guo et al. proposed a practical distributed bandwidth al-
location algorithm to provides performance guarantee to
users [10]. In addition, several methods are proposed to
guarantee VMs performance [11-13].

Reitblatt et al. propose a two-phase commit method to
guarantee the per-packet and per-flow consistency [2]. It
first installs the new routing rules on involved internal
switches for the packets with new version numbers. Accord-
ingly, the packets are marked with new version numbers
when passing through the ingress switches. Such a mecha-
nism is immensely useful. However, due to enormous traffic
migrations during a network update, many factors will

exacerbate the issue of link congestion during the update,
such as the intrinsic difficulty of update on synchronous
switches and the appearance of a traffic peak during the
update. Meanwhile, the authors also propose a mechanism
to perform the congestion-free traffic migration during DCN
updates [2]. Note that, this work is designed based on the
assumption that both the traffic matrix and the network
topology remain constant during the update process. Such
two assumptions, however, cannot be always achieved, due
to the uncertainty of application traffic and the dynamic
change of the network topology.

In contrast, Hong et al. divide a flow into several seg-
ments, which are delivered along diverse paths [4]. Such a
design is help to improve the utilization of link bandwidth.
However, even the traffic matrix varies a little bit, the pro-
posed method needs to recalculate all feasible end network
states, which is, undoubtedly, time-consuming and causes
serious decision delay. Those issues become serious as the
growth of network scale, due to the explosion of the feasible
network states. Jin et al. provide another consistent update
method to dynamic change the update plan for speeding the
update process. The motivation is to exploit the diversity of
update speed among different update sequences from an
initial network state to an end network state [8].

The implementation of all previous update methods rely
on sufficient information about the whole network and
centralized decision-making. The emergency of Software
Defined Network (SDN) has brought great convenience to
support the network update. SDN is a new network archi-
tecture in which the data forwarding plane is decoupled
from the control plane. A centralized controller maintains
the global network state and calculates the routing path for
each flow, which guides the forwarding configurations of
underlying network equipment.

With the advents of SDN, recent proposals investigate
how to maintain the consistency property during the pro-
cess of a network update. That is to say, each flow must
be delivered according to the old network configuration or
new network configuration. Ludwig et al. design dedicated
methods for secure network updates, where packets are
forced to traverse certain waypoints or middleboxes [14].
Ghorbani et al. focus on the design of network update
methods that guarantee even stronger consistency [15]. The
authors in [16] introduce the notion of software transactional
networking, and give a tag-based method to consistently
compose concurrent network updates.

Additionally, several proposals focus on reducing the
memory overhead due to maintain the packet coherence
[3]. To guarantee the connectivity during network updates,
R-BGP is proposed to ensure that Internet domains stay
connected as long as the underlying network is connected
[17]. Besides, some works dedicate to maintain loop free-
dom during congestion-free update, such as the efficient
solution proposed in [18]. Liu et al. concern the problem
of asynchronously updating flow tables on involved net-
work devices in cast of the topology update and traffic
matrix update [1]. In addition, SWAN [4], Raza et al. [19]
and Ghorbani et al. [3] provide solutions for addressing
various congestion issues during network update. Noyes
et al. design the update plan to maintain some invariants
specified by the operator [20]. There is also a rich set of work

3

on preventing transient misbehaviors during the updates of
routing protocols [21].

Compared with the previous methods, we replace per-
forming the globally transitions of network states with
dynamic but local reschedule of involved existing flows due
to an update event. We regard the flows caused by an update
event as new flows and migrate the existing flows to satisfy
the bandwidth requirements of such new flows if necessary.
To minimize the amount of migrated traffic, the migrated
flows should be as small as possible. In this way, we avoid
taking a long time to solve the optimal problem for globally
searching the feasible transient and final network states. Our
methods can realize network update with as less amount of
traffic migration as possible.

3 PROBLEM OPTIMIZATION

MODEL

We start with abstracting the data center network update
problem as the reschedule problem of a set of new flows
no matter types of update events. During the schedule of
each new flow, we aim to minimize the amount of traffic
migrations of existing flows when the allocated path lacks
sufficient capacity to accommodate the new flow. We then
characterize the problem of minimizing the traffic migration
during network update as a dedicated optimization model.

STATEMENT AND

3.1 Problem statement

The network is consistently undergoing changing, due to
a variety of hardware and software issues. A common
negative impact of network updates is the serious traffic
migration across the whole network. For example, in the
settings of upgrading switches or repairing failed switches,
network operators have to reroute all existing flows passing
through those switches in order to guarantee the correctness
of involved network applications. VMs migration is another
cause of network update. All traffic associated with the VMs
has to be migrated as well once such VMs are redistributed
to other servers in an IaaS data center. Such network-scale
flow migrations, resulting from any network update event,
should be performed carefully so as to disrupt existing flows
of critical applications as less as possible. Otherwise, it may
result in serious traffic congestion.

Fig.1 depicts an illustrative example. Suppose that the
flows fi and f are injected from two ingress switches,
s1 and s, respectively. To realize the transition from the
initial network status in Fig.1(a) to the end network status
in Fig.1(b), the new forwarding rules on s; and s3 must be
installed at the same time. Otherwise, as shown in Fig.1(c),
the link /o will carry both flow f; and flow f, and may
exhibit congestion, if s; updates its forwarding rules before
s9. Link [y will appear the similar result if s, first updates
its forwarding rules [1].

To enable the congestion-free network update, previous
methods share a complex abstraction of the network update
problem. The basic idea is to design and implement a
lossless transition plan, consisting of a sequence of networks
states from the initial one to the end one. Such an abstraction
suffers global search of all feasible transient states and
end network states, by taking a long time to solve an

Link

Flow Ingress Link

(a)initial

Flow Ingress Flow Ingress

(b)final

(c)transient

Fig. 1. Transient load congestion during the process of traffic migration.

optimization problem. After fixing the desired end traffic
distribution, all intermediate traffic distributions should be
calculated if necessary. Such kind of methods incur non-
trivial computation overhead and decision-making delay,
especially in large networks. Moreover, the designed update
plan usually becomes invalid and should be recalculated,
even in the case of a little bit change of the traffic matrix or
network topology.

In summary, the previous abstraction about the network
update is very complex and incurs frequent and global
search. To tackle those severe issues, we present a simple
abstraction from the view point of involved flows caused
by update events, due to the following observations. That
is to say, we regard such involved flows as new flows
and allocate paths for them. If there is not enough link
bandwidth to transmit them, we consider to migrate several
existing flows to make room for new flows. For the update
event of network topology, such as switch upgrade or
failure, all existing flows around involved switches should
be rescheduled to other available routing paths. For the
update event of VM migrations, a mass of new flows has
to be rescheduled to available routing paths towards those
destination servers. In addition, the reconfiguration of load
balancers will also lead to the change of routes to some
existing flows.

Thus, we treat a network update event as the dynamic
rescheduling problem of involved new flows, instead of
global searching the possible end network states and realiz-
ing a series of transient states between traffic distributions.
The basic idea is to locally allocate a feasible shortest path
for each new flow, whose available bandwidth is sufficient
to accommodate that flow. If none of shortest paths is
feasible, we prefer to migrate the least number and amount
of existing flows from any shortest path so as to make that
path become feasible. In this way, operators neither consider
the global search of all feasible end network states nor
carefully perform a sequence of lossless transitions between
the initial, intermediate, and the end network states.

Our update strategy can well realize the congestion-free
transmission of those involved flows in a simple way. It,
however, still faces two challenging issues, the cascaded
migration problem and the minimization of traffic migra-
tion. Firstly, we have to find another feasible routing path
to accommodate each removed existing flow if necessary.
This can cause the cascaded migrations of other existing
flows, and so on. Thus, we impose a constraint on the
selection of a removed existing flow such that there exists
at least one desired and feasible path to accommodate it
after migration. Secondly, we have to minimize the total
number and amount of migrated existing flows, so as to
enable the reschedule of involved flows due to a network

TABLE 1
Symbols and notations.

The set of all switches
The links between all switches
[€] The direct network graph G = (V, E)
€ij Link connecting i and j. 7,5 € V
The number of the flows on the link e; ; is k
Cij The link capacity betweeniand j. 4,5 € V
s¢ Ingress switch of flow f
ds Egress switch of flow f

v(f) The size of flow f
f A flow is defined as f = (sf,dy, v(f))
F All existing flows in the network
Frove The set of candidate migrated flows transmitted
on the congested links
Frmove The set of migrated flows
feis The flow which passes through the link e; ;

Dy A path taken by f from s; to d

[psl The length of path allocated for f
Ly A set of congestion links on the route which flow f
passes by
v(fi,;) | Flow f’sload on link between ¢ and j

Gy The subgraph of the switches and links flow f
passing by

|G| The number of flows in the subgraph Gs
[fmove| | The number of flows in the set fimove
T The load distribution matrix
D The diameter of network

update event. This will minimize the disputation to existing
flows and applications. Moreover, our experimental results
show that the fewer amount of traffic we migrate, the fewer
packets will lost during the update process.

3.2 Optimization model

After abstracting the datacenter network update as the
rescheduling problem of a set of new flows, we motivate
to cause the least amount of migration of existing traffic
to achieve the least cost and congestion-free update. Before
characterizing our optimization model, we first report all
used notations and symbols in Table 1.

We define a network as a graph G=(V, E), where V and
E denote the set of switches and the set of links connecting
those switches, respectively. D is defined as the diameter of
the network. Besides, a flow is defined as f=(sy,ds,v(f)),
where s; is the ingress switch, d; is the egress switch and
v(f) is the size of flow f. Let frew and fove denote the
involved flows caused by an update event and the flow that
will be moved to other path caused by a new involved flow,
respectively. Let v(f; ;) denote the actual load of flow f on
link e; ; and ¢; ; denote the link capacity. Gy represents the
subgraph that contains all the switches and links employed
by flow f. Furthermore, I’ records the size of each flow in
the network, and a traffic distribution matrix 7" records the
load of each link.

Given a network update event, we initialize the set
frnew as the set of all involved flows due to this event.
Apparently, the amount of migrated traffic will affect the
functionality of the ongoing network. And thus, the process
of update should migrate the least amount of traffic to limit
the negative impact. Thus, our first object is:

min Z v(f) (1)

fefmo'ue

Besides, we migrate parts of existing flows for a new
flow, which means these existing flows will be routed new
paths. Further, the corresponding flow policies should be
installed on the switches along the paths. Due to asyn-
chronous switch, the process of installing will delay the
migration of existing flows. As a result, congestion maybe
happen on some links. Thus, we should try to minimize the
number of the migrated flows. To achieve it, we select a
minimal subset f,,ope from the candidate flow set Fiove,
which consists all existing flows on the congestion links
of the path py and guarantee each link of py will be
congestion-free.

2

fmove€Frmove
VF'E Frews Vi, jEG pr +
if Y v(fig)+vo(fl;)>cig then f€Fmone &)
feF
V'€ frews 3fmoveC Finove, Vi, jEG 7 -
Z o(fig) +o(fi;) — Z v(fi;)<cij @

feF J" € fmove
Given T, we call that network is legal if parameters hold
that:

min

| fmovel 2

Vi, jeGy ol fig) = o(f) ®)
Vf,eij £ Grio(fiy) =0 (6)
Vf'E e 1 <D .
Vf" € fmove Ly <D @®)
Veij€LF,3f € fmove : €1 ;€G g)

vflefnew : |fmove|§|Gf’| (10)

Equation (3) records the set of migrated flows, which
pass through congestion links of the path ps allocated
for the new flow. And (4) indicates that links, whether
new flows or migrated flows caused by new flows occupy,
are still within their capacities. That is, the link is always
congestion-free. Equation (5) guarantees that each flow can
be transmitted along the identified path in the network. (6)
means the traffic of flow f; ; will not appear on the links
which do not belong to Gf. (7) and (8) indicate that hops
of paths allocated for new flows and moved flows cannot
exceed the diameter of the network. (9) guarantees that the
migrated flows which pass through the congestion links
initially. (10) indicates that the number of migrated flows
cannot exceed the number of flows on the path allocated for
the new flow. Based on this model and given 7" and fycw,
new flows can be allocated paths with the least cost.

4 EFFICIENT UPDATE METHODS

After modeling an update event as the reschedule problem
of a set of new flows, we design two methods, Lupdate
and Lupdate-S, to approximate the optimal solution. Lupdate
aims to reschedule each new flow to the shortest path at
the cost of migrating at most one existing flow. The size
of migrated flow should be as small as possible. Lupdate-
S further improves the success rate of an update event, by
migrating the least but not only one existing flow on the
allocated shortest path for each new flow.

Algorithm 1 Lupdate (7', f)

1: Find all candidate shorter paths for flow f;.

2: Sort these paths from short to long distance, p1, ps ...
3: forp;, i+ 1,2,3...do

4: if each link of p; < ¢; ; then

5: flag=1
6: return p;
7. if flag # 1 then
8 forp;, i1+ 1,2,3... do
9: Search all flows on every congestion links of p;.
10: Search for the common flowsfi, fa...f; on every
congestion links.
11: if no common flow then
12: return Fail to transform the new flow.
13: else
14: Sort these flows from small to big, f1, fs....
15: for f;,i < 1,3... do
16: if p; can enter after moving f; then
17: Jmove = fi
18: Move fimove
19: return p;
4.1 Lupdate

Given a set of existing flows, the load distribution matrix 7,
and a set of new flow fc, Lupdate tries to locally pick an
appropriate path for each new flow from all possible short-
est paths. First of all, the rest capacity of the selected path
should be sufficient to accommodate a new flow f€f e -
If all candidate paths are out of capacity, Lupdate identifies
all existing flows on those congestion links of a candidate
path. Then, the common flows on those congestion links
will be found and sorted according to their sizes in the
ascend order. The first least flow will be migrated if its
release can make the path satisfy the capacity demand of
the new flow. Finally, the migrated flow should be moved
to another feasible path whose length is as short as possible.
If all existing flows on the considered shortest path cannot
be migrated, other candidate paths for the new flow will be
verified again using the similar way.

The worse case is that a new flow f€ f,e, cannot be
scheduled to any candidate path successfully. That flow
should wait on the ingress switch until any candidate path
becomes feasible due to the completion of some existing
flows. In Lupdate, only one existing flow along each candi-
date path for a new flow is permitted to migrate for limiting
the negative impact on the whole network. Algorithm 1
characterizes the basic idea of our Lupdate method formally.

For each flow f€f,ew, we first search out a set of
candidate paths for flow f and sort them in the ascending
order of the path length. Then, we check (lines 3—8) whether
flow f could be loaded on the first candidate path without
migrating any existing flows. If the result is yes, flow fpeq
will enter the network by scheduling on the first candidate
path. Otherwise, other candidate paths will be checked. If
none of candidate paths can accommodate the new flow f
without migrating any existing flows, we estimate whether
one of the shortest paths can accommodate the new flow
after migrating one existing flow. The migrated flow is
selected according to the following steps:

Algorithm 2 Lupdate-S (7', f)

1: Find all candidate shorter paths for flow f.

2: Sort these paths from short to long distance, p1, ps ...
3: forp;, i+ 1,2,3...do

4: if each link of p; < ¢; ; then

5: flag=1
6: return p;
7. if flag # 1 then
8 forp;, i1+ 1,2,3... do
9: Search all flows on each congestion link on p;.
10: Search the common flows fi, f>...fi among those
congestion links on p;.
11: if no common flow then
12: for 5+ 1,2,3..ndo
13: flagr =0, flags =0
14: Copy the traffic matrix 7" to X.
15: for each link e; ; of p do
16: Xi,j = ’U(f) + Xi,j
17: for each link e; ; of p do
18: if Xi,j < Cij then
19: flagy = 1, Success
20: else
21: Put existing flows on this link into a set
MOUeflows~
22: Break
23: Randomly migrates 3 flows in the set
Move f1ows to other shortest appropriate paths.
24: if The exist flows have been moved then
25: flags =1
26: if flagi = 1 and flags = 1 then
27: T=TT
28: return p
29: else
30: Call Algorithm 1

o Firstly, we should find out those bottleneck links
along the path for flow f, which will become con-
gestion after loading flow f on it.

e Secondly, after recording the set of existing flows
on each congestion link, we identify those common
flows that pass through all bottleneck links.

o Finally, after sorting those flows found in the second
step, we try to migrate the least flow to enable the
related path become feasible to accommodate the
flow f.

To express it clearly, a example is presented in the Fig
2, where six switches A, B, ..., F exist and the link capacity
is 10 Mbps. Four flows, i.e. fi, fa, f3, f4 whose bandwidth
requirements are 3 Mbps, 10 Mbps, 2 Mbps and 4 Mbps
respectively, are transmitting in the network. The initial
paths of them are illustrated using the blue lines. Suddenly,
a new flow from A to F whose bandwidth demand is 3
Mbps, demands to passes through D and E. Apparently,
link congestion will occur if we transmit the new flow on
the route A - D — E — F. Thus, we should find out the
bottleneck link of this path, i.e. D — E. Then, fi, f3 and
fa become candidate flows to be migrated. According to the
principle of minimizing the amount of migrated traffic, f; is
chosen to be removed, showed by the red line.

A (B) C
f— T+
D @ F

f ——

S —
fi— 3Mbps f:— 10Mbps
f,—> 2Mbps f,—> 4Mbps

Fig. 2. An illustrative example of Algorithm 1.

In addition, the migrated flow should be removed to
another shortest path as well (lines 10 — 20). Theorem 1
proves the time complexity of our Lupdate method.
Theorem 1. Given a new flow and network, the number of

candidate paths for a new flow is «. The length |py| of

each path and traffic of each existing flow on this path is
fixed. It is apparent that the time complexity of Lupdate

isO(V+E+Iga+ax(|pf|+1g(k) + k).

Proof 1. Algorithm 1 consists of two major stages, including
pre-update stage and move stage. For the pre-update
stage, the time complexity is O(V + E + lg). Firstly,
we search out all the appropriate paths for the new flow
and use a modified depth-first search to generate the
candidate paths which can be found in O(V + E) time
complexity. Then, we need to sort the length of these
paths at O(lg o) time complexity. So, the time complexity
of the pre-update stage is O(V + E +1g a). In the stage of
move, we try to move the smallest existing flow on the
candidate paths from the short to long, deciding which
path should be allocated for the new flow. All of this
should be performed for o times at most. In addition,
we can get the number ei—f ; and the size of the existing
flows on every congestion link from the SDN controller
easily. Then, we sort the flows on each congestion link at
O(lg k) time complexity and find out all common flows
of all congestion links with the time complexity O(k).
Finally, we will move the chosen flow to the other path
at O(|py|) time complexity. Thus, the entire complexity
of the second stage is O(a * (|pf| + 1g(k) + k)). In
summary, the entire time of complexity of two stages is
O(V+E+Iga+ax(lps|+1g(k) +k)); hence, Theorem
1 is proved.

It is true that our Lupdate method may fail to reschedule
a new flow after checking all candidate paths, when the
proportion of high utilization links is very large in the
network. A possible solution to address this rare case is
the introduction of the delay update strategy. That is, that
flow should wait on the ingress switch for a delay update
time until any candidate path becomes feasible due to the
completion of some existing flows. Another online solution
is to migrate more existing flows on candidate paths for that
new flow, as discussed by our improved update method
Lupdate-S.

4.2 Lupdate-S

As aforementioned, our Lupdate method may cannot timely
reschedule a new flow after checking all candidate paths

f,—> 2Mbps
fi—> 4Mbps

f.— 3Mbps

Fig. 3. An illustration example of Algorithm 2.

in rare cases. To resolve this problem, we introduce the
Lupdate-S method, which is permitted to migrate multiple
number of existing flows on candidate paths for accommo-
dating the related new flow if necessary. It is clear that the
Lupdate-S method is a general case of the Lupdate method.
Thus, there may exist many candidate shortest paths, which
can afford sufficient bandwidth for a new flow after migrat-
ing multiple existing flows.

The challenge issue is how to efficiently choose an
appropriate path from more candidate ones. We explain
the detailed process to tackle this issue in Algorithm 2.
Firstly, we search the shortest path for each new flow and
distinguish all the existing flows on this path (lines 1, 2).
The next step is to identify whether the available capacity
of each link on this path is sufficient for accommodating the
new flow. If the available capacity of each link is sufficient,
the update strategy is successful since the current shortest
path can load the new flow directly. Otherwise, we will
collect those existing flows on congestion links and find the
common flows passing through all congestion links (lines
3 — 10). If such congestion links do not share any flow, we
need to migrate several flows on each congestion link to
satisfy the demand of the new flow. The number of migrated
flows depends on the size of the new flow and the available
bandwidth on each link along a candidate path. We will
terminate the moving process of exist flows once the new
flow can be transferred (lines 14 — 28). If there exists some
flows that pass through all the congestion links, we will call
Algorithm 1 to perform network update (30).

In addition, we give an example to explain this algorithm
as shown in Fig. 3. Three flows, ie., fi, f2, f3, originally
pass along three blue paths D - F — B, D — E — F
and A - D — E — F, respectively. The bandwidth of
each link is 10 Mbps, which the required bandwidth of such
three flows are 2 Mbps, 3 Mbps and 4 Mbps. A new flow
with 6 Mbps data rate desires to transmit along the path
A — D — E — F.In this way, link D — E would become
congested. To tackle this issue, we try to update the routing
path of one existing flow to release bandwidth for the new
flow. Lupdate-S permits to migrate multiple existing flows
with as less traffic as possible. It seems that we can migrate
the minimal flows f; and f>. However, congestion still will
happen on the link A — D. Thus, we choose to migrate
flows fi and f3 along the new paths, as shown in red lines.

Theorem 2. The time complexity of the Lupdate-S method is
O(VI1gV + E+max(Bx (|ps[+VIgV +E), v x (lps| +
1g(8))))-

7

Proof 2. Algorithm 2 consists of two major stages, including

the pre-update stage and update stage. For the pre-
update stage, the time complexity is O(V'1gV + E). The
reason is that we employ the Dijkstra algorithm, whose
time complexity is O(V'1gV + E) to search the shortest
path for each new flow. Note that there may exist «y
shortest paths for a new flow.
In the update stage, Lupdate-S migrates existing flows
on congestion links along the shortest path. We ana-
lyze the time complexity from two sub-stages. First, if
there exists no common flow passing through all the
congestion links, we will migrate multiple flows on each
congestion link, such that the available bandwidth of
each bottleneck link become feasible to load the new
flow. This stage consists of |py| steps, where |py| denotes
the length of the path allocated for a new flow. Then,
several existing flows are randomly migrated to other
shortest paths at the O(V1gV + E) time complexity.
The number of the migrated flow, i.e., 5, depends on
the size of the new flow, and the available bandwidth
on related link. Thus, the total time complexity of this
sub-stage is O(8 x (|ps| + V'1gV + E)). Second, if there
exists some flows that pass through all the congestion
links, we will try to migrate the smallest flow to satisfy
the demand of the new flow with the time complexity
O(vy x (Ips| +1g(B))). In summary, the time complexity
of Algorithm 2is O(V Ig V+E+maz(Sx (|ps|+V1gV+
E),v x (lps] +1g(8)))); hence, Theorem 2 is proved.

5 DiIscUsSION

Note that all involved flows due to a network update are
modeled as a set of new flows. The current design of
update methods process the set of such flows sequentially.
To further speed the update process, we would improve the
aforementioned update methods by introducing the design
rational of concurrent update and delay update.

5.1 Concurrent update

If partial or all flows caused by a update event can be
updated concurrently, our update method still has room to
speed the completion of a network update event. To realize
such a design rational, a group of new flows should be
allocated paths together, while the migrated flows among
existing flows should not conflict. Otherwise, serious con-
gestion will happen and leads to considerable interruption
on network applications. For this reason, we further explore
the feasibility of our proposed methods to concurrently
update involved flows of an update event.

Given an update event and the set of caused new flows
Few, an appropriate path should be identified for each flow
fE€F,ew and the set of migrated existing flows for flow f is
also recorded. We then verify whether the migrated flows
for different flows in Fj,., occur potential conflicts. After
that, we divide all migrated flows for the update event
into a series of groups, in each of which all members are
conflict-free. Thus, a group of flows can be updated concur-
rently. Clearly, such an improved design can accelerate the
completion of a network update event. At the same time,
the benefits of Lupadte and Lupdate-S, imposing the least
influence to the network, are reserved.

-
1]
38

C—1 Lupadte
ECMP-based Lupdate

1 Lupdate

@
3

@
3

N
3

o
o

1, o]

5 15 25 35 45 55 65 75
Number of new flows

o

The ratio of migrated traffic
compared with new flows
-
Reduction in computational time (%)

5 15 25 35 45 55 65 75
Number of new flows

(a) Migrated traffic (b) Computation time

Fig. 4. Migrated traffic ratios of our method Lupdate, ECMP-based
Lupdate and new flows, and reduction in computational time with our
method Lupdate against ECMP-based Lupdate where the network uti-
lization is 40% in the 8-Pod Fat-Tree network.

5.2 Delay update

Given a network update event, there may exist few flows
which could not be rerouted no matter using the Lupdate
or Ludpate-S method. In this scenario, it incurs extra delay
on the update process and enlarges the average completion
time of a network updated event. Traditionally, new flows
in the queue should be updated by our Lupdate and Lupdate-
S in the FIFO order. To update the first flow, we should
confirm that the network has extra bandwidth to load this
new flow. That is, the Lupdate-S method can successfully
reschedule that new flow. If not, the first new flow should
wait until any candidate paths becomes feasible due to the
completion of some existing flows. This design makes other
new flows behind the first flow in the queue wait in the
egress switch.

To address such an important issue, we introduce the
design rational of delay update. The basic insight is to
temporarily try other flows behind the first flow, when
the first flow cannot be immediately allocated to a desired
routing path. If any later flow in the queue meets the update
requirement first, it will be rescheduled. After a period
of time, we will check the rest flows in the queue in the
order of FIFO and process them using the same way. This
will considerably shorten the completion time of a network
update event.

6 PERFORMANCE EVALUATION

In this section, we start with the setting and configuration
of our trace-driven evaluations. We then compare our two
methods with the Shortest-Path method, which allocates the
shortest path for new flow and migrates multiple flows
randomly to satisfy the demand of the new flow, in terms
of the amount of migrated traffic, the number of migrated
flows, and the success rate of updating a set of flows. The
reported results denote the average values over 100 rounds
of experiments for each performance metric.

6.1 Evaluation configuration

Topology We emulate data centers with representative net-
work structures, i.e., the Fat-Tree [22] and ER [23] random
network. The link bandwidth is fixed as 1 Gpbs for both
network models. The number of servers and switches in a
Fat-Tree data center is determined by the setting of param-
eter k, ranging from 8 to 28 in our experiments. A Fat-Tree

8

topology owes 5k3 /4 switches and can support k®/4 hosts,
which are built by k-port switches comprises k pods with
two layers of k/2 switches. The amount of switches in the
ER random data center is set as the same as the Fat-Tree data
center. That is, if the parameter is set as k in the Fat-Tree
network, the number of switches in the ER network is set
as 5k?/4 and the number of servers is k2/4. A switch in an
ER random network connects with each of other switches
with probability p (p = 2/3). That is, other ports of a
switch connect to servers with the probability 1 — p. Such
a probability is decided by a proportion of all links among
switches to the total number of links in a Fat-Tree data center
with the same setting of k. Note that the number of ports
in each switch is limit. Thus, for the ER random network,
the setting of ports in each switch is as same as the k-pod
Fat-Tree network. That is to say, if there are k ports of each
switch in the Fat-Tree network, then the number of ports for
each switch is k in the ER random network. This application
scenario brings some constraints on the ER model since it is
not necessary to generate arbitrary node degree. That is, the
number of ports in each switch is usually sufficient.

Methods Given a set of new flows caused by any update
event as the input, we realize our two update methods,
Lupadte and Lupdate-S, in the two kinds of emulated data
centers. We also implement the Shortest-Path update method
as an existing one, which only allocates the shortest path for
each new flow at the cost of migrating multiple existing
flows. During the selection of migrated flows, it does not
consider whether links and existing flows would lead to the
failure of loading the new flow on that path. Once a link
lacks bandwidth to load the new flow, it only randomly mi-
grates several existing flows until the available bandwidth
of the link becomes sufficient.

For the method Lupdate, we focus on the scenarios of
allocating one path for each new flow, due to the exper-
imental observation as shown in Fig.4. Given an update
event, Fig.4(a) reports the ratio of the size of migrated traffic
to the size of new flows under our Lupdate and ECMP-
based Lupdate methods. The two update methods would
migrate 1.05—1.23 and 1.22 —1.52 times existing traffic than
new flows for accommodating the same set of new flows,
respectively. It is clear that the ECMP-based Lupdate method
migrated more traffic than our Lupdate method. We find that
to allocate multiple paths for each new flow usually need
to analyze the bottleneck links on multiple paths, and may
migrate at least one existing flow on each path. Additionally,
this would take much time to find available multiple paths
for each new flow. As shown in Fig.4(b), our method Lup-
date achieves 0% — 80% reduction in the computation time
for finding feasible routing path compared to the ECMP-
based Lupdate method.

Workloads To evaluate the three update methods in a
trace-driven manner, we inject k3 flows as the background
traffic, which are generated by a real data-set from Yahoo!’s
data center [24]. Such a trace records the basic information
of each flow in its six distributed data centers, including
the IP addresses of both source and destination servers, the
size of each flow, etc. Note that, the real IP addressed in the
trace are anonymous, hence, we employ a hash function to
map the IP addresses of both source servers and destination
servers into our networks. Recall that we abstract the impact

Lupdate
rzzzzz Lupdate-S N
__ 1ooo00 Shgrtest—Path N g
b= ..
< 10000 é é ? é S50
g NN A g
100 é é 7 ’ 8
z AN E
g AN A g
= 111 IS
X3 7 7 % 1%
NN IAN §
NBIANRIZANRY
8 12 16 20 24 28 8 12 16 20 24 28
K K
(@) The amount of migrated (b) Proportion of links whose

traffics (with y-axis log scale) utilization exceeds 90%

Fig. 5. The amount of migrated traffic in the Fat-Tree DCN under varied
settings of k. The proportion metric refers those links whose link utiliza-
tion exceeds 90%.

of varies network update events as a set of new flows in
Section 3. We generate new flows as one of the following
types for the upcoming different evaluation scenarios. The
first type is the average flows, whose source and destination
IP addresses are selected randomly, and the flow size is
proportional to the average size of background flows in the
network. The second type is the test flows, whose source
and destination are deterministic. Inspired by the study of
network traffic inside data centers [25], the size of such test
flows is set randomly such that the average flow size ranges
from 5 MB to 95 MB.

Metrics We evaluate the performance of the three update
methods under any update event, in terms of three perfor-
mance metrics, including the average amount of migrated
traffic, the average number of migrated flows, and the rate
of success. Furthermore, we also evaluate the influence of
three design factors, the network size, the network topology,
the average size of new flows, and the number of new flows
on the performance.

6.2 The amount of migrated traffic
6.2.1

We first evaluate the amount of migrated flows in Fat-Tree
data centers, when k varies from 8 to 28. Fig. 5(a) depicts
that our Lupdate method always migrates the least amount
of traffic to accommodate new flows caused by an update
event, irrespective of the value of k. On the contrary, the
Shortest-Path method migrates too much traffic for accom-
modating the same flow set, almost 40~100 times than
the Lupdate method. The general Lupdate-S method allows
to migrate multiple related existing flows, when a new
flow fails to be accommodate by migrating just one flow.
Although it incurs more traffic migration than the Lupdate
method, but still outperforms the Shortest-Path method.

Impact of the network scale

TABLE 2
Migrated traffic ratio of three methods in the Fat-Tree network

k 8 12 16 20 24 28
ratiol | 0.87% | 0.38% | 0.07% | 0.09% | 0.11% | 0.003%
ratio2 | 0.87% 71% 147% 89% 91% 65%

With different network scales, the ratios of migrated traffic of
Lupdate, Lupdate-S and Shortest-path are present by ratiol and ratio2,
respectively.

-
o

Lupdate
Lupdate-S
Shortest-Path

)
o

10000

5
o

1000

N
o

w
o

H
8
Proportion(%)

N
o

Migrated traffic (Mb)

o
1S

=

o

I

[E—

N
o

6 20 24 28 8 12 16 20 24 28
K K

(@) The amount of migrated
traffics (with y-axis log scale)

(b) Proportion of links whose
utilization exceeds 90%

Fig. 6. The amount of migrated traffic in the ER random network under
varied settings of k. The proportion metric refers those links whose link
utilization exceeds 90%.

After injecting k® real trace flows as the background
traffic, Fig.5(b) reports that the proportion of links, whose
link utilizations exceeds 90%, fluctuates from 38% to 55%
when £ ranging from 8 to 28. Fig.5(a) and Fig.5(b) indicate
that the Lupdate method always causes the least amount of
traffic migration, even when the utilizations of a majority
of links are very high. Moreover, the changing trend of
the amount of traffic migration is similar to that of the
proportion of links with high utilization under the Lupdate
method. However, to the methods Lupdate-S and Shortest-
Path, the amount of traffic migration is dominated by the
network scale, i.e., the value of k. It is obviously that there
is a weak connection between the amount of migrated traffic
and the state of link utilization. To make it clearly, we show
the ratio of the amount of migrated traffic to the size of new
flows under such three methods in Table 2. Consider that
Lupdate only migrates at most one existing flow for each new
flow, the migrated traffic ratio of Lupdate and Shortest-path
fluctuates between 0.03% — 0.38%. Lupdate-S migrates much
more traffic than Lupdate, due to pursue higher success rate
to accommodate new flows. In addition, we note that the
amount of migrated traffic for each new flow is not sensitive
to the network scale as well.

6.2.2 Impact of the topology

After evaluating those network update methods in Fat-tree
data centers, we further study the impact of other network
topologies of data centers, for example the ER random
network. We also inject number of k® flows into the ER
random network as background traffic and inject the first
type of new flows mentioned in Section 6.1 to mimic an
update event.

Fig.6(a) plots that the Lupdate method still migrates the
least amount of traffic, irrespective of the values of k. The
Shortest-Path method migrates more traffic than both Lupdate
and Lupdate-S, which migrate the similar amount of traf-
fic. Additionally, the difference of migrated traffic between
Lupdate and Shortest-Path decreases as the expansion of the
network scale.

As shown in Fig.6(a), the amount of migrated traffic
grows up as the increase of the network scale except k=20
under each update method. We can explain such a phe-
nomenon according to Fig.6(b). When k increases from 8 to
16, the amount of migrated traffic changes gradually while
the proportion of links of high utilization varies within a
certain range. However, when k reaches 20, the amount of

1x10° 1x10°
a0 Lupdate 0" T ipdate
Lupdate-S Lupdate-S
Shortest-Patl Shortest-Path

100000 100000

10000 10000

P22222277777)
7777777777777

1000 1000

100

Migrated traffic(Mb)
Migrated traffic(Mb)

2222227

2

222222227,

10 30 50 70 90 10 30 50 70 90
Average size of new flows (Mb) Average size of new flows (Mb)

(a) The Fat-Tree DCN with (b) The ER random DCN with
k=20. 720 switches.

Fig. 7. The amount of migrated traffic in various average size of new
flows (with y-axis log scale). The proportion of links (the utilization
exceeds 90%) is 51.8% in the Fat-Tree DCN and 54.7% in the ER
random network.

migrated traffic sharply decreases under all three updated
methods. At this moment, we can see that the proportion
of links, whose utilization exceeds 90%, reduces to 6.7%.
That is, there are sufficient bandwidths to accommodate
new flows and little traffic needed to be migrated. When
k reaches 24 and 28, the proportion of high utilization links
increases rapidly and the amount of migrated traffic caused
by each update method increases as normal circumstances.
To display it clearly, we show the ratio of migrated traffic
of Lupdate and Lupdate-S and Shortest-path in Table 3. when
k = 28, the migrated traffic ratio of Lupdate and Shortest-
path is 0.07%, and Ludpate-S and Shortest-path is 1.2%. In
most cases, ratiol and ratio2 are the same, for the reason
that migrating at most one existing flow meets the link
bandwidth requirements of majority of new flows.

Such evidences indicate that the amount of existing traf-
fic migrated by those three methods increase in accordance
with the regular before when the link utilization is back to
normal. So, we can infer the link utilization and the scale
of network can co-affect the amount of migrated traffic, and
topology will not affect the size of the whole flow migration
trend. According to the above results, our Lupdate method
can remain the desired benefits under different network
topologies of data centers.

6.2.3

As illustrated in Fig.7, we evaluate the impact of the average
size of new flows caused by any update event under two
scenarios. They are the Fat-Tree network with k=20 and
the ER random network with 720 switches. Under the two
scenarios, we inject a set of test flows mentioned in the
Section 6.1 as new flows demanded to be rescheduled into

the network, whose average size ranges from 10 MB to 90
MB.

Impact of the average size of new flows

TABLE 3
Migrated traffic ratio of three methods in the ER network

k 8 12 16 20 24 28
ratiol | 1.49% | 0.74% | 0.45% | 0.59% | 0.14% | 0.07%
ratio2 3.1% | 0.74% | 0.45% | 0.59% | 0.23% 1.2%

With different network scales, the ratios of migrated traffic of
Lupdate, Lupdate-S and Shortest-path are present by ratiol and ratio2,
respectively.

10

@
3

- —6— Lupdate 24| —©— Lupdate
) —H— Optimal a —H— Optimal
S H —o
3 >° T2 O/g
£ o £
S0 Q/Qo = 820
o & o - IS
2 e D18 o B
T 35 o = ,/ B
5 oo =29 5 / A
= - —E = 16 s =
= EE = £
o S SR
2 2 /
g $uf 0 o
z 2
2 10

10 20 30 40 50 60 70 80 90100
Number of new flows

(a) The Fat-Tree DCN with k=8.

10 20 30 40 50 60 70 80 90100
Number of new flows

(b) The ER random DCN with
80 switches.

Fig. 8. The amount of migrated traffic in various number of new flows in
the Fat-Tree DCN and ER random network.

Fig.7(a) and Fig.7(b) describe the change rule of amount
of migrated traffic, varying with the new flow size in the
Fat-Tree network and ER network, respectively. The amount
of traffic migration, caused by the Lupdate-S and Shortest-
Path methods in Fat-Tree data centers, decreases sharply
when the average sizes of new flows are 70 MB and 90 MB.
The amount of migrated traffic, however, decreased sharply
when the average size of new flows exceeds 30 MB to the
Lupdate-S method under the ER random network. Later, the
amount of migrated traffic keep within a certain range no
matter the average size of new flows.

There are various reasons for above observations. First,
there exists multiple shortest paths for each new flow. Due
to the particularity of the ER network, we will choose a
shortest path randomly. Second, as these three methods are a
series of new flows injection scheduling, flow by flow. Thus,
the routing plans for flows in front of the queue certainly
affect the schemes of latter flows. Similarly, the injection
order of new flows affects the schedule result as well. Third,
due to new flows scheduled, certain existing flows may
be migrated to other paths to satisfy the capacity demand
of a new flow. These migrated flows will also occupy the
paths which plans to allocate to latter new flows, which
may be lead to loop migration. Therefore, it is not hard
to understand that the amount of migrated traffic decrease
as the average size of new flows increases in the Fat-Tree
network and the mutation of traffic when the average size
of new flows is 30 MB in the ER network.

Whatever network, the bigger average size of new flows
indeed generates more traffic migration to some extent.
Fortunately, the result shows that the Lupdate method al-
ways migrates the least amount of existing traffic while the
Shortest-path method migrates the most existing traffic, so as
to accommodate the set of test flows.

6.2.4 Impact of the number of new flows

Fig.8 reports the average amount of migrated traffic, caused
by different network update events, i.e. different number
of new flows. No matter in the Fat-Tree network with k=8
or the ER random network of the same size, the amount
of migrated traffic grows as the increase of the number of
new flows. That is, if more new flows want to be injected
into the network, more existing flows usually need to be
rescheduled. Here, we only report the evaluation result
of our Lupdate method. Note that the Lupdate-S method
randomly migrates multiple flows from the candidate set
when the method of Lupdate loses efficacy. Therefore, the

7 Lupdate 1 Lupdate

Reduction in migrated traffic (%)

0. o0lng

5 15 25 35 45 55 65 75
Number of new flows

Reduction in computational time (%)

5 15 25 35 45 55 65 75
Number of new flows

(a) Average migrated traffic. (b) Computation time.

Fig. 9. Reduction in two metrics with our Lupdate against simplified zUp-
date under different number of new flows, where the network utilization
is 40% in the 8-Pod Fat-Tree network.

change trend of the amount of migrated traffic exhibits
uncertainty, due to the introduction of randomness.

In addition, we compute the optimal solution under each
setting of the number of new flows. The amount of traffic
migration caused by the Lupdate method is 1.2 times and
1.12 times of the optimal result in the Fat-Tree network and
the ER random network, as shown in Fig.8(a) and Fig.8(b)
respectively. The reason for the gap is that Lupdate only se-
lects one shortest path randomly for the new flow. However,
there usually exist multiple shortest paths and more longer
paths for any flow in the two kinds of datacenter networks.
The least amount of migrated traffic caused by a new flow
may appear at other paths except the selected shortest path.
In fact, we will install rules on more switches if we choose a
longer path for a new flow, which will cause more cost to the
network. Moreover, to derive the optimal solution for each
flow will cause serious time-consumption. For this reason,
we prefer to utilize the proposed Lupdate method, due to its
low time complexity and near-optimal performance.

Fig. 9 reports the reduction in the average amount of
migrated traffic and the computation time of our method
Lupdate against simplified zUpdate method. Lupdate achieves
a stable reduction by 5% — 25% in the amount of mi-
grated traffic and 45% — 65% in the computation time.
For Lupdate, it tries to migrate the minimum amount of
existing traffic if necessary, whose data rate is near to the
bandwidth demand of the new flow. However, simplified
zUpdate method globally adjusts the routing paths of all
new flows to satisfy the bandwidth demand of each new
flow. In practice, less number of bottleneck links seriously
limits the accommodation of new flows if not migrating
several existing flows on bottleneck links. The experimental
results prove that simplified zUpdate method has to migrate
more traffic and take much computation time to calculate
the update plan, irrespective of the number of new flows
caused by an update event.

6.3 The number of migrated flows
6.3.1

Apart from the amount of migrated traffic, the number of
migrated flows also has significant negative impact on the
production services on laaS data center. If lots of flows
need to be migrated, we have to allocate appropriate paths
with adequate link capacities for some existing flows. In
addition, we should schedule some existing flows in order
to avoid congestion. Then, the new forwarding rules for

Impact of the network size

11

»—\
S
3
3

1 Lupdate
Lupdate-S
Shortest-Path

1 Lupdate
Lupdate-S
Shortest-Path

10000

1000

"
S
38

=
3
3

S

-

Y
V2222227222220 200207 0 2 777 A

S

2P 27722227 222271 2277 27727
© B
=)

SIS
SRR
NN

SIS SISy
wrrrrrrrrrrsrrrrrerrss)

Average number of migrated flows
SSSss

Average number of migrated flows
N
5

[—
[y —

o
N
BB
N
[y —

>

[y E—

o

N

e
©
N
o
o
o
(SIS
N
NI
®©

AN
I Y —

(a) Fat-Tree DCN scenario (b) ER random network scenari-

o

Fig. 10. The number of migrated flows in various network size (with y-
axis log scale).

each flow will be installed on those involved switches.
Additionally, each involved switch consumes more time to
install forwarding rules for more new flows. It is obvious
that the loads on the switches will aggravate with increasing
number of migrated flows. In this case, it is very difficult to
just migrate a few existing flows to accommodate a set of
new flows.

As reported in Fig.10(a), the link utilizations of majority
of links constantly improve as the expansion of the network
scale. The number of migrated flows increases using the
method of Lupdate-S and shortest-Path, but Lupdate migrates
one existing flow all the time due to the particularity way. As
expected, the Lupdate method still causes the least number
of migrated flows for accommodating the same set of new
flows, comparing with the Lupdate-S and Shortest-Path meth-
ods in the Fat-Tree datacenter networks. The Shortest-Path
method migrates too many existing flows, about 20 ~ 40
times than the Lupdate-S method.

6.3.2

We further evaluate the impact of the ER random network
on the three update methods, in terms of the number
of migrated flows. As shown in Fig.10(b), the number of
migrated flows grows up as the increase of the network size
except k = 20. The reason is that the majority of links exhibit
relative low utilization when the & is 20. Thus, it is easier to
accommodate a set of new flows and migrate a few existing
flows than the scenario of a majority of high utilization links.

However, such a phenomenon does not happen in the
Fat-Tree datacenter networks, with the same settings of
switches and flows in the network. The reason is that the
link utilization of Fat-Tree network does not appear drasti-
cally change.

Impact of the topology

6.3.3

Fig.11 shows the number of migrated existing flows for
accommodating a set of new flows, in the settings of both
Fat-Tree datacenter network and ER random network. We
can see that our Lupdate method migrates one flow to
accommodate each new flow, irrespective of the average
size of new flows and the underling datacenter network
topologies. Obviously, the trend of results under the Lupdate-
S and Shortest-Path methods are similar to that as shown
in Fig.7. We can derive from Fig.11(a) that the number of
migrated flows grows up as the increasing of average size
of new flows, except for the points of 70 MB and 90 MB.

Impact of the average size of new flows

10000 10000

Lupdate 1 Lupdate
n Lupdate-S » Lupdate-S
3 Shortest-Path 3 Shortest-Path
8 1000 . 3 1000)
7 N

£ YA A 3
T 100 N N N & 100
=) N N N =)
£ N A N £
. 10
5 10 Q 7 N 5 10
5 N \ 5
2 N A \ £
€ N A N E
: NN \ 5
z Q Igg & Z

01 AN LA N o

10 30 50 70 90 10 30 50 70 90

Average size of new flows (Mb)

(a) Fat-Tree DCN
when £ is 20.

Average size of new flows (Mb)

scenario (b) ER random network scenari-

o with 720 switches.

Fig. 11. The number of migrated flows in various average size of new
flows (with y-axis log scale). The proportion of links (the link utilizations
exceeds 90%) is 51.8% in the Fat-Tree DCN and 54.7% in the ER
random network.

B—B—B—B—<

= 9
S
g =
z &s0
< 80 =
s £
7 H
g 70r A Lupdate 19
8 —— Lupdate- x40
pdate-S a

I —= Shortest-Path

60

50 30

8 12 16 20 24 28 8 12 16 20 24 28
K K

(a) Fat-Tree DCN scenario (b) Proportion of links whose

utilization exceeds 90%

Fig. 12. Success rate of network update events, under various network
size on the Fat-Tree topology. The proportion metric refers those links
whose link utilization exceeds 90%.

The behind reason is similar since the paths allocated to the
new flow and those migrated exiting flows will affect the
rescheduling results of latter new flows. It will lead to the
increase of the number of migrated flows, causing imparity
amplitude changes. On the contrary, the Lupdate method
always migrates one flow since it just permits to migrate
at most one existing flow for accommodating a new flow.

6.4 Success rate of network update
6.4.1

In reality, migrating at most one existing flow may not satis-
fy the bandwidth demand of a new flow. Thus, the Lupdate
method may not timely perform an update requirement in
rare case.

For this reason, we evaluate the success rate of network
update under the Fat-Tree datacenter network. We can see
from Fig.12(a) that the success rate of our Lupdate method,
decreases as the increase of the network scale. However,
there appears a turning point with k& = 24, the success
rate begins to rise after that point. The reason is that the
proportion of high utilization links begins to decrease after
k exceeds 24 as shown in the Fig.12(b). As the proportion of
high utilization links changes, the success rate of our Lupdate
method changes in the opposite direction.

Thus, we can conclude that the network scale and link
utilization jointly dominate the success rate of an update
event if using the Lupdate method. Fortunately, the success
rate of the Shortest-Path and our Lupdate-S methods always
keep on 100%, irrespective of the value of k and the pro-
portion of high utilization links. It is clear that our method

Impact of the network size

12

.
o
=]
-
o

)
o

©
o

—&— Lupdate
—%— Lupdate-S
—H+ Shortest-Path

w A G
o o o

Successful rate(%)
@
o
Proportion(%)

2N
o o

@
=]
o

8 12 16 20 24 28 8 12 16 20 24 28
K K

(a) ER random network scenari- (b) Proportion of links whose
o utilization exceeds 90%

Fig. 13. Success rate of network update events, under various network
size on the ER random topology. The proportion metric refers those links
whose link utilization exceeds 90%.

Lupdate-S can successfully tackle the problem faced by our
Ludapte and limit the impact of the network scale and link
utilization dramatically.

6.4.2 Impact of the topology

As reported in Fig.12(a) and Fig.13(a), we evaluate the
success rate of different update methods in the Fat-Tree
datacenter network and ER random networks, so as to study
the impact of other topologies on the update performance.
The successful rate and utilizations of links change in the
opposite direction as described in the Fig. 12 and Fig. 13. As
shown in Fig.13(a), the success rate of the Ludpate method
keeps on 100%, when k is less than 20. After k exceeds
20, the success rate begins to decrease. Comparing with
Fig 13(b), the link utilization of the majority of link stably
changes within a certain scope when %k does not exceed 20.
Thus, the success rate of Lupdate keeps on a certain key.
when k is greater than 20, however, link utilization grows
rapidly, which would inevitably make Ludpate method up-
date results failure. However, the success rate of our im-
proved method Lupdate-S and initial method Shortest-Path
always keep on 100%, irrespective of the value of k and the
link utilization.

We can defer from such results that the success rate of
our Lupdate method depends on the setting of k£ and the
link utilization under different network topologies of data
centers. The improved method Ludpate-S, however, always
keep near 100% success rate.

7 CONCLUSION

The IaaS datacenter network is consistently undergoing
changing, due to a variety of update scenarios. Each update
should be executed carefully to disrupt existing flows of
critical applications. In this paper, we characterize typical
network update scenarios as the reschedule problem of a set
of flows, a typical objective optimization problem. Then, we
present two simple update methods, Lupdate and Lupdate-
S, to minimize the amount of flow migrations during the
process of congestion-free network update. The basic idea is
to locally schedule each new flow into a shorter path at the
cost of migrating the least amount existing flow if necessary.
The difference between them is that if the migration of
one flow cannot meet the link bandwidth demands of the
new flow, Lupdate-S can additionally migrate multiple flows
until meet the requirements of the new flow. We conduct

large-scale trace-driven evaluations under widely used Fat-
tree data center network and the ER random network. The
experimental results indicate that our methods can realize
congestion-free network update with as less amount of
traffic migration as possible even when the proportion links
with high utilization is very high. The amount of traffic
migration caused by our Ludpate method is 1.2 times and
1.12 times of the optimal result in the Fat-Tree and ER
random networks, respectively. The simplicity of Lupdate
and Lupdate-S make them be applicable in a variety of
networks.

ACKNOWLEDGMENTS

This work is partly supported by the National Natural Sci-
ence Foundation for Outstanding Excellent young scholars
of China under Grant No.61422214, National Basic Research
Program (973 program) under Grant No.2014CB347800, Na-
tional Natural Science Foundation of China under Grant
No.61661015, U1536202, 61571352, and 61373173, the Pro-
gram for New Century Excellent Talents in University, the
Hunan Provincial Natural Science Fund for Distinguished
Young Scholars under Grant No.2016JJ1002, the Research
Funding of NUDT under Grant Nos.JQ14-05-02 and ZDYY]-
CYJ20140601.

REFERENCES

[11 H. H. Liu, X. Wu, M. Zhang, L. Yuan, R. Wattenhofer, and D. A.
Maltz, “zupdate: updating data center networks with zero loss,”
in Proc. ACM SIGCOMM, Hong Kong, 2013.

[2] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker,
“Abstractions for network update,” in Proc. ACM SIGCOMM,
Helsinki, Finland, 2012.

[3] M.Rick, “A safe, efficient update protocol for openflow networks,”
in workshop on Hot topics in software defined networks, 2012.

[4] C.Y.Hong,S.Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri,
and R. Wattenhofer, “Achieving high utilization with software-
driven WAN,” in Proc. ACM SIGCOMM, Hong Kong, 2013.

[5] S. Jain, A. Kumar, S. Mandal,]J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu,]J. Zolla, U. Holzle,
S. Stuart, and A. Vahdat, “B4: experience with a globally-deployed
software defined wan,” in Proc. ACM SIGCOMM, HongKong,
2013.

[6] M. A. Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and
A. Vahdat, “Hedera: Dynamic flow scheduling for data center
networks,” in USENIX, 2010.

[7]1 A.R. Curtis, J]. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma,
and S. Banerjee, “Devoflow: scaling flow management for high-
performance networks,” in Proc. ACM SIGCOMM, Toronto, On-
tario, Canada, 2011.

[8] X. Jin, H. H. Liu, R. Gandhi, S. Kandula, R. Mahajan, M. Zhang,
J. Rexford, and R. Wattenhofer, “Dynamic scheduling of network
updates,” in Proc. ACM SIGCOMM, Chicago, Illinois, CA, 2014.

[9] TJ. Guo, E Liu, J. C. S. Lui, and H. Jin, “Fair network bandwidth
allocation in iaas datacenters via a cooperative game approach,”
IEEE/ACM Trans. Netw., vol. 24, pp. 873-886, 2016.

[10] J. Guo, E Liu, X. Huang, J. C. S. Lui, M. Hu, Q. Gao, and
H. Jin, “On efficient bandwidth allocation for traffic variability
in datacenters,” in INFOCOM, 2014.

[11] J. Esch, “Managing performance overhead of virtual machines in

cloud computing: A survey, state of the art, and future directions,”

Proceedings of the IEEE, vol. 102, pp. 7-10, 2014.

F. Xu, F. Liu, L. Liu, H. Jin, B. Li, and B. Li, “iaware: Making live

migration of virtual machines interference-aware in the cloud,”

IEEE Trans. Computers, vol. 63, pp. 3012-3025, 2014.

F. Xu, F Liu, and H. Jin, “Heterogeneity and interference-aware

virtual machine provisioning for predictable performance in the

cloud,” IEEE Trans. Computers, vol. 65, pp. 2470-2483, 2016.

A. Ludwig, M. Rost, D. Foucard, and S. Schmid, “Good net-

work updates for bad packets: Waypoint enforcement beyond
destination-based routing policies,” in’ HotNets, Los Angeles; Cal-

ifornia, USA, 2014.

(12]

(13]

[14]

13
[15] S. Ghorbani and B. Godfrey, “Towards correct network virtualiza-
tion,” in Proc. ACM HotSDN, Chicago, IL, 2014.
C. Marco, K. Petr, L. Dan, and S. Stefan, “Software transactional
networking: Concurrent and consistent policy composition,” in
Proc. ACM HotSDN, Hong Kong, 2013.
D. Awduche, L. Berger, D. Gan, T. Li, V. Srinivasan, and G. Swal-
low, “Rsvp-te: extensions to rsvp for Isp tunnels,” 2001.
M. Ratul and W. Roger, “On consistent updates in software de-
fined networks,” in Proc. ACM HotNets, 2013.
S. Raza, Y. Zhu, and C.-N. Chuah, “Graceful network state migra-
tions,” IEEE/ACM Transactions on Networking (TON), vol. 19, no. 4,
pp- 1097-1110, 2011.
A. Noyes, T. Warszawski, P. Cern}‘/, and N. Foster, “Toward syn-
thesis of network updates,” arXiv preprint arXiv:1403.7840, 2014.
F. Pierre, B. Olivier, D. Bruno, and C. P-A, “Avoiding disruptions
during maintenance operations on bgp sessions,” IEEE Transac-
tions on Network and Service Management, vol. 4, pp. 1-11, 2007.
C. E. Leiserson, “Fat-trees: universal networks for hardware-
efficient supercomputing,” IEEE transactions on Computers, vol.
100, pp. 892-901, 1985.
E. Paul and A. Rényi, “On the evolution of random graphs,” Publ.
Math. Inst. Hungar. Acad. Sci, vol. 5, pp. 17-61, 1960.
Y. Chen, S. Jain, V. K. Adhikari, Z.-L. Zhang, and K. Xu, “A first
look at inter-data center traffic characteristics via yahoo! datasets,”
in Proc. INFOCOM, Orlando, FL, 2011.
T. Benson, A. Akella, and D. A. Maltz, “Network traffic character-
istics of data centers in the wild,” in Proc. ACM SIGCOMM, New
Delhi, 2010.

[16]

(17]
(18]

(19]

[20]

[21]
[22]

(23]

[24]

[25]

Ting Qu received the B.S. degree in computer
science from Xidian University, Xian, China, in
2014. She is currently working toward the Ph.D.
degree in College of Information System and

A Management, National University of Defense
Technology, Changsha, China. Her research in-
terests include data centers and software de-
fined networks.

DekeGuo received the B.S. degree in indus-

try engineering from Beijing University of Aero-

nautic and Astronautic, Beijing, China, in 2001,

and the Ph.D. degree in management science

& and engineering from National University of De-

— fense Technology, Changsha, China, in 2008. He

St is a Professor with the College of Information

“ System and Management, National University

of Defense Technology, Changsha, China. His

research interests include distributed systems,

software-defined networking, data center net-

working, wireless and mobile systems, and interconnection networks.
He is a member of the ACM and the IEEE.

1)

Yulong Shen received the BS and MS degrees
in computer science and the PhD degree in cryp-
tography from Xidian University, Xian, China, in

- - 2002, 2005, and 2008, respectively. He is cur-
SR rently a professor at the School of Computer Sci-
\\\// ence and Technology, Xidian University, China.
N He is also an associate director in the Shanxi

Key Laboratory of Network and System Security

and a member in the State Key Laboratory of

Integrated Services networks Xidian University,

China. He has also served on chair or techni-
cal program committees of several international conferences, including
NANA, ICEBE, INCoS, CIS, and SOWN. His research interests include
wireless network security and cloud computing security.

Xiaomin Zhu received the BS and MS degrees
in computer science from Liao ning Technical
University, Liao ning, China, in 2001 and 2004,
respectively, and Ph.D. degree in computer sci-
ence from Fudan University, Shanghai, China,
in 2009. In the same year, he won the Shang-
hai Excellent Graduate. He is currently an as-
sociate professor in the College of Information
Systems and Management at National Univer-
sity of Defense Technology, Changsha, China.
His research interests include scheduling and
resource management in green computing, cluster computing, cloud
computing, and multiple satellites. He has published more than 50
research articles in refereed journals and conference proceedings such
as IEEE TC, IEEE TPDS, JPDC, JSS and so on. He is also a frequent
reviewer for international research journals, e.g., IEEE TC, IEEE TNSM,
IEEE TSP, JPDC, etc. He is a member of the IEEE, the IEEE Communi-
cation Society, and the ACM.

14

Lailong Luo received the B.S. and M.S. de-
gree in school of information system and man-
agement from National University of Defence
Technology, Changsha, China, in 2013 and 2015
respectively. He is currently working toward the
Ph.D. degree in College of Information Sys-
tem and Management, National University of
Defense Technology, Changsha, China. His re-
search interests include data centers and soft-
ware defined networks.

zhong Liu received the B.S. degree in Physics
from Central China Normal University, Wuhan,
Hubei, China, in 1990, and the Ph.D. degree in
management science and engineering from Na-
tional University of Defense Technology, Chang-
sha, China, in 2000. He is a professor with the
College of Information System and Managemen-
t, National University of Defense Technology,
Changsha, China. His research interests include
information systems, cloud computing, and big
data.

