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Abstract—The increasing availability of autonomous Un-
manned Aerial Vehicles (UAVs) has provided an emerging way
for extensive surveillance and monitoring in civilian and military
with the advantages of high flexibility, mobility, and bird’s-eye
features. To mitigate the limitations of on-board energy and
computation capacity, UAVs usually offload intensive computa-
tion tasks (e.g., image/video processing) to base-station-enabled
mobile-edge computing (MEC) facilities. However, base stations
are not always available in rural areas. To this end, we propose
to offload computation-intensive tasks to Unmanned Ground
Vehicles (UGVs), which have fixed routes (i.e., highways and
roads). However, the UAV-UGV wireless communication may
disclose the offloading information to potential eavesdroppers.
Besides, such UGVs have sufficient computation slots but may
run out of the target area after a period of traveling. In this
paper, the tasks cached on UAVs are modeled as a stochastic
queue, and a secure communication strategy to offload the cached
tasks from UAVs to UGVs is proposed. We try to maximize the
average utility of such a UAV-UGV collaboration with respect to
latency, power, velocity, anti-collision, and distance. To solve this
non-convex mixed integer nonlinear programming problem, a
fast converging and computationally efficient iterative algorithm
is investigated utilizing the block coordinate descent method
and the successive convex approximation technique. Experiments
results demonstrate that our algorithm consistently outperforms
the state-of-the-art scheme, significantly improving the average
utility of the system.

Index Terms—Mobile-edge computing, UAV communication,
physical layer security, and area surveillance.

I. INTRODUCTION

Thanks to their mobility, flexibility and bird’s-eye features,
unmanned aerial vehicles (UAVs) are being increasingly ap-
plied in surveillance and data collection [1], [2], in the battle-
field, search and rescue, public safety, and border control [3],
[4]. Equipped with high-end sensors, high-definition cameras,
and GPS, UAVs provide better monitoring perspective than
ground networks [5], [6]. However, due to the limited com-
putation capability and on-board power supply, performing
computation-intensive tasks (e.g., real-time AI applications,
feature extraction, and pattern recognition) on UAVs may not
be feasible and even detrimental to their batteries [7], [8]. An
existing methodology is to offload the computation-intensive
tasks to nearby mobile edge computing (MEC) facilities [9],
[10]. Such methodology’s mainstream deployment relies on
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the base stations (BSs) with MEC servers for the offloaded
computation [11], where these MEC infrastructures are only
available in urban areas. However, more general cases where
BSs are missing or nonfunctional (such as disaster/rural areas,
borders, battlefields, etc.) are not well studied yet. To explore
or monitor such areas with UAVs, more flexible and capable
MEC facilities are needed.

Fortunately, unmanned ground vehicles (UGVs), which have
advanced communication, storage, and computation modules
[7], [12] can meet the demand. UGVs have redundant compu-
tation resources and can perform as MEC servers to collabo-
rate with the UAVs nearby their routes. In addition, the UGV
might also need UAV surveillance data. For example, in disas-
ter relief tasks, UAVs capture the geomorphic information and
send them to UGVs, while UGVs provide disaster rescue based
on computing the geomorphic information. Thus, we propose
a new MEC-based UAV-UGV collaboration framework, which
can be used in disaster rescue, geographic information collec-
tion, and moving/static target tracking and detection. In such a
framework, the UAVs offload the computation-intensive tasks
to available UGVs. As for the UGVs, on the one hand, they
are responsible for handling the offload tasks from the UAVs.
On the other hand, the UGV may need the UAVs’ data for
their own duties. However, there are two main challenges in
this MEC-based UAV-UGV collaboration framework.

The first challenge is security. The open and frequent
air-to-ground communications between UAV and UGV are
vulnerable to third-party interception. Specifically, information
signals transmitted over UAV communication are more likely
to be interrupted by third-party interception. As a result, in-
formation leakage becomes an unavoidable concern in outdoor
scenarios [13]. For example, the UAVs performing surveillance
tasks in rural areas (such as disaster/rural areas, borders,
battlefields, etc.) will generate a large number of computation-
intensive tasks that need to be offloaded immediately. In
practice, although the UAVs can know the eavesdropper’s
(Eves) estimated location by installing a synthetic aperture
radar or camera [7], [14], getting their perfect location is un-
realistic. Therefore, the Eves could easily intercept these tasks
of UAVs during the offloading process. Although this security
problem can be handled by upper-layer encryption in wireless
communication, the confidentiality of such an approach relies
on the assumptions of computational complexity [15]. Yet such
complexity is infeasible for lightweight devices like UAVs that
only have limited computation resources [16].

The physical layer security (PLS) [17] is suitable for UAV-
UGV communications [18] because of its low complexity.
The line-of-sight (LoS) link and the flexibility and mobility
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of UAVs bring an opportunity into the PHY design in UAV
systems [19]. In particular, a promising approach for UAV
systems is a joint design of UAVs’ resource allocation and
trajectories to enhance PLS [20]. Specifically, on one hand,
when a UAV needs to approach eavesdroppers, it can increase
its velocity while simultaneously reducing transmission power
to degrade the quality of the eavesdropping channel. On the
other hand, when the UAV flies close to a UGV, the UAV tries
to increase its transmission power and reduce its velocity as
possible for improving the transmission rate [21]. To further
address the security issues, artificial noise (AN) based PLS is
another suitable technology for combating Eves by damaging
wiretap channel quality [22], [23]. The UGVs have more
power than the UAVs. Therefore, transmitting AN with UGVs
is more feasible in our framework.

However, implementing PLS in our UAV-UGV collabo-
ration framework is still a new problem that has not been
thoroughly considered. There is a trade-off between the secu-
rity and computation capability of our MEC-based UAV-UGV
collaboration framework. Due to the limited on-board battery
of UAVs, scheduling UAV trajectories for enhanced secrecy
will undoubtedly increase energy consumption and, in turn,
reduce the local computation capacity of UAVs. Additionally,
although transmitting AN with UGVs seems promising, there
is a risk of vehicles going beyond the communication range,
which would expose the signals to the air without protection.
Therefore, guaranteeing PLS in our framework remains a
challenging problem.

The second challenge is mobility. In our UAV-UGV
collaboration framework, both the UAVs in the air and UGVs
on the ground are free to move, which enlarges the design
space of this framework but also complicates the scheduling
of these devices and resources for the surveillance task. The
UAVs are allowed to travel freely in the horizontal dimensions,
while the UGVs have to follow their own route from the start
to the destination. Therefore, we need to ensure that the UAVs
and UGVs are within communication range when the tasks are
being offloaded.

Due to their mobility, UGVs travel from one place to
another, making them available to different UAVs. To meet the
requirements of PLS and communication range, UAVs should
fly to specific positions so that a portion of their tasks can be
offloaded to the UGVs. They should then follow the UGVs for
a while to return the calculation results. The positions of UAVs
at each time slot need to be determined, taking into account
multiple variables such as task scale, latency, computation
capacity, UGV speed, and data transmission rate. Moreover,
monitoring a place requires frequent video/image processing,
which is typically both latency-sensitive and computation-
intensive. Therefore, an instant offloading plan needs to be
generated for such tasks on the UAVs [8]. The modeling and
solving of this problem are extremely complex due to these
requirements.

This article introduces a secure cooperation model for
the MEC-based UAV-UGV framework. The problem is then
formulated as a non-convex mixed-integer nonlinear program-
ming problem (NCMINLP) . Specifically, a utility function
is defined to quantify the discrepancy between the generated

secrecy rate of UAV communication and the average area size
simultaneously monitored by multiple UAVs. Based on this
definition, the trajectory and transmission power of UAVs, as
well as the selection and AN power of UGVs, are optimized,
considering constraints such as latency, power, velocity, anti-
collision, and distance.

To address the intractability of the NCMINLP problem, a
lightweight strategy is necessary. In this approach, the original
problem is partitioned into six subproblems using the block
coordinate descent (BCD) method. Each subproblem is then
treated independently, and an alternating optimization tech-
nique is employed to solve them. To obtain suboptimal solu-
tions, the successive convex approximation (SCA) technique is
utilized in each iteration. Consequently, we present an efficient
BCD-based iterative algorithm to find a local optimum with
convergence guarantees. In detail, we decompose the original
problem into six subproblems, namely, optimization of the
UAV trajectory, the UAV transmission power, the AN transmis-
sion power, the CPU frequency of the UAV, the CPU frequency
of the UGV and the UGV selection. After that, we iterative
solve these subproblems with the mentioned strategies. The
main contributions are as follows:

1) This is the first work to consider a secure cooperation
model for the MEC-based UAV-UGV framework in the
presence of multiple Eves. Then, we model this problem
as an NCMINLP problem.

2) To solve this NCMINLP problem, we propose a fast
converging and computationally efficient iterative algo-
rithm and prove its convergence. Specifically, We de-
compose the original problem into six subproblems and
solve them iteratively with optimization technologies
like SCA, BCD, and branch-and-cut.

3) The numerical results consistently demonstrate that the
proposed scheme significantly improves the average
utility compared to other schemes. To enhance the
system’s performance, it is possible to efficiently adjust
the trajectories, velocities, transmission power, and AN
transmission power of the UAVs.

The rest of this paper is organized as follows. Section
II reviews the literature relevant to our work. We present
the system model and its problem formulation in Section
III. In Section IV, an efficient low-complexity algorithm is
proposed to obtain the solution. Moreover, simulation results
and performance analyses are shown in Section V. Finally, we
draw to conclude this paper in Section VI.

II. RELATED WORK

The most relevant work of this paper can be divided into
two aspects.

1) Computational Tasks Offloading in Mobile-Edge Comput-
ing: A number of works have been studied about computation
task offloading problems. To offload the computation-intensive
tasks to the MEC server, three aspect problems should be
considered: Whether the computation-intensive tasks need to
be offloaded at the current time slot? How much transmission
power should we use to offload tasks? How to choose a better
LoS link to offload tasks? How much computational resources
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should we allocate to meet all requirements? There have been
some studies on the above issues [24]–[28]. Jiao et al. [29]
proposes a scheme that jointly optimises the UAV’s resource
allocation, stochastic computation offloading, and trajectory
scheduling to minimise the system’s energy consumption. Yuyi
et al. [24] formulate a problem that joint optimizing com-
putation task offloading scheduling and transmission power
to minimize the weighted sum of device energy consump-
tion and tasks processing delay. Tong et al. [25] analyses a
minimization latency problem by jointly optimizing the tasks
computation offloading volume, the multiple user detection
matrix and the edge computing resource allocation. Cheng et
al. [26] and Ning et al. [27] propose different throughput opti-
mal schemes for the UAV communication system. Mushu et al.
[28] propose an optimization approach to utilising the UAVs’
energy efficiency in a UAV-assisted MEC system by jointly
optimizing the trajectory and resource allocation of UAVs. The
above work has studied the performance of the system energy
consumption, time delay, resource allocation, and computing
rate. But the secure computation offloading issue in terms of
rural communications environments has not been worked out
well. Fortunately, the secure computation offloading problem
falls into the research area of PLS technology.

2) Application of Physical Layer Security (PLS) in UAV
Communication: PLS has attracted widespread attention in
communication, but its application in UAV communications
has just begun [16]. In addition, the mobility of UAVs brings
new prospects to PLS technology. Tong et al. [8] exploit
jamming signals for improving the security of UAV-Edge-
Computing Systems. Yi et al. [13] design an efficient iterative
algorithm to improve the secrecy capacity of the system,
which jointly optimizes the UAV location and jamming power,
and uses transmission power. Cai et al. [30] design a novel
UAV-enabled secure communication system by jointly opti-
mizing trajectory and resource design. With the assistance
of a cooperative UAV jammer, Wei et al. [23] study a
secure communication scheme in the system, which solved
a worst-case secrecy rate maximization problem. Jiahui et
al. [31] use a beamforming and collaborative virtual antenna
array to achieve secure UAV communications. Cai et al. [32]
jointly optimise the UAV’s trajectory, jamming noise and
communication resource allocation to maximize the system
energy efficiency. However, current works [23], [30]∼ [32] do
not consider the MEC environment. Therefore, how to make
full use of PLS techniques in the MEC environment is very
necessary. The above works consider computational offloading
and secure UAV communication in the MEC-based UAV-UGV
collaboration framework. More importantly, no work considers
the situation where there is no available BS to act as a server
for UAVs. Unlike them, this paper aims to design a feasible
scheme to consider secure computation tasks offloading while
accomplishing the tasks well in the absence of BSs.

III. MODEL AND PROBLEM FORMULATION

This section begins by introducing the workflow of the UAV-
UGV collaboration for rural area surveillance. It is followed
by the modeling and formulation of this problem.
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Fig. 1. An example of target detection with UAV-UGV collaboration. The
UAV has the task of target detection. ①: Determine whether the task can be
offloaded. ②: If offloading is not allowed at this time period, the task will be
put into the UAV queue and wait for the next try. ③: Otherwise, the videos
will be offloaded to the UGV. ④: The UGV computes the tasks. ⑤: The UGV
returns the finding of the target or not.

TABLE I
MAIN TABLE

Notation Description
amn(i) the UAV m offload its tasks to UGV n in

time slot i
pm(i) the transmission power of the UAV m at the

time slot i
σ2 the power of additive white gaussian noise
η0 the channel power gain of LoS link
qm(i) the horizontal location of the UAV m
q̃k(i) the Eve k estimated horizontal location at

time slot i
B the channel bandwidth
∆Qk the maximum estimation error
Rmn(i) the rate from the UAV m to the UGV n at

time slot i
R̄mk(i) the rate from the UAV m to the Eve k
Dm(i) the tasks queue backlog of the UAV m at

the time slot i
∆Dm(i) the size of computation tasks of the UAV m

at the time slot i

Each UGV can provide computation services to nearby
UAVs while executing their tasks in this system. By contrast,
UAVs are responsible for surveillance and data collection
while flying around UGVs. Since the UAVs have limited on-
board battery and computation resources, the computation-
intensive tasks (e.g., image processing or real-time video
streaming) can be offloaded to a certain UGV immediately
via the wireless transmission link. However, in UAV commu-
nication systems, the transmitted confidential information is
more likely to be intercepted by multiple independent ground
Eves than in terrestrial wireless communication systems. In
the whole process of computation offloading, the UGVs need
to return the computing results (e.g., timestamp and finding
the target or not) to the UAV. However, the offloading time
of computed results is small enough to neglect transmission
delays, while they are useless for Eves [13], [33]. In addition,
if the UGV requires real-time video streaming and image,
the computed results do not need to be returned to the UAV.
Therefore, this paper mainly focuses on ensuring the secure
offloading tasks and efficiently extending the monitoring area.
A toy example of UAV-UGV collaboration is given in Fig.1.
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Fig. 2. Illustration of MEC-based UAV-UGV collaboration systems model.

A. System Model

As illustrated in Fig. 2, we consider a MEC-based UAV-
UGV collaboration system that includes a set of M ≜
{1, ...,M} UAVs and N ≜ {1, ..., N} UGVs in the present of
K ≜ {1, ...,K} Eves. To combat Eves, the full-duplex (FD)
UGVs are equipped with double antennas, enabling UGVs
to receive confidential UAV signals while transmitting AN.
Note that the AN is pre-programmed that just confuses the
Eves’ listening but does not bring any harm to the UGVs
[34]. There are two main communication technologies of
UAV communicate with UGV: long-term evolution (LTE) and
wifi communication [1]. The wifi range is about hundreds of
meters, while LTE is suitable for long-distance fast communi-
cation. For ease of reference, the main notations used in this
paper are summarized in Table I.

Similar to most existing works [6], [32], a three-dimensional
Cartesian coordinate system is used to represent the locations
of UAVs, UGVs and Eves. We suppose that UAVs fly at
a fixed altitude H [7]. For ease of discussion, the flight
period T is evenly divided into I time slots by the length
of δ [23]. Accordingly, the location of UAV m at time slot
i is denoted by qm(i) = [xm(i), ym(i)]⊤ ∈ R2×1, with
0 ≤ i ≤ I . Additionally, to get the UAV to return to its origin
in the end, we assume that each UAV satisfies the constraint
qm(0) = qm(I),∀m.

The horizontal coordinate of the UGV n in time slot i is
denoted by: q̄n(i) = [xn(i), yn(i)]

⊤ ∈ R2×1, with 0 ≤ i ≤ I .
Furthermore, we estimate that the horizontal coordinate of the
Eve k is q̃k(i)=[xk(i), yk(i)]

⊤ ∈ R2×1, which is imperfectly
known by UAVs and UGVs [35]. Similar to literature [13], we
consider a bounded error model for Eve locations, expressed
as q̃k(i)≜ {∥q̃k(i)−q̂k(i)∥ ≤ ∆Qk}, where q̂k(i) indicates
the estimated coordinate and ∆Qk denotes the maximum
estimation error. The trajectory constraint of the UAV m need
to satisfy:

∥qm(i+1)−qm(i)∥2 ≤ (Vmaxδ)
2, i∈{1, 2, ..., I−1}, (1)

where Vmax is the maximum velocity of UAVs. Furthermore,
to prevent collision between UAVs, the collision avoidance

constraint [36], i.e,

∥qm(i)− qj(i)∥2 ⩾ d2min,∀ i,m, j ̸= m, (2)

where dmin is the minimum safe distance between two UAVs
for anti-collision.

B. Communication Model

For air-to-ground channels, the links from the UAV to the
UGV and the Eve are LoS channels [30]. The channel gain
from the UAV m to the UGV n and the Eve k at time slot i
are hmn(i) and h̄mk(i) respectively, which follows the utilizes
a quasi-static block fading channel model [7]. For ground
channels, h̃nk(i) denotes channel gain at time slot i between
the UGV n and the Eve k, which is mainly non-LoS (NLoS)
link. It is assumed to constitute both distance-dependent path
loss with path-loss exponent π ≥ 2 and small-scale Rayleigh
fading [8]. According to the literature [7], [8], the channel
gains hmn(i), h̄mk(i) and h̃nk(i) can be respectively given
as:

hmn(i) = η0d
−2
mn =

η0

H2 + ∥qm(i)− q̄n(i)∥
2 , (3a)

h̄mk(i) = η0d
−2
mk =

η0

H2 + ∥qm(i)− q̃k(i)∥
2 , (3b)

h̃nk(i) = η0d
−2
nk =

η0
∥q̄n(i)− q̃k(i)∥

π ξ, (3c)

where η0 denotes the unity channel gain at reference distance
d (d = 1m), and ξ indicates an exponentially distributed
random variable with unit mean accounting for the Rayleigh
fading.

According to Shannon bound, considering the mutual inter-
ference among UAVs, when the UAV m offloads tasks to the
UGV n at time slot i, the achievable transmission rate is [37]:

Rmn(i)=amn(i) log2(1 +
pm(i)hmn(i)∑

j∈M,j ̸=m

pj(i)hjn(i)+σ2
), (4)

where pm(i) denotes the UAV m transmission power,∑
j∈M,j ̸=m

pj(i)hjn(i) means the total interference from all

other UAV except UAV m in time slot i and σ2 is the noise
power. If the UAV m offloads its tasks to the UGV n at time
slot i, amn(i) = 1; otherwise, amn(i) = 0. Similarly, in time
slot i, the instantaneous eavesdropper rate from UAV m to
Eve k is computed by:

R̄mk(i)=amn(i) log2(1+
pm(i)h̄mk(i)

ψmk(i)
), (5)

where ψmk(i) =
∑

j∈M,j ̸=m

pj(i)hjk(i)+
∑

n∈N
pann (i)h̃nk(i)+σ

2

and pann (i) represents the transmission power of AN from the
UGV n at time slot i.

C. Model of Local Computation

In these systems, each UAV can maintain a queueing model
for its computation tasks generated by itself, namely tasks
queue. The tasks of each UAV can be executed locally or
offloaded to a certain UGV. Moreover, the local-computed
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tasks are queued in UAV’s tasks buffer and will be processed
on a first-in-first-out basis [29].

For local computing, if amn(i) = 0, the arriving tasks will
be put in queue of UAV m in time slot i. Let Dm(i) be the
backlog size of the tasks queue of UAV m at time slot i, dm(i)
denote the computation task executed of the UAV m at time
slot i, and ∆Dm(i) represent the computation tasks of UAV
m at time slot i. The tasks generated by UAVs are independent
and identically distributed. According to whether the UAV can
complete the tasks in the current queue in time slot i, there
are two cases:

If δfm(i) ≥ θ(∆Dm(i) + Dm(i)), we have dm(i) =
∆Dm(i) +Dm(i). Thus, the cumulative delay λm(i) and the
computing delay for local computation T loc

m (i) are defined
respectively as:

λm(i+ 1) = 0, (6)

T loc
m (i+1)=

θ(∆Dm(i)+Dm(i))

fm(i)
+
θ(λm(i)Dm(i))

∆Dm(i)+Dm(i)
, (7)

where fm(i) represents the CPU frequency of the UAV m at
the time slot i and θ denotes the CPU cycles for computing
one bit of tasks.

If δfm(i) < θ(∆Dm(i)+Dm(i)), we have dm(i) = fm(i)δ
θ .

λm(i) and T loc
m (i) can be redefined respectively as:

λm(i+1)=
∆Dm(i)δ+(Dm(i+1)−∆Dm(i))(δ+λm(i))

Dm(i+1)
, (8)

T loc
m (i+ 1) = λm(i) + δ. (9)

As a result, the size of the tasks buffer of UAV m is updated
according to the following equation:

Dm(i+ 1) = max{Dm(i)− dm(i), 0}+∆Dm(i), (10)

Moreover, the corresponding power consumption for task
execution at UAV m is [28]:

P com
m (i) = κ(fm(i))3, (11)

in which κ represents the effective switched capacitance.

D. Model of Secure Task Offloading

For tasks offloading, if amn(i) = 1, ∆Dmn(i) bits will
be offloaded from UAV m to UGV n at time slot i. In
this framework, the UGVs have enough computing power to
accomplish the tasks offloaded from UAV in each time slot.

According to Eq.(4), the communication time for task
offloading from UAV m to UGV n at time slot i can be
calculated as:

T tra
mn(i) =

∆Dmn(i)

BRmn(i)
, (12)

where B is the spectrum bandwidth. As a result, after such
offloading, the computation time is given by:

T com
mn (i) =

∆Dmn(i)θ

fmn(i)
, (13)

where fmn(i) denotes the idle computing power shared to the
UAV m by UGV n at the time slot i. Based on Eqs. (12) and

(13), the total time of completing these tasks with a UAV-UGV
collaboration:

T off
mn (i) = T tra

mn(i) + T com
mn (i). (14)

Similar to the literature [33], the transmission time of com-
puted results is small enough to be ignored. In addition, the
power consumption of the UGV n for task execution at time
slot i can be described as:

P com
mn (i) = ε(fmn(i))

3, (15)

where ε is the effective switched capacitance of the UGV.

Consequently, P com
n (i) =

M∑
i=1

P com
mn (i).

E. The Coverage Utility Function of UAVs

The overlapping monitoring areas of multiple UAVs need to
be optimized for monitoring an area better. To understand the
area of monitoring overlapping more clearly, the illustration
of overlapping areas is shown in Fig. 3. We assume the
monitoring radius of a UAV is R, and the monitoring area
is πR2. The distance between the UAV m and UAV j at
time slot i is dmj(i). There has no overlapping area when
dmj ≥ 2R; otherwise, the overlapping area of monitoring
is the overlapping area between two circles. As a result, we
define the overlapping area of monitoring between the UAV
m and j as: {

ζmj(i) = φ(i) dmj(i) < 2R
ζmj(i) = 0 dmj(i) ⩾ 2R

(16)

where the φ(i) represents the overlapping area of monitor-
ing, which can be presented as φ(i) = 2R2 arccos

dmj(i)
2R −

dmj(i)
√
R2 − (dmj(i))2

4 , and dmj(i)=
∥∥qm(i)−qj(i)

∥∥. Con-
sequently, the average overlapping area over I time slots can

be following denoted as ζ= 1
I

I∑
i=1

ζmj(i).

R R
𝑑𝑚𝑗

𝑎𝑟𝑐 𝑐𝑜𝑠𝜃

R R

𝑑𝑚𝑗

( ) 2mjd i R ( ) 2mjd i R

Fig. 3. An example of the overlapping area of two UAVs.

F. Problem Formulation

To improve the security of confidential information
transmission while performing the surveillance tasks ef-
ficiently, we define an average utility function as ϑ =

1
I

I∑
i=1

M∑
m=1

[
Rmn(i)−max

k∈K
R̄mk(i)

]+
− τζ, in which the

1
I

I∑
i=1

M∑
m=1

[
Rmn(i)−max

k∈K
R̄mk(i)

]+
represents the average

secrecy rate, ζ denotes average overlapping areas for mon-
itoring, and τ is the weight coefficient. The goal of this
paper is to maximize the minimum average utility over
T period by jointly optimizing the UAVs trajectory Q =
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{qm(i), Vm(i),∀m, i}, the transmission power of the UAV
Pm = {pm(i),∀m, i}, the AN transmission power of the
UGV n P̄n = {pann (i),∀n, i}, the CPU frequency of the
UAV Fm = {fm(i),∀m,n, i}, the CPU frequency of the
UGV F̄n = {f̄n(i),∀m,n, i}, and the UGVs selection A =
{amn(i),∀m,n, i}, subject to the tasks latency, UAV mobility,
anti-collision and power constraints. Thus, the optimization
problem can be formulated as:

max
Q,Pm,P̄n,Fm,F̄n,A

ϑ (17a)

s.t.
1

I

I∑
i=1

M∑
m=1

[
Rmn(i)−max

k∈K
R̄mk(i)

]+
−τζ≥ϑ,∀n, (17b)

1

I

I∑
i=1

T loc
m (i) ≤ T, ∀m, (17c)

1

I

I∑
i=1

T off
mn (i) ≤ T, ∀m,n, (17d)

pm(i) + P com
m (i) ≤ Pmax

m ,∀m, i, (17e)
pann (i) + P com

n (i) ≤ Pmax
n ,∀n, i, (17f)

N∑
n=1

amn(i) ≤ 1,∀m, i, (17g)

qm(0) = qm(I),∀m, (17h)

∥qm(i+1)−qm(i)∥2 ≤ (Vmaxδ)
2,∀m, i = 1, ..., I−1,

(17i)

∥qm(i)− qj(i)∥2 ⩾ d2min,∀m, i, j ̸= m, (17j)

∥qm(i+1)−qm(i)∥2 ⩾ d2m,∀m, i, (17k)

where the constraints (17c) and (17d) denote the delay con-
straints for the tasks; the constraints (17e) and (17f) represent
the maximum power constraint of the UAV and UGV, respec-
tively; the constraint (17g) ensures the UAV m is served by
most one UGV at each time slot; the constraints (17h) and
(17i) are the UAV mobility constraints; the constraint (17j)
ensures that all UAVs can avoid the collision; and constraint
(17k) is to increase UAVs’ coverage and avoid UAVs moving
too close in each time slot.

Firstly, the discrete variable A for selecting UGV is binary.
Secondly, Rmn(i) and max

k∈K
R̄mk(i) in the objective function

are highly nonlinear due to their dependent UAV trajec-
tory variable Q. Thirdly, the imperfect location of the Eves
(∆xk(i),∆yk(i)) imposes semi-infinite number of constraints,
which makes it more complicated. Therefore, the problem
(17) is an NCMINLP problem that is challenging to solve
optimally.

IV. THE PROPOSED ITERATIVE ALGORITHM

Since the indeterminate locations of Eves result in an semi-
infinite number of constraints for this complex problem, it
is necessary to simplify the constraints associated with Eves’
locations. Considering the estimation error ∆Qk of the Eve k,
we define R̄up

mk(i) as the upper bound for the achieved rate of
the Eve k from the UAV m. This upper bound can be given
by:

R̄up
mk(i) = log2

1+ pm(i)h̄∗mk(i)

ψmk(i) +
∑

n∈N
pann (i)h̃∗nk(i)

 , (18)

where ψmk(i) =
∑

j∈M,j ̸=m

pj(i)h
∗
jk(i)+σ

2, h̄∗mk(i) and h̃∗nk(i)

are chosen to maximize R̄up
mk(i). According to the formula

q̃k(i) ≜ {∥q̃k(i)− q̂k(i)∥≤ ∆Qk}, the closed-form solutions
of h̄∗mk(i) and h̃∗nk(i) can be derived as follows:

h̄∗mk(i)=max
k∈K

η0

H2+(
√

(xm(i)−xk(i))2+(ym(i)−yk(i))2−∆Qk)2
, (19a)

h̃∗nk(i) =min
k∈K

η0

(
√

(xn(i)−xk(i))2+(yn(i)−yk(i))2+∆Qk)2
. (19b)

According to studies [13] and [38], the joint optimization
always brings about a non-negative secrecy capacity, so the
[·]+ operator on the objective function can be omitted without
affecting the solution. Thus, the problem (17) can be simplified
as:

max
Q,Pm,P̄n,Fm,F̄n,A

ϑ

s.t.
1

I

I∑
i=1

M∑
m=1

(Rmn(i)−R0)−τζ≥ϑ,∀n,

R̄up
mk(i) ⩽ R0,∀m, k, i,

(17c)− (17k),

(20)

where R0 is the auxiliary variables [39]. Then, we partition the
problem (20) into six subproblems by the BCD technique, i.e.,
alternately optimizing different groups of the UAV trajectory
Q, the UAV transmission power Pm, the AN transmission
power of the UGV P̄n, the CPU frequency of the UAV Fm,
the CPU frequency of the UGV F̄n, and UGV selection A
while fixing the other variables.

A. Optimization of the UAV Trajectory Q
For fixed Pm, P̄n, Fm, F̄n, and A, the subproblem for

optimizing the UAV trajectory Q can be formulated as:

max
ϑ,Q

ϑ (21a)

s.t.
1

I

I∑
i=1

M∑
m=1

(Rmn(i)−R0)−τζ≥ϑ,∀n, (21b)

R̄up
mk(i) ⩽ R0,∀m, k, i, (21c)

1

I

I∑
i=1

T loc
m (i) ≤ T, ∀m, (21d)

1

I

I∑
i=1

T off
mn (i) ≤ T, ∀m,n, (21e)

qm(0) = qm(I),∀m, (21f)

∥qm(i+1)−qm(i)∥2 ≤ (Vmaxδ)
2,∀m, i=1, ..., I−1,

(21g)

∥qm(i)− qj(i)∥2 ⩾ d2min,∀m, i, j ̸= m, (21h)

∥qm(i+ 1)− qm(i)∥2 ⩾ d2m,∀m, i, j ̸= m. (21i)

Since the nonconvexity of the constraints (21b), (21c), (21h)
and (21i), the subproblem (21) is nonconvex, which is difficult
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to be solved directly. Fortunately, the subproblem (21) can be
transformed into convex by SCA technique, the transformed
process see Appendix A. Based on this, the problem (21) can
be reformulated as:

max
ϑ,Q,S

ϑ (22a)

s.t.
1

I

I∑
i=1

M∑
m=1

(R̄mn(i)−R0)− τζ ≥ ϑ,∀n, (22b)

R̄up
mk(i) ⩽ R0,∀m, k, i, (22c)

1

I

I∑
i=1

T loc
m (i) ≤ T, ∀m, (22d)

1

I

I∑
i=1

(
T off
mn (i)

)
≤ T, ∀m,n, (22e)

d2min ⩽ Sf , (22f)

d2m ⩽Sg, (22g)
qm(0) = qm(I),∀m, (22h)

∥qm(i+1)−qm(i)∥2≤(Vmaxδ)
2,∀m, i = 1, ..., I−1,

(22i)

where S = {Smk(i),∀m, k, i},

Sf = −
∥∥qr

m(i)− qr
j(i)
∥∥2 + 2(qr

m(i)−qr
j(i))

qm(i)−qj(i)),∀m, i, j ̸= m

Sg = −∥qr
m(i+ 1)−qr

m(i)∥2 + 2(qr
m(i+ 1)

− qr
m(i))(qm(i+ 1)− qm(i)),∀m, i = 1, ..., I − 1,

Sh =(∥qr
m(i)−q̃k(i)∥−∆Q)

2
+ 2(∥qr

m(i)−q̃k(i)∥

−∆Q)
(qr

m(i)−q̃k(i))
⊤

∥qr
m(i)−q̃k(i)∥

(qm(i)− qr
m(i)) ,∀m, k, i.

After the above reformulation, it can be observed that the
left-hand-side of constraint (22b) is jointly concave with
respect to qm(i), which is a convex variable. Furthermore,
the constraints (22c), (22f), and (22g) are convex, while the
remaining constraints are linear in nature. As a result, the
problem (22) can be efficiently solved using standard convex
optimization solvers, e.g., CVX [40].

B. Optimization of the UAV Transmission Power Pm

For fixed Q, P̄n, Fm, F̄n, and A, the subproblem for opti-
mizing the transmission power of UAV Pm can be formulated
as:

max
ϑ,Pm

ϑ (23a)

s.t.
1

I

I∑
i=1

M∑
m=1

(Rmn(i)−R0)−τζ≥ϑ,∀n, (23b)

R̄up
mk(i) ⩽ R0,∀m, k, i (23c)

1

I

I∑
i=1

T off
mn (i) ≤ T, ∀m,n, (23d)

pm(i) + P com
m (i) ≤ Pmax

m ,∀m, i. (23e)

Due to the nonconvexity of constraints (23b) and (23c), the
problem (23) is nonconvex. However, it can be transformed

into a convex problem by applying the SCA technique. The
detailed transformation process is provided in Appendix B.
After applying the SCA technique, the problem (23) can be
re-expressed as the following problem:

max
ϑ,Pm

ϑ (24a)

s.t.
1

I

I∑
i=1

M∑
m=1

(I1(i)− I2(i)−R0)− τζ ≥ ϑ,∀n, (24b)

I3(i)− I4(i)≤R0,∀m, k, i, (24c)

1

I

I∑
i=1

(
T off
mn (i)

)
≤ T, ∀m,n, (24d)

pm(i) ≤ Pmax
m ,∀m, i, (24e)

where I1, I2, I3 and I4 see Appendix B. Now, the Eq. (24)
is a convex optimization problem that existing general convex
optimizer can efficiently solve.

C. Optimization of the AN Transmission power P̄n

By fixed Q, Pm, Fm, F̄n and A, the third subproblem for
optimizing the AN transmission power P̄n can be written as:

max
ϑ,P̄n

ϑ (25a)

s.t.
1

I

I∑
i=1

M∑
m=1

(Rmn(i)−R0)−τζ≥ϑ, ∀n, (25b)

R̄up
mk(i) ⩽ R0,∀m, k, i, (25c)

pann (i) + P com
n (i) ≤ Pmax

n ,∀n, i, (25d)

It is obvious that Eq. (25) is a convex optimization problem
that can be efficiently solved by a general convex optimizer.

D. Optimization of the CPU frequency of the UAV Fm

For any given Q, Pm, P̄n, F̄n and A, the fourth subproblem
for optimizing the CPU frequency of UAV can be expressed
as:

min
Fm

Fm (26a)

s.t. (17c), (17e) (26b)

Note that the problem (26) is a linear optimization problem,
which can be efficiently solved.

E. Optimization of the CPU frequency of the UGV F̄n

For any given Q, Pm, P̄n, Fm and A, the fifth subproblem
for optimizing the CPU frequency of UGV is formulated as:

min
F̄n

F̄n (27a)

s.t. (17d), (17f) (27b)

Similarly, the problem (27) can be efficiently solved, because
it is a linear optimization problem.
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F. Optimization of the UGV Selection A
For given Q, Pm, P̄n, Fm, and F̄n, the subproblem of UGV

selection is formulated as:

max
ϑ,A

ϑ (28a)

s.t. amn(i)ϱmn + (1− amn(i))L ≥ ϑ,∀m,n, i, (28b)
pann (i) + P com

n (i) ≤ Pmax
n ,∀n, i, (28c)

N∑
n=1

amn(i) ≤ 1,∀m, i, (28d)

1

I

I∑
i=1

T off
mn (i) ≤ T, ∀m,n, (28e)

where ϱmn = 1
I

I∑
i=1

M∑
m=1

(Rmn(i)−R0)−τζ, and L is bigger

than the upper bound of ϑ. Since the decision variable amn(i)
is binary, the subproblem of UGV selection can be solved
efficiently by the branch-and-cut method. Next, we need to
determine whether the selected UGV meets the requirements.

Due to the mobility of UAVs and UGVs, UAVs may
not communicate with all UGVs during data transmission.
Therefore, if the computation tasks of the UAV m can be
offloaded to the UGV n in time slot i, the following inequality
must be meet ∆Dm(i)

Rmn(i)
⩽ δ. To address the optimization of

the task offloading, Algorithm 1 is proposed. Specifically, let
D = ∆Dm(i) denote the size of arrived computation tasks of
each UAV at time slot i. Note that a sufficient transmission
rate should be reserved for offloading computation tasks (lines
3-12). Consequently, in advance, we need to judge whether
the tasks generated by UAVs can be uploaded to the UGV
successfully (lines 7 and 9).

Algorithm 1 Task offloading Optimization Algorithm
1: Input: D, Rmn(i), B
2: A = 0, i = 0,m = 1;
3: for m ⩽ M do
4: for i ⩽ I do
5: Select UGV n based on Equ.(28)
6: Calculate Rmn(i) based on Equ.(4)
7: if D(i,m) ⩽ BRmn(i)δ then
8: A(i,m) = 1;
9: else

10: A(i,m) = 0;
11: end if
12: end for
13: end for
14: Return: A

G. Overall Algorithm 2 and Convergence

From the above discussion, we propose a BCD-based itera-
tive optimization algorithm for the problem (20) in Algorithm
2 by utilizing the BCD method, SCA technique, and branch-
and-cut method. In detail, the optimization variables in the
original problem (20) are divided into six blocks. Then, Q,
Pm, P̄n, Fm, F̄n, and A are alternately optimized by solving
problems (22), (24), (25), (26), (27) and (28) respectively. For

Algorithm 2 BCD-based Iterative Optimization Algorithm for
problem (20)

1: Initialize r = 0, Qr,Pr
m, P̄

r
n,F

r
m, F̄

r
n,Ar, and the conver-

gence accuracy κ.
2: repeat
3: Solve problem (22) with {Pr

m, P̄
r
n,F

r
m, F̄

r
n,Ar}, and

obtain Qr+1;
4: Solve problem (24) with {Qr+1, P̄r

n,F
r
m, F̄

r
n,Ar}, and

obtain Pr+1
m ;

5: Solve problem (25) with {Qr+1,Pr+1
m ,Fr

m, F̄
r
n,Ar},

and obtain P̄r+1
n ;

6: Solve problem (26) with {Qr+1,Pr+1
m ,P̄r+1

n , F̄r
n,Ar},

and obtain Fr+1
m ;

7: Solve problem (27) with {Qr+1,Pr+1
m , P̄r+1

n ,Fr+1
m ,Ar},

and obtain F̄r+1
n ;

8: Solve problem (28) with {Qr+1,Pr+1
m , P̄r+1

n ,Fr+1
m , F̄r+1

n },
and obtain Ar+1;

9: Update r = r + 1;
10: until The objective value increase is lower than conver-

gence accuracy κ.

the first three subproblems, we iterative compute the local
optimum of the convex problem by updating the initial feasible
solutions until a stationary solution of the original nonconvex
problem is found. In addition, the solution generated in each
iteration is input to the next iteration for each subproblem.
The detailed process is summarized in Algorithm2. Since we
only solve approximate problems (22), (24), (25), (26), (27)
and (28) optimally, the convergence of Algorithm 2 need to
be demonstrated.

Proposition 1: Algorithm 2 is convergent.
Proof: Supposing ϑ{Qr,Pr

m, P̄
r
n,F

r
m, F̄

r
n,Ar} is the objec-

tive value of the problem (20) in the rth iteration. First, for
given Pr

m, P̄r
n,F

r
m, F̄

r
n, and Ar in step 3 of Algorithm 2, the

optimal solution of (22) is obtained. We have:

ϑ{Qr,Pr
m, P̄

r
n,F

r
m, F̄

r
n,Ar} (a)

= ϑlb,rtrj {Qr,Pr
m, P̄

r
n,F

r
m, F̄

r
n,Ar}

(b)

≤ ϑlb,rtrj {Q
r+1,Pr

m, P̄
r
n,F

r
m, F̄

r
n,Ar}

(c)

≤ ϑ{Qr+1,Pr
m, P̄

r
n,F

r
m, F̄

r
n,Ar}

(29)
where ϑlb,rtrj denotes the objective value of the problem (22),
(a) holds since the tightness of the first-order Taylor expan-
sions at local points in the problem (21), (b) holds since in
step 3 the problem (22) is solved for given Pr

m, P̄
r
n,Ar,and

(c) holds since the objective value of the problem (22) is
the lower bound of the problem (21). Second, for given
Qr+1, P̄r

n,F
r
m, F̄

r
n and Ar in step 4, we have:

ϑ{Qr+1,Pr
m, P̄

r
n,F

r
m, F̄

r
n,Ar}

= ϑlb,rp {Qr+1,Pr
m, P̄

r
n,F

r
m, F̄

r
n,Ar}

≤ ϑlb,rp {Qr+1,Pr+1
m , P̄r

n,F
r
m, F̄

r
n,Ar}

≤ ϑ{Qr+1,Pr+1
m , P̄r

n,F
r
m, F̄

r
n,Ar},

(30)

where ϑlb,rp denotes the objective value of problem (24).
Similar to the problem (29), the solution to problem (30) at
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r+1th is also less than the solution at rth. Thus, the original
subproblem (23) is non-decreasing. Third, for given Qr+1,
Pr+1
m ,Fr

m, F̄
r
n and Ar in step 5 of the Algorithm 2, we have:

ϑ{Qr+1,Pr+1
m , P̄r

n,F
r
m, F̄

r
n,Ar}

⩽ ϑ{Qr+1,Pr+1
m , P̄r+1

n ,Fr
m, F̄

r
n,Ar}.

(31)

Similarly, in steps 6, step 7, and step 8 of Algorithm 2,
since the subproblems (26) and (27) are not in the objective
function, the objective value is unchanged after each iteration.
Therefore, we obtain:

ϑ{Qr+1,Pr+1
m , P̄r+1

n ,Fr
m, F̄

r
n,Ar}

= ϑ{Qr+1,Pr+1
m , P̄r+1

n ,Fr+1
m , F̄r+1

n ,Ar}.
(32)

Finally, since the A is global optimization solution for sub-
problem (28) with given Qr+1,Pr+1

m , P̄r+1
n ,Fr+1

m , F̄r+1
n in step

8 of Algorithm 2, we have:

ϑ{Qr+1,Pr+1
m , P̄r+1

n ,Fr
m, F̄

r
n,Ar}

⩽ ϑ{Qr+1,Pr+1
m , P̄r+1

n ,Fr+1
m , F̄r+1

n ,Ar+1}.
(33)

According to (29)-(33), we can conclude:

ϑ{Qr,Pr
m, P̄

r
n,F

r
m, F̄

r
n,Ar}

⩽ ϑ{Qr+1,Pr+1
m , P̄r+1

n ,Fr+1
m , F̄r+1

n ,Ar+1}.
(34)

which can guarantee that the objective value of problem (20)
is non-decreasing after each iteration. In algorithm 2, we use
∥ϑr+1 − ϑr}∥ to measure the stationary. Thus, the iteration
termination when ∥ϑr+1 − ϑr}∥ ⩽ κ, where κ is the desired
accuracy. When the objective value increment of problem (20)
is lower than convergence accuracy κ, the upper bound of the
objective value of problem (20) is a finite value. Thus, the
proposed Algorithm 2 is guaranteed to converge.

H. Complexity analysis of Algorithm 2

The computational complexity of proposed BCD-based
Algorithm 2 focuses on optimizing Q,Pm,Pn,Fm, F̄n,A in
problems (22), (24), (25), (26), (27) and (28), respectively.
The complexity of algorithm 2 mainly depends on the number
of variables. The sub-problems can be solved by the interior
point method in steps 3 and 4. As is known to all, the
complexity of the interior point method is O(E3.5 log 1

ω ),
where the ω is defined as convergence accuracy and E means
variable dimension. Algorithm 2 has the variables of N UGVs,
K Eves, and I time slots. Thus, 3NKI variables need to
optimize. As a result, the complexity of steps 3 and 4 is
O((3NKI)3.5 log 1

ωZ), where Z means the iteration number.
In steps 5, 6, and 7, the subproblems are directly solved.
Therefore, the complexity of solving problems (25), and (26)
can be ignored. In step 8, the complexity of the problem
(28) is 2MN . In conclusion, the computational complexity
of Algorithm 2 is O((3NKI)3.5 log 1

ωZ) + 2MN).

V. NUMERICAL RESULTS

In this section, we first introduce the evaluation methodol-
ogy and then detail the performance of the involved schemes.

A. Experiment Settings

1) Experiment Configuration: We consider the systems
with N = 10 UGVs distributed in an area of 1000×1000 m2.
The trajectories of UGV are randomly selected from the
dataset of TAPASCologne project 1. Due to the importance of
the initial scheme for Algorithm 2, we let the initial trajectory
of each UAV as a circular, based on the suggestion from
literature [36]. Each UAV executes the assigned tasks with
the volume of D(i,m) at each time slot. The D(i,m) follows
a uniform distribution within [0,Dmax]. Unless otherwise
specified, there are three Eves, and their estimated locations
are set to Eve1 = [250, 250]⊤, Eve2 = [650, 850]⊤, and
Eve3 = [800, 600]⊤, respectively. The flight duration of the
UAVs T = 75 s. As a footnote, the P0

m represents initial
transmission power of the UAV m and P̄0

n means initial
AN transmission power of the UGV n. Other parameters are
summarized in Table II [13], [29], [36].

TABLE II
SIMULATION VALUE SETTING.

Notations Value Notations value
Dmax 0.15 Mb dmin 50 m
I 100 P̄0

n 0.9 W
dm 10 m Vmax 30 m/s
η0 −30 dB P̄0

n 1 W
B 50 MHz Pmax

n 1.5 W
Pmax
m 1 W σ −30 dB
H 100 m π 2.5
R 100 m τ 5× 10−2

θ 1000

2) Performance metrics of the experiment. To compare
the advantages of our scheme, three performance metrics are
employed:

• The average utility: The average utility includes the
average secrecy rate and average overlapping area of
UAVs.

• Convergence of Algorithms: The number of iterations
when the iterative algorithm reaches convergence.

• Trajectory, velocity and transmission power of the UAVs:
The influence of the UAVs’ dynamically adjusting trajec-
tory, velocity, and transmission power on system perfor-
mance.

3) Compared baselines. Inspired by [32], [39], the proposed
joint optimization (JO) scheme is compared with three base-
lines as follows:

• Selected Closest UGV (SCU): To improve the transmis-
sion rate of offloading data, the UAVs offload their tasks
to the nearest UGV. The trajectories and transmission
power of UAVs and transmission power of AN are
optimized.

• Fixed Trajectory (FT): Each UAV flies from a given
origin to the end according to the initial circular trajectory
q0
m = [xm + r cos θi, ym + r sin θi]

⊤, i = 1, ..., I , where

1http://kolntrace.project.citi-lab.fr/
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θi ≜ 2π i−1
I−1 ,∀i. The UAVs’ transmission power, AN

transmission power, and UGV selection are optimized.
• Fixed Transmission Power of UAVs (FTPU): The UAVs’

transmission power are fixed at 0.8 W, and UAVs’ trajec-
tories, AN transmission power, and selection of UGVs
are optimized.

The above baselines can be implemented by adjusting
Algorithms 1 and Algorithms 2.

B. Convergence and Performance Evaluation

Fig. 4 shows the convergence of the proposed JO scheme
and the three baselines at T = 50 s, M = 2 and, K = 3.
As depicted in Fig. 4, the average utility of all schemes first
shows an upward trend and then converges to a constant within
a few iterations as the number of iterations increases. Further-
more, it is evident that the average utility of our JO scheme
consistently outperforms the baseline scheme significantly. In
detail, the proposed scheme achieves approximately 22.1%,
6.2%, and 30.4% performance gains over the SCU scheme,
FTPU scheme, and FT scheme, respectively.

In Fig. 5, we focus on the average utility versus flight
duration T when M = 2 and the K = 3. The FT scheme
maintains a constant average utility, while the JO, SCU, and
FTPU schemes show significant performance improvements
as the flight duration T increases. The reason behind this
trend is that with longer T , the UAVs have more time to
approach the selected UGV and fly away from the Eves in
the JO, SCU, and FTPU schemes. This allows them to achieve
better transmission rates by establishing stronger channel links.
Among the schemes, the JO scheme achieves the highest
average utility. This is because it can dynamically adjust the
UAVs’ trajectories and transmission power, and select the
UGV with the best channel links. More precisely, to get a
better LoS link, the UAVs increase (decrease) the transmission
power when it flies closer to (farther away from) the selected
UGV. The FTPU scheme lacks the ability to dynamically
adjust the UAVs’ transmission power, which can impact the
achievable transmission rate of the UGV. As for the FT
scheme, its fixed UAV trajectories make the flight duration
have no influence on its average utility.

In Fig. 6, we measure the average utility of the afore-
mentioned four schemes versus different AN transmission
power of the UGVs when M = 2, T = 50s and K = 3.
As presented by Fig. 6, the performance of all schemes
initially increases and then stabilizes as AN transmission
power increases. This behavior can be attributed to the quality
of the wiretap channel, which rapidly deteriorates as the AN
transmission power is small. As the AN transmission power
increases, the eavesdropper’s rate approaches zero when the
AN transmission power is sufficiently large. Additionally, it is
noteworthy that the JO scheme consistently outperforms the
other three baseline schemes, which proves the benefits of the
joint optimization of UAVs’ trajectory and transmission power,
AN transmission power, and UGVs selection. Furthermore,
Fig. 6 demonstrates that the FT scheme performs the worst
among all the schemes. This indicates that leveraging UAVs’
mobility to dynamically adjust their trajectories for optimizing

LoS links is more effective. Compared to SCU, FTPU, and FT
schemes, the proposed JO scheme improves the average utility
by approximately 21.4%, 6.2%, and 30.7%, respectively.

Fig. 7 quantifies the convergence of the JO scheme versus T
with M = 2 and K = 3. As shown in Fig. 7, the JO scheme
quickly converges within six iterations with different flight
duration. Moreover, it can be observed that the average utility
increases as flight duration T increases. The is because longer
flight durations provide UAVs with more time and freedom to
adjust their flight velocities and trajectories. By flying closer
to the selected UGV and farther away from the eavesdroppers,
the UAVs can establish and maintain high-quality channel
links for a greater number of time slots. Therefore, the system
performance improves with larger values of T . In addition,
the average utility at duration T = 75 s is similar to that
T = 100 s. The reason is that when T is sufficiently large,
the UAVs’ trajectories only require minor adjustments. This
indicates that the proposed JO scheme can flexibly adjust
the UAVs’ trajectories, velocity, and transmission power to
achieve optimal performance, as discussed in the following
simulations.

In Fig.8, the optimized trajectories of the UAVs for the
JO scheme are shown for different flight durations T . The
UGVs’ trajectories are denoted by qN , the initial trajectories
of the UAVs are marked by ◦, and the estimated locations
of the Eves are marked by ⋆. As T increases, the UAV1

initially follows the selected UGV as closely as possible
to reduce the distance of the main channel. Then, it flies
away from the Eve1 to increase the distance of the wiretap
channel. Finally, it flies to end point while bypassing Eve1.
On the other hand, the UAV2 initially flies away from Eve2 to
increase the distance of the wiretap channel. Then, it follows
the selected UGV as long as possible to reduce the distance
of the main channel. Finally, it reaches to end point while
bypassing the Eve3. These optimized trajectories indicate that
the UAVs can adjust their paths to improve the quality of
the channel links. By flying closer to the selected UGVs
and farther away from the eavesdroppers, the UAVs can
achieve highly secure communication and better monitoring
performance. Furthermore, Fig. 8 also demonstrates that as
the flight duration T increases, the UAVs can flexibly adjust
their trajectories to fly closer to the selected UGVs and further
away from the Eves simultaneously. This is evident from the
higher density of sampled points around each selected UGV
in the trajectories, indicating that the UAVs spend more time
in close proximity to the UGVs. Such observations further
validate the critical role of optimizing the UAVs’ trajectories in
achieving highly secure communication and better monitoring
performance.

Fig. 9 illustrates the velocity of UAV1 for different flight
durations T versus time slots I . When the flight duration
is relatively short, such as T = 50s, the UAV flies with
its maximum velocity Vmax for most of the time slots to
ensure it reaches the destination on time. As the flight duration
increases, such as in the case of T = 75s, the UAVs have
more flexibility in trajectory optimization, including adjusting
their velocity. It can be observed that the UAVs fly at a
lower velocity and wander around the selected UGV when
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Fig. 10. Transmission power of UAV1 for
different durations T versus time slots.

approaching it. This behavior allows them to spend more time
in close proximity to the UGV, ensuring high-quality channel
links for safe and secure information transmission. According
to Fig. 9, for the case of T = 100s, the UAV has sufficient time
to return to the destination. When the UAV flies close to the
selected UGV, it reduces its velocity to 5 m/s to stay close
to the UGV as long as possible. Meanwhile, the UAV flies
at its maximum velocity when moving away from the Eves.
This behavior is aimed at maximizing the duration of secure
communication by establishing and maintaining high-quality
channel links.

Fig. 10 exhibits the transmission power of the UAV1 for
different flight duration T versus the time slots. It is worth
noting that the variation trend of the UAV transmission power
is similar across different duration T . As can be seen from
time slots 10 to 20 and 80 to 90, the UAV flies close to the

Eve1, which poses a high potential for confidential information
leakage. To mitigate this risk, the UAV decreases its transmis-
sion power to reduce the instantaneous eavesdropper rate, as
defined in Eq.(5). From Fig. 8∼10, we can observe that when
the UAV flies close to the selected UGV and away from the
Eve1 during time slots 30 to 40, the optimal channel quality is
created through a combination of reducing the UAVs’ velocity
and increasing its transmission power. In addition, when the
UAV is located between two UGVs during time slots 50
to 70, it flies at its maximum velocity to get close to the
selected UGV and ensure wireless communication security.
However, since the UAV is close to Eve1 at the same time,
it offloads tasks by using optimal transmission power. Thus,
we can induce that our proposed scheme improves system
performance effectively.

From Figs. 8, 9, and 10, the observations indicate our
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Fig. 11. The optimized trajectories of two UAVs for different numbers of Eves.
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Fig. 12. The optimized trajectories of four UAVs for different numbers of Eves.

proposed scheme allows the UAV to adapt its transmission
power according to the specific scenario and optimize the
overall system performance by ensuring secure communication
and simultaneously mitigating the risk of eavesdropping.

C. The UAVs Trajectories
In Fig. 11, we vary the number of Eves K from 2 to

4 to quantify its impact on the performance of the systems
explicitly with M = 2 and T = 50s. The q0M is the initial
trajectories of the UAV, the qrM represents the optimized
trajectories of the UAV, while the qN denotes the trajectories
of the UGV. As the number of Eves increases, we can see
from the trajectories that the UAVs modify their paths to fly
as close to the selected UGV as possible while avoiding the
Eves. This behavior aims to maximize the security of the
communication links between the UAV and UGV. When K is
set to 2, 3, and 4, the average utility ϑ is 1.70, 1.67, and 1.65,
respectively. It is evident that the average utility decreases as
the number of Eves increases. This decrease can be attributed
to the fact that more eavesdroppers result in a larger amount
of stolen information, as indicated by Eq. (18). Although the
average utility experiences a slight decline as the number
of eavesdroppers increases, the proposed secure offloading
scheme still achieves better performance in the presence of
multiple Eves.

Fig. 12 depicts the optimized trajectories of four UAVs
with K growing from 3 to 5 and T = 50s. These fig-
ures demonstrate that the proposed secure offloading scheme
effectively avoids potential collisions among UAVs. Mean-
while, the UAVs try to fly away from each other to reduce
channel interference based on Eq.(4). Additionally, similarly

to Fig. 11, the UAVs also fly away from Eves and close
to the selected UGV to increase the average utility of the
system by improving the quality of channel links. These results
highlight the effectiveness of the proposed joint optimization
scheme in managing multiple UAV systems. The scheme
successfully minimizes collisions, reduces interference, and
ensures the security of communication links by avoiding Eves
and optimizing channel quality.

Overall, the proposed JO scheme proves to be highly
effective, offering superior performance compared to other
benchmarks, even in complex scenarios involving multiple
Eves and multiple UAVs.

VI. CONCLUSIONS

In this paper, the secure computation tasks offloading and
monitoring scheme for the MEC-based UAV-UGV collaborate
framework with multiple UAVs, UGVs, and Eves has been
investigated. The objective is to maximize the minimum
average utility of systems by jointly optimizing various param-
eters such as UAVs’ trajectories and transmission power, AN
transmission power, CPU frequency of UAVs and UGVs, and
selection of UGVs while considering constraints on latency,
power, velocity, anti-collision, and distance. To deal with the
complexity of the problem, the original optimization problem
is first divided into six sub-problems. Afterward, we proposed
an efficient BCD-based iterative algorithm for solving the opti-
mization problem. Moreover, the convergence and complexity
of algorithm 2 have been analyzed. Extensive simulation with
large-scale scenarios demonstrates that the JO scheme can
improve the average utility by up to 30.4%, compared to
three benchmarks. There are several watchable directions in
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further work, including optimizing the UGVs’ trajectories,
extending the current work into scenarios with cooperation
surveillance between UGVs and UAVs, and studying workload
and collaboration balancing among the entities.

APPENDIX A

In this section, the SCA technique [36] is used to derive the
convex approximation problem (21). Recall that any convex
function is globally low-bounded by its first-order Taylor
expansion at any point [40]. Given the local point {qr

m(i)}
over the rth iteration, we have the following lower bound of
Rmn(i) as follow [36]:

Rmn(i) = log2

1 +
pm(i)hmn(i)∑

j∈M,j ̸=m

pj(i)hjn(i)+σ2


⩾ log2

1 +

pm(i)η0

H2+∥qr
m(i)−q̄n(i)∥2∑

j∈M,j ̸=m

pj(i)η0

∥qr
j (i)−q̄n(i)∥2 + σ2


+ (qm(i)− qr

m(i))⊤

(
δRmn(i)

δhmn(i)

δhmn(i)

δqm(i)

∣∣∣∣
qm=qr

m

)

+
∑

j∈M,j ̸=m

(qj(i)−qr
j(i))

⊤

(
δRmn(i)

δhjn(i)

δhjn(i)

δqj(i)

∣∣∣∣
qj=qr

j

)
≜ R̄mn(i),

(32)

where δRmn(i)
δhjn(i)

= 1
2Rmn(Q) ln 2

−
∑

j∈M,j ̸=m

pj(i)pm(i)hmn(i)

(pj(i)hjn(i)+σ2)2
,

δRmn(i)
δhmn(i)

= 1
2Rmn(Q) ln 2

pm(i)∑
j∈M,j ̸=m

pj(i)hjn(i)+σ2 ,

δhmn(i)
δqm(i) =

−2η0(qm(i)−̄qn(i))

(H2+∥qm(i)−̄qn(i)∥2)2
,
δhjn(i)
δqj(i)

=
−2η0(qj(i)−̄qn(i))

(H2+∥qj(i)−̄qn(i)∥2
)2
.

To compute the convex relaxation of R̄up
mk(i) by the

SCA technique, we define an auxiliary variable Smk(i) ≤
(∥qm(i)− q̃k(i)∥ −∆Q)

2 and apply a Taylor expansion at
{qr

m(i)}. R̄up
mk(i) can be rewritten as:

R̄up
mk(i) = log2

(
1 +

εmk(i)pm(i)η0
Smk(i)

)
≜ R̄up

mk(i), (33)

where εmk(i) = 1∑
j∈M,j ̸=m

pj(i)h∗
jk(i)+

∑
n∈N

h̃∗
nk(i)p

an
n (i)+σ2

and

Smk(i) ≤ (∥qr
m(i)− q̃k(i)∥ −∆Q)

2

+ 2(∥qm(i)− q̃k(i)∥ −∆Q)
(qr

m(i)−q̃k(i))
⊤

∥qr
m(i)−q̃k(i)∥

(qm(i)− qr
m(i)).

In the constraint (21h), by using the first-order Taylor expan-
sion at the given point qr

m(i) and qr
j(i) to

∥∥qr
m(i)− qr

j(i)
∥∥2,

we have:∥∥qr
m(i)− qr

j(i)
∥∥2 ⩾−

∥∥qr
m(i)− qr

j(i)
∥∥2 + 2(qr

m(i)

− qr
j(i)(qm(i)− qj(i)),

(34)

Similarly, since ∥qm(i+1)−qm(i)∥2 is a convex in terms to
qm(i). By employing the first-order Taylor expansion at the
given point qr

m(i), we have:

∥qr
m(i+1)−qr

m(i)∥2 ⩾−∥qr
m(i+1)−qr

m(i)∥2

+2(qr
m(i+1)−qr

m(i))(qm(i+1)−qm(i)).
(35)

APPENDIX B
Eq. (23) shows a non-convex optimization problem. Next,

the SCA technique is resort to get efficient approximation
solution. Firstly, we rewrite Rmn(i) as follows:

Rmn(i)= log2

( ∑
m∈M

pm(i)hmn(i) + σ2

)
︸ ︷︷ ︸

I1(i)

− log2

 ∑
l∈M,j ̸=m

pj(i)hjn(i) + σ2


︸ ︷︷ ︸

I2(i)

.

(36)

After that, we solve this subproblem by exploiting a similar
approach mentioned in the previous section. In detail, we
successively transform I2(i) into convex terms by applying
the first-order Taylor expansions. The Pr

m = {prm(i)} denotes
the transmit power of UAV m in the rth iteration. I2(i) is
given by:

I2(i)= log2

 ∑
j∈M,j ̸=m

prj(i)hjn(i) + σ2


+

∑
j∈M,j ̸=m

hjn(i)(pj(i)− prj(i))( ∑
j∈M,j ̸=m

prj(i)hjn(i) + σ2

)
ln 2

,

(37)

To compute the convex relaxation of R̄ub
mk(i), we use the

similar steps above and rewrite it as:

R̄ub
mk(i) =log2

pm(i)h̄max
mk (i)+

∑
j∈M,j ̸=m

pj(i)h̄
min
jk (i)+ωmk


︸ ︷︷ ︸

I3(i)

−log2

 ∑
j∈M,j ̸=m

pj(i)h̄
min
jk (i) + ωmk


︸ ︷︷ ︸

I4(i)

,

(38)
where ωmk =

∑
n∈N

pann h̃min
nk (i)+σ2. I3(i) is a convex upper

bound expression based on the first-order Taylor expansion
in terms of the transmission power of the UAV m in the rth

iteration, which can be expressed as:

I3(i)=log2

prm(i)h̄max
mk (i)+

∑
j∈M,j ̸=m

prj(i)h̄
min
jk (i) + ωmk


+

h̄max
mk (i)(pm(i)−prm(i))+

∑
j∈M,j ̸=m

h̄min
jk (i)(pj(i)−prj(i))(

prm(i)h̄max
mk (i) +

∑
j∈M,j ̸=m

prj(i)h̄
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jk (i) + ωmk

)
ln 2

,

(39)
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