Validation of Distributed SDN Control Plane
under Uncertain Failures

Junjie Xie, Deke Guo, Chen Qian, Bangbang Ren, Honghui Chen

Abstract—The design of distributed control plane is an essential part of SDN. While there is an urgent need for verifying the control
plane, little, however, is known about how to validate that the control plane offers assurable performance, especially across various
failures. Such a validation is hard due to two fundamental challenges. First, the number of potential failure scenarios could be
exponential or even non-enumerable. Second, it is still an open problem to model the performance change when the control plane
employs different failure recovery strategies. In this paper, we first characterize the validation of the distributed control plane as a robust
optimization problem and further propose a robust validation framework to verify whether a control plane provides assurable
performance across various failure scenarios and multiple failure recovery strategies. Then, we prove that identifying an optimal
recovery strategy is NP-hard after developing an optimization model of failure recovery. Accordingly, we design two efficient failure
recovery strategies, which can well approximate the optimal strategy and further exhibit the good performance against potential
failures. Furthermore, we design the capacity augmentation scheme when the control plane fails to accommodate the worst failure
scenario even with the optimal failure recovery strategy. We have conducted extensive evaluations based on an SDN testbed and
large-scale simulatons over real network topologies. The evaluation results show the efficiency and effectiveness of the proposed

validation framework.

Index Terms—Robust validation, Distributed controllers, Uncertain Failures, Software-defined networking.

1 INTRODUCTION

OFTWARE-DEFINED networking (SDN) is currently at-
Stracting significant attention from both academia and
industry. It allows network operators to dynamically man-
age resources and behaviors of the underlying network
[I], and enables the flexible development of novel network
applications [2]. This is done by decoupling the control
plane that makes the routing decisions for flow requests
from the underlying data plane that accordingly forwards
flows. SDN adopts a logically centralized control plane to
maintain the global network view. The control plane usually
consists of multiple distributed controllers, to guarantee the
scalability and availability.

In SDN, a designed mapping from the control plane
to the data plane is realized by assigning each switch a
list of available controllers, including a master controller
and multiple slave (standby) controllers [B]. It is the mas-
ter controller that receives flow requests from the covered
switches, computes a routing decision for each flow, and
installs flow rules on all involved switches on the route.
In this way, switches can forward flow requests according
to the routing decisions derived from the control plane.
Meanwhile, to enable the above design, the control plane
and the data plane have to communicate with each other
via secure links. The secure links can be dedicated control
channels (out-of-band control) [@] or share the same network
links as the data plane (in-band control) [B]. In this paper,

o Junjie Xie, Deke Guo, Bangbang Ren and Honghui Chen are with the
Science and Technology Laboratory on Information Systems Engineering,
National University of Defense Technology, Changsha Hunan, 410073,
China. E-mail: {xiejunjie06, guodeke}@gmail.com.

o Chen Qian is with the Department of Computer Engineering, University
of California Santa Cruz, CA 95064, USA. E-mail: cqian12@ucsc.edu

we consider the former one, which is supported by many
controllers [B][B][Z].

It is critical to offer assurable performance at acceptable
cost when designing a control plane. The routing requests
experience the long-tail response latency when the number
of requests to be processed exceeds the capacity of any
one controller in SDN [B]. Furthermore, the long-tail latency
would cause the network applications to suffer from severe
performance degradation. While there is an urgent need,
little, however, is known about how to validate whether the
control plane and the assignment of controllers to switches
can cope with various failures and achieve the design goal.
This problem is referred as the robust validation of the
control plane, and is very hard due to two-fold challenges.

First, the control plane suffers from the failures of not
only controllers but also those secure links. Any such failure
will isolate a switch from its master controller and make the
switch become uncovered and no longer able to deal with
new flow requests [B]. Meanwhile, the number of potential
failure scenarios is exponential to the total number of con-
trollers. Therefore, directly validating all failure scenarios is
prohibitive. Second, it is still an open problem to model the
performance change when different failure recovery strate-
gies are employed to adapt to failures. That is, the control
plane re-elects an appropriate master controller for each
uncovered switch from its slave controllers under a failure
scenario. Then, some controllers exhibit higher utilization
due to serving additional uncovered switches. It is clear that
the failure scenario and the related failure recovery strategy
jointly affect the performance of the control plane.

In this paper, we take a first step towards the robust
validation of the control plane of SDN by developing an
optimization framework over uncertain failure scenarios

and multiple failure recovery strategies. Note that the uti-
lization of each controller can efficiently reflect the controller
performance of responding to flow requests as discussed in
Section IZ23. Furthermore, for the distributed SDN control
plane, we adopt the maximum controller utilization (MCU)
among all controllers as the performance metric of the
control plane. Given a failure scenario and a failure recovery
strategy, we can evaluate the MCU in that case. Then, the
robust validation of the control plane aims to verify if the
highest MCU is lower than the demand performance under
all combinations of the failure scenarios and the failure
recovery strategies. Although the validation problem is so
hard to solve, it becomes tractable by solving the following
two challenging problems step by step.

The first one is to design a proper failure recovery
strategy. Different failure recovery strategies would incur
different MCUs, even though they meet the same setting of
the control plane and the same failure scenario. Although
our validation framework can cope with the existing failure
recovery strategies, it still lacks a failure recovery strategy
to minimize the MCU of the whole control plane. Therefore,
we first develop an optimization model of failure recov-
ery, and further prove that designing an optimal recovery
strategy is NP-hard. Accordingly, we design two efficient
failure recovery strategies, which can well approximate
the optimal strategy and offer good performance against
potential failures. The second key is to find the worst failure
scenario, which results in the highest MCU among all failure
scenarios. If the control plane can accommodate the worst
failure scenario, the control plane can accommodate all un-
certain failures. To solve this problem, we design a recursive
solution to find the worst-case performance of the control
plane, and further propose a branch-and-bound method to
accelerate the solution.

Furthermore, even with the optimal failure recovery
strategy, if the result of validation indicates that the value
of the highest MCU is larger than 1 under the worst failure
scenario, we further conduct the capacity augmentation on
demand to tackle this scenario. That is, the capacity of a set
of selected controllers can be extended incrementally, such
that all failure scenarios can be handled after the capacity
augmentation. Consequently, our validation framework can
derive the most effective way to augment the capacities
of a few involved controllers while incurring the minimal
augmentation cost.

The major contributions of this paper are summarized as
follows.

1) We characterize the validation of the distributed
control plane as a robust optimization problem and
further propose a robust validation framework to
verify whether a control plane provides assurable
performance across various failure scenarios.

2) We develop an optimization model for the failure
recovery strategy, and further prove that designing
an optimal recovery strategy is NP-hard. Two ap-
proximation solutions are designed to minimize the
MCU across all failure scenarios.

3) We design the capacity augmentation scheme,
which can effectively guide the capacity augmen-
tation of the control plane when the value of MCU

2

is still larger than 1 even with the optimal failure
recovery strategy.

4) We evaluate the validation framework via experi-
ments on a SDN testbed, with the real topology and
traffic matrices. Furthermore, we measure our val-
idation framework through large-scale simulations
under two typical topologies. The extensive evalua-
tions demonstrate the promise and effectiveness of
our design.

The rest of this paper is organized as follows. Section
P presents the motivation and background of the robust
validation of distributed control plane. Section B formal-
izes the robust validation problem and the failure recovery
strategy. In Section B, we solve the validation problem by
three steps, including approximating the optimal recovery
strategy, finding the worst failure scenario and augmenting
the capacity of the control plane. Section B evaluates the
performance of our validation framework. We introduce
the related work and conclude this paper in Section B and
Section [, respectively.

2 MOTIVATION AND PRELIMINARIES
2.1 Motivation of robust validation

In designing the control plane of SDN, operators must
determine how many controllers to employ and how much
capacity to provision for each controller. The control plane
then derives an efficient allocation of controllers to each
switch such that each switch can connect to multiple con-
trollers, including one master controller and several salve
(standby) controllers [B]. Note that the master controller of
some switches may be a slave controller of other switches
simultaneously. It is clear that a controller can not tackle
too many flow requests per unit time due to the capacity
limitation. Furthermore, the routing requests would suffer
from the long-tail response latency when the number of
requests exceeds the controller’s capacity [8]. The validation
of the control plane means to verify if the current capacity
setting of controllers and the mapping between controllers
and switches can meet the demand performance.

Meanwhile, any failure scenario may make one or sev-
eral involved switches become no longer covered by their
master controllers. In this scenario, while the set of con-
trollers and their capacities are difficult to change, a fail-
ure recovery strategy could improve the availability of the
control plane by re-electing a master controller for each
uncovered switch. For example, when a controller instance
of ONOS [d] fails, the remaining controller instances would
re-elect a new master controller for each uncovered switch
from the slave controllers. Therefore, the validation across
failures aims to verify if the control plane can meet the
demand of design under a given failure recovery strategy
across various failure scenarios, especially the worst failure
scenario.

While there is an urgent need for verifying the control
plane, little, however, is known about how to validate
that the control plane offers assurable performance, espe-
cially across various failures. The insight of our validation
framework is the theory of robust optimization [9], which
minimizes the given objective across an uncertain parameter

set. In the optimization process, a rich set of adaptation
strategies could be utilized according to the application con-
texts. For the distributed SDN control plane, the uncertain
set records all uncertain failure scenarios, consisting of the
failures of controllers and the failures of secure links, which
make controllers lose connection to switches.

2.2 Preliminaries
2.2.1 The uncertain failures of the control plane

We seek to validate that a control plane performs well across
various failure scenarios. The failure scenarios consist of the
failures of controllers and the failures of secure links. The
secure links are the infrastructure of the control channels,
which are used to connect switches with controllers. The
failure of a secure link will cause a switch to lose the con-
nection to its master controller. Note that failure probability
of secure links depends on the hop count of its physical
path. However, our validation framework is irrelevant to
the failure probability. The main concern of the validation is
if the control plane can still meet the demand performance
when the failures occur. Not only the failures of secure links
but also the failures of controllers lead to the disconnection
between switches and their master controllers. More pre-
cisely, for the failures of controllers, a typical set of failure
scenarios to validate is the simultaneous failures of f or
fewer controllers.

2.2.2 Modeling the adaptation of the control plane

The control plane can naturally tackle the aforementioned
failure scenario by using special adaptation methods, such
that the high availability and the low utilization of controller
can be reserved. This can also be achieved by determining
an optimal new master controller for each uncovered switch
that fails to reach its initial master controller under a given
failure scenario. However, the state-of-the-art re-election
strategy is far from the optimal solution. In the current
design of ONOS [B], all available controllers of each switch
form a list in a preference order. When a switch fails to
communicate with its master controller, one of its slave
controllers is orderly selected as the new master controller.
It is obvious that such a failure recovery strategy could
not always make a reasonable decision. Furthermore, the
sequent selection method would degrade the performance
of the control plane.

For example, switch s, has the master controller c;
and two slave controllers c¢;; and c¢;;;, which are set in a
preference order. When switch s, loses the connnection to
controller c;, the control plane orderly sets controller c;;
as its new master controller. However, at that time, the
utilization of controller ¢;; may be very high, and controller
ciii may have more residual capacity. In this case, a better
choice is to set controller ¢;;; as the new master controller
of switch s,. Based on the above analysis, the validation
problem of control plane across failures is dominated by the
failure recovery (master re-election) strategy. Note that, an
efficient failure recovery strategy should fully exploit the
residual capacity of the control plane.

2.2.3 The performance metrics of the control plane

In SDN, the controllers calculate the routing paths for
each new arrival flow and insert the forwarding rules into

5X 10
-©-Max
H-Avg
4 <= Min

N w

[E

Throughput of the controller

OO
o)
o

0 40 6
The number of switches

Fig. 1. The changing trend of throughput of a controller as increasing
number of switches.

switches [B][E][B]. For a received flow request at a controller,
The response latency of that controller reflects the perfor-
mance of the control plane. Meanwhile, this latency consist
of the latency of calculating path in the controller and the
transfer latency of inserting the flow rules into switches.
Note that not all packets of a flow are sent to the controller.
Only a flow request is sent to the controller for calculating
a routing path when a switch receives the first packet of a
new flow. If a controller is far away from a switch, i.e., the
transfer latency in the secure link fails to satisfy the demand
performance, the controller will not be set as a master or
slave controller of the switch. Therefore, to evaluate the per-
formance of the control plane, the main latency is caused by
the process of calculating the routing path at each controller.
Furthermore, if a controller receives too many flow requests,
they will wait in a queue for calculating the routing pathes
(&].

Given the capacity provision of the control plane, the
utilization of each controller can efficiently reflect the per-
fromance of the control plane. Furthermore, to validate the
distributed SDN control plane, we adopt the maximum con-
troller utilization (MCU) among all controllers to capture the
performance of distributed control plane against failures.
When M CU >1, the control plane is no longer satisfying the
demand of interest. Assume that a controller can process
p flow requests per second. The controller utilization is
defined as U=r/p, while receiving r flow requests in one
second.

For any controller, the value of U directly affects its
throughput and dominates the response delay of a flow
request. As an evidence, we measure the influence of the
controller utilization on the controller throughput using
the cbench performance test suite [4], which can test the
maximum, average and minimum throughputs in each set-
ting. We deploy the cbench and the ONOS controller [B]
(Falcon 1.5.0) on a machine with 8GB memory and an Intel
Core 2.4GHz CPU. After 10 rounds of experiments under
each different number of switches, Fig. [l plots the changing
trend of the controller’s throughput across different number
of switches. It is clear that the controller’s capacity will
be saturated when the amount of switches comes up to a
threshold since each emulated switch sends requests at the
highest possible rate. Then, the throughput of the controller
starts to go down when its utilization exceeds 1. We can see
from Fig. Il that the maximum throughput decreases sharply

when the number of switches exceeds 40.

2.2.4 Predicted requests

The number of flow requests at a switch can be predicted
from the history records, a common method used in prac-
tice. As mentioned in [[{], predictors usually estimate the
traffic matrix for a given interval, based on a convex com-
bination of previously seen matrices. Thus, the validation
framework can be optimized using a set of historical data
{ri};en, where 17 records the number of flow requests in
the jyj, time slot and H={1, 2, ..., h}. It is desirable to verify
the design for the convex hull of {r!,72,...,7"}, which
ensures that all controllers can respond to all flow requests
from switches while keeping a reasonable utilization. Specif-
ically, this can be modeled by replacing r; as constraints
Ti=)ien y;rl,y; >0 and > jen Yj=1, where r; indicates
the number of flow requests produced by switch s; per unit
time.

3 FORMALIZING ROBUST VALIDATION OF DIs-
TRIBUTED SDN CONTROL PLANE

3.1 Framework of robust validation

Let V' denote the set of uncertain failures (possibly non-
enumerable), over which the design of distributed control
plane must be validated. Those uncertain failures fall into
two categories, including the controller failure and the
failure of the secure link. Let w denote a failure recovery
strategy determined by the control plane to tackle a failure
scenario v. That is, a failure recovery strategy w would
generate the new master controllers for those uncovered
switches. Formally, the validation problem of the distributed
control plane may be written as:

F* = max min F(v,w) 1)

veV weWw

The inner minimization captures that for any failure
scenario v€V, the control plane picks w from a set of per-
missible strategies W (v) to minimize an objective function
F(v,w). The selected w ensures that each uncovered switch,
caused by the failure scenario v, can get one and only one
new master controller. There may exist multiple permissible
strategies to tackle a failure scenario, since each uncovered
switch may have multiple slave controllers, each of which
has opportunity to be elected as the master controller. The
outer maximization robustly captures the worst-case perfor-
mance across the set of failure scenarios V/, assuming the
control plane adapts to each failure scenario in the best
possible fashion. Therefore, Formula () indicates that the
robust validation problem is to verify if the performance
of the control plane can meet the demand of interest while
encountering the worst failure scenario and adopting the
best failure recovery strategy.

In this paper, we utilize the MCU metric in Section R
as the objective function F(v,w), which reflects the per-
formance of the distributed control plane. Formula () is
referred as the validation problem, since it can be used
to verify whether a given design of distributed control
plane meets a desired optimization goal. For instance, F"*>1
indicates that the distributed control plane is not sufficiently
provisioned to handle all failure scenarios.

TABLE 1
A list of terms used throughout the paper.

Term | Description

The number of failed secure links.

The number of failed controllers.

The number of switches in a network.

SNEIENES

The number of controllers in a network.

<

The state of controller c;.

S

<

The state of the secure link between switch s;
and controller c;.

N
<

m The mastership between switches and con-
trollers.

The mastership between switch s; and con-
troller c;.

A failure recovery strategy for a failure scenario
v.

A set of failure recovery strategies for a failure
scenario v.

3.2 Concrete validation problems

We use a notation v=(v',vf) to refer a general failure
scenario faced by the distributed control plane. Here, v'
denotes a failure scenario of a secure link and v/ denotes
a controller failure. Let véj be a binary variable which is
1 if the secure link between switch s; and controller c;
has failed, and otherwise, véjzo. Let v{ be a binary vari-
able which is 1 if controller ¢; has failed, and otherwise,
’U; =0. Let m;; denote the mastership between switch s;
and controller c¢;. If controller ¢; is the master controller
of switch s;, m;;=1; otherwise, m;;=0. Meanwhile, when
U£j=1 or vjf =1, let m;;=0, which indicates that the switch
s; loses the connection with its initial master controller c;.
In this case, the failure recovery strategy needs to re-elect
a new master controller for switch s;. After that, the new
master controller will take over the switch s;. Accordingly,
the utilization of the new master controller would increase
due to additionally taking over switch s;.

Furthermore, we define a notation w=(m,U), where
m=[m;;|nxn denotes the mastership between N switches
and M controllers, and U denotes the desired utilization
metric. It indicates that a failure recovery strategy w is
related to the mastership m and the utilization U. Con-
sider that our focus is on minimizing the MCU among
all controllers. The inner problem in Formula (I) could be
expressed as min,,ew () U, which means that the utilization
of each controller is at most U. Here, W (v) corresponds to
the constraints of the failure recovery strategy, which will be
detailed in Section B3.

Table I gives a list of terms used in this paper. For-
mula (0) indicates a two-stage formulation problem [IT].
The optimal variable (w) in the second stage depends on
the variable (v) in the first stage. Therefore, this problem
can be re-expressed as a single-stage optimization prob-
lem, where all variables can be determined simultaneously.
Then, we formulate the validation problem as an integer
programming (IP). For any failure scenario v, we use w(v)
to denote the resultant failure recovery strategy in Section
B, Furthermore, the key of the validation problem is to find
the worst failure scenario, which maximizes the MCU of the
control plane. Then, the robust validation can be formalized

as Formulation (B).
max w(v)

, veV)
N\ wlk) e {01} Vi @

Here, V' denotes the set of failure scenarios involving
the failure of f or fewer controllers and the failure of [or
fewer secure links simultaneously. The failure model is used
commonly in practice [I2]. We aim to tackle the validation
problems, including the design of the control plane and the
availability of the control plane against uncertain failures.
Furthermore, incorporating this model results in replacing
the constramt UGV in Formulat1on (B) w1th the constraints
S vl<f vle{0,1} and SV, S0 ok <l vl€{0, 1},

Then, we can snnphfy Formulation (IZ) as

max w(v)

NE
<

S
I

~

<.
Il
—

s.t. 3)

”Mi

{’Uj 7v1',j} € {07 1} V’L,]

In our validation problem of the control plane across fail-
ures, the inner problem min,,cw () F (v, w) is an IP in vari-
able w=(m, U), where m indicates the mastership between
switches and controllers. Furthermore, the mastership m is
determined by a failure recovery strategy for a fixed failure
scenario v.

3.3 Formalizing the failure recovery strategy

Let a binary variable b;; denote the mapping between
switches and controllers. We have b;;=1, if and only if
controller ¢; is a master or slave controller of switch s;, and
0 otherwise. The mapping b;; is set based on the capacity of
controller ¢; and the transfer latency between controller c;
and switch s;, when operators deploy controllers in a SDN.
Note that, the mapping b;; can affect the performance of
the control plane and determine the ability of the control
plane against failures. Furthermore, the failure recovery
strategy should keep the utilization of each controller low.
An optimal failure recovery strategy, which is defined as the
Utilization Minimization Re-election (UMR) problem, aims
to minimize the MCU among all controllers.

Let p; denote the capacity of controller ¢;, which indi-
cates the maximum number of flow requests the controller
can respond to per unit time. Let r; denote the number of
flow requests that switch s; produces in a unit time. For
the validation, r; can be calculated in advance. Further, r;
can also be predicted based on the discussion about the
predicted requests in Section BI. Given a failure scenario, some
switches would become uncovered switches. Accordingly,
we use ST to denote the set of uncovered switches, which
can be achieved by the control plane [B]. Then, |S¥| denotes
the number of uncovered switches. Note that S denotes the
set of all switches. Thus, S—S7 denotes the set of switches,
which are not affected by a given failure scenario. Recall

5

that we use m=[m;;|nxn denote the mastership between
N switches and M controllers, and is determined at the
design stage of the control plane. Let m*=[m}]|s_ss|xnm
denote the mastership, which is not affected by the failure
scenario. Then, the optimization problem is to determine
[mij]|ss|xm for each uncovered switch s,€5 f such that the
MCU of the entire control plane is minimized. Furthermore,
we formalize the UMR problem as follows:

min U
|S St |S7]
Up;(1— v Z mmzj + an”

bij (1 —vl;) > mi;

M
j=1

{0,1} Vi, j

s.t. Vi, J @)

m

mij
|s ST e 1.

Here, > .7 rym,; indicates the number of flow
requests recelved by controller ¢; from those covered
switches, which still communicate with their master con-
troller ¢; under a given failure scenario. In Formulation
(@), the first constraint ensures that (i) the utilization of
controller ¢; is at most U for all non-failed controllers; and
(ii) no flow request is sent to a failed controller since the
value in the left of the formulation is 0 when vjf =1. The
utilization U reflects the maximum utilization among all
controllers in the control plane since the first constraint is
applied to each controller. The second constraint captures
that (i) a controller manages a switch based on the available
secure link with vfj:(); and (ii) the control plane re-elects
the master controller for each uncovered switch s; only
from its slave controllers with b;;=1, which indicates that
controller c; is a available controler of switch s;. Note that

j—l denotes the secure link between controller c¢; and
switch s; has failed. In this case, m;; can not be set as 1.
The third constraint ensures that the uncovered switch s; is
only assigned one master controller again.

An instance of UMR is specified by variables (|S/|,M,k),
where |S/| denotes the number of uncovered switches,
M denotes the number of controllers, and k£ denotes the
number of available controllers, which a switch can utilize
among all controllers. The available controllers include the
master and slave controllers for a switch. Theorem [l proves
that the UMR(|S/|,M k) problem is NP-hard when con-
trollers are identical. In addition, the UMR problem will be
more complicated when controllers differ in their capacities.

Theorem 1. UMR(|S/|,M k) is NP-hard, when all controllers
in the control plane are identical.

Proof: Scheduling jobs on identical parallel machines
(SIPM) is NP-hard [13], it is considered as follows. There are
|S4| jobs to be assigned to M identical machines, running in
parallel. Each job j=1, ..., |S/|, must be processed on one
of such machines for r; time units without interruption,
and each job is available for processing at time 0. Each
machine can process at most one job at a time. The aim is to
complete all jobs as soon as possible, that is to minimize the
makespan.

Here, we describe a polynomial reduction from the SIPM
problem to our UMR(|S/|,M,M) problem. Assume that
the SIPM instance has |S/| jobs with each has the size
(11,72, ...75¢)) and M identical machines with each has
the processing speed p. We divide each job into several
tasks {r1=(t11,t12,...), 72=(t21, t22,...)...}, and each task
represents one flow request in UMR(|S/|,M,M). Just as
that the tasks from one job must be processed on the same
machine, the flow requests from one switch only can be sent
to the same controller, i.e., its master controller. M identical
machines represent M controllers, each of which offers
capacity p. In UMR(|S f1,M M), each switch has M available
controllers, and any one of them can be the master controller
of the switch. That also means each job can be scheduled to
any one machine. In this setting, minimizing the makespan
in SIPM equals to minimizing the MCU in UMR(|S7|,M,M).
Note that we can construct all these procedures in polyno-
mial time, we have shown that SIPM<,UMR(|S/|,M,M),
and then UMR(|S¥|,M,M) is also NP-hard.

Additionally, if there exists a polynomial algorithm for
UMR(|Sf|,M k), where each switch has k available con-
trollers, then we can set k=M. This means that there is also a
polynomial algorithm to solve UMR(|S/|,M,M). However,
UMR(|S/|,M,M) is NP-hard; hence, there exists no polyno-
mial algorithm for UMR(|S/|,M k). Thus, we can conclude
that UMR(|S7|,M k) is NP-hard. O

3.4 Making validation tractable

In this paper, we solve the validation problem of distributed
control plane via three steps. First, we solve the inner
problem min,cw () F (v,w) in Formula (W) for any failure
scenario v. The goal is to find the optimal failure recovery
strategy, which minimizes the MCU of the control plane.
However, calculating the optimal failure recovery strategy is
an NP-hard problem. Thus, we propose two approximation
strategies to re-elect a new master controller for each uncov-
ered switch, which is caused by a failure scenario, in Section
ET. Second, the outer problem max®w(v) in Formula ()
needs to find the worst failure scenario, which leads to the
highest MCU among all failure scenarios. To find the worst
failure scenario, we design a recursive solution, and further
propose a branch-and-bound method to reduce the running
time of the recursive solution in Section E2. Third, for the
validation problem, if M CU>1 under the worst failure
scenario even using an efficient failure recovery strategy,
the capacity of the control plane would be augmented at the
minimal cost of the augmentation in Section E3. After that,
the control plane always holds that M CU<1.

4 VALIDATION OF DISTRIBUTED CONTROL PLANE

In this section, we indicate how to use our validation
framework to verify the design of the control plane, to check
the performance of the control plane across various failures,
and to guide the capacity augmentation to the control plane.
We start with two efficient failure recovery strategies, which
are solutions to the inner problem min,cw () F(v,w) in
Formula () for any failure scenario v.

4.1 Approximating the optimal recovery strategy

As aforementioned, it is NP-hard to finding the optimal
failure recovery strategy across various failure scenarios.
For this reason, we first design two efficient solutions to
approximate the optimal strategy of failure recovery, which
aims to minimize the MCU of the control plane.

4.1.1 A Rounding-based solution for UMR

This section develops a rounding-based algorithm, called
RB-election, to solve the UMR problem. The RB-election
algorithm consists of two major steps. The first step relaxes
the NP-hard UMR problem by relaxing the integer program-
ming (Formulation (#)) as a linear problem, i.e., m;; > 0. We
can solve the linear programming in polynomial time, and
obtain the fractional solution, denoted by m.

In the second step, the fractional solution would be
rounded to the 0-1 solution for the UMR. The set S/
records those uncovered switches that are caused by a
failure scenario. We first choose an uncovered switch, de-
noted by s;, from set S7. Then, the algorithm chooses a
controller 3, whose ﬁ@ﬁ is the maximum one among all
controllers covering switch s;, and set 7,-=1 and other
m;;=0 for switch s;. That is, controller c; would become
the new master controller of switch s;. Moreover, we update
Sf=8f—s;. The algorithm would be terminated until all
switches are covered by appropriate master controllers. Ad-
ditionally, Theorem B proves that the RB-election algorithm
can achieve the (k—1)-approximation for the UMR problem.

Theorem 2. The RB-election algorithm can achieve the
(k—1)-approximation for the UMR problem.

Proof: In second step of the RB-election algorithm,
we first choose an uncovered switch s;. Let £ denote the
number of all available controllers that can cover the switch
s;- That is, there is one master controller and (k—1) slave
controllers. When the master controller fails, the control
plane needs to re-elect a new master controller from (k—1)
slave controllers. Since M is the total number of controllers
in the control plane, k<M. Assume that m,; is selected after

some iterations. Since Z
ng 2 kil

After solving the linear programming in the first step of
the RB-election algorithm, we derive a fractional solution
m and an optimal result U for the relaxed UMR problem.
Let U* denote the optimal result of the UMR problem.
According to the algorithm description, the final utilization
of controller c; is:

_, m;=1 for sw1tch s;, it follows

WD o rl D v il
Pj
ST SR -y O
) Pj
<k-1)-U<(k—-1)-U~
Thus, Theorem R is proved. O

Algorithm 1 MM-election strategy of failure recovery

Algorithm 2 FWorst: find the worst failure scenario

Require: The set of uncovered switches S/ and the mapping
b=[bi;]|5¢|x ar between controllers and uncovered switches.
Ensure: A mastership [mi;]|ss|xas-

1: while S7 # 0 do

2: Calculate the set of available controllers Cy; based on

the set S/ and the setting b=|[b;;] S |x M5

3: Select controller ¢; with the maximum residual capacity

from the set Cgy;

4: Calculate the set of uncovered switches S;, which can

be covered by controller c;;

5: Select switch s; with the largest amount of flow requests

from the set Sj;

6: Set controller ¢; as the new master controller of switch
i, 1. e m;
]Z_S“
8: end wh1le

4.1.2 A lower-complexity solution using Double-Max

When a re-election event is triggered by a failure scenario,
we expect that the control plane can immediately derive
an appropriate failure recovery strategy. Note that the RB-
election algorithm needs to solve the linear programming,
and the number of its variables mainly depends on the
amount of switches and controllers in a SDN. Thus, the lin-
ear programming may contain a large number of variables
for a large-scale network; hence, it is rather costly in practice
to solve such a linear programming problem. Therefore, we
further design an efficient algorithm with lower complexity
for the UMR problem.

We design the failure recovery strategy based on the
Double-Max principle, abbreviated as MM-election strat-
egy. To minimize the MCU, the switch with the maximum
amount of flow requests should be covered by the controller
with the maximum residual capacity. Inspired by this idea,
we first find the controller with maximum residual capacity
from those available controllers of all uncovered switches.
Then, let the selected controller ¢; takes over the uncovered
switch, which has the maximum number of flow requests
and can be covered by controller ¢;. In addition, it is very
hard to derive the global optimal solution, since the optimal
controller may not be available to the corresponding switch.

The details of the MM-election algorithm are shown in
Algorithm 0. S7 is the set of uncovered switches that fail
to connect to their predefined master controllers. Let C'gs
denotes the set of available controllers, which can connect
to at least one uncovered switch in the set S/ based on
the mapping b=[b;;]|ss|xn Where b;;=1 denotes controller
¢; is an available controller to switch s;. Algorithm [first
calculates the set C'ss based on the set S/ and the mapping
b=I[bij]|s¢|xr- Second, Algorithm 0 chooses a controller
c¢; with the maximum residual capacity from the set Cgs.
Third, Algorithm [calculates the set of uncovered switches
S;, which can be covered by controller ¢;€Cys. Fourth,
Algorithm 0 selects a switch s; with the largest amount
of flow requests from the set S;. Fifth, Algorithm 0 sets
controller c¢; as the new master controller of switch s;, i.e.,
m,;=1. After that, switch s; would send flow requests to
its new master controller c;. Furthermore, we delete switch
s; from the set S7, ie., Sf=5/—s,. Algorithm 0 repeats
the above process until all switches are covered. Theorem B

1: Define and initialize two global variables, Vand U;
2: Initialize V, U, level<-0, start< 1;
3: GETMCU(start, V, U, level);
4: return V U
5: function GETMCU(start, V, U, level)
6: level ++;
7: if level> f then
8: return;
9: end if
10: for j=start to M do
11: if v/ == 1 then
12: continue;
13: else
14: vl « 1;
15: Calculate the maximal utilization of controller U;
16: if U>U then
17: U «U;
18: V «V,;
19: end if
20: GETMCU(j + 1, V, U, level);
21: vgf «—0;
22: end if

23: end for
24: end function

shows that the time complexity of our MM-election strategy

is O(kx|S 12 [7).

Theorem 3. The t1rne complexity of our MM-election strategy
is O(k><|Sf |”). Here, |S/| is the number of uncovered
switches under a failure scenario, and k denotes the

maximum number of available controllers connected by
each switch in a SDN.

Proof: Algorithm 0 consists of O(|S7|) iterations. In
each iteration, it first takes O (kx| S/ |) time to achieve the set
Cgs. It then consumes O(|Cgs|) time to choose a controller
c; with the lowest utilization from Cg. The time complexity
of Step 4 is at most O(|S7|). Meanwhile, it selects switch
s, with the most number of flow requests from S; at the
cost of consuming O(|S/|) time. It is clear that the time
complexity of Step 6 is O(1). Finally, it takes O(|S/|) time
to delete s, from S7.In summary, the total time complexity
of Algorithm Mis O(kx |Sf|). O

4.2 Finding the worst failure scenario

The key to the robust validation is to find the worst failure
scenario. If the performance of the control plane can meet
the demand of interest under the worst failure scenario,
the current design of the control plane can accommodate
all failure scenarios. In general, it is hard to find the worst
failure scenario for the original validation problem () that
results in the highest MCU, since the failure scenarios may
be exponentially many and potentially non-enumerable.
However, through analysis, we find that Formulation (B)
is tractable, and we use a recursive algorithm to find the
worst failure scenario. The details of the recursive algorithm
is shown in Algorithm B. Furthermore, we design a branch-
and-bound method to efficiently reduce the running time of
Algorithm 0.

A recursive solution. Algorithm B first defines two
global variables, Vand U , which record the worst failure

scenario and the highest MCU, respectively. Then, it initial-
izes the two set variables V and V, and set the Vqriables in
the two sets as 0. At the beginning, the variables U, U, level
are all 0, and the variable start=1. Algorithm P invokes
the function getMCU() to calculate the values of V and
U. The variable level records the depth of the recursive
function getM CU(). Here, the maximal value of level is f,
where f is the maximum number of simultaneously failed
controllers. The function getMCU() would calculate the
maximal utilization of controller U in each failure scenario.
If a failure scenario produces a larger U than previous
validated failure scenarios, it is recorded. The recursive
algorithm would be terminated and return the calculated
results when level> f. In addition, for validating the failure
of secure links, the value of level can be up to [where [is
the maximum number of simultaneously failed secure links.
Meanwhile, in Step 10, the length of the for loop should be
equal to the number of secure links. To validate the hybrid
failures of controllers and secure links, the maximal value
of level is f+I. The variable start can efficiently reduce the
running time of Algorithm B while ensuring the optimal
value.

Furthermore, we analyze the feasibility of Algorithm D.
Its time complexity is O((J;[) x kx |Sf|2), where O(kx \Sf\Z)
is the time complexity of MM-election strategy for calculat-
ing w(v). Algorithm D is practical for the validation problem
of the distributed control plane based on the following
two reasons. First, the validation problem usually need
not to immediately response the result; hence, there is a
considerable long time to solve and optimize the validation
problem. Second, (M)SM f where the values of variables
M and f are usually not very large. The number of deployed
controllers M for achieving a distributed control plane is
not too many. Furthermore, f<k, where k is the number of
available controllers for each switch. Normally, the value
of k is lower than 10 since it is not necessary that each
switch has more than 10 slave controllers. Meanwhile, if
any controller can manage all switches [B], we have k=M.
In this case, it will be easier to solve the validation problem
because the MCU will be equal to the ratio of the number
of all flow requests from all switches to the capacity of the
whole control plane.

A branch-and-bound method. Although Algorithm B is
feasible, it still takes long time to derive the final solution. To
reduce the running time of Algorithm B, we further design a
branch-and-bound method to cut a large number of failure
scenarios, which will not result in a higher MCU. For the
worst failure scenario, it would make an uncovered switch
just keep a few of available controllers, even only one avail-
able controller. Accordingly, the switch is taken over by the
controller even though the controller has already exhibited
high utilization. That is, for an uncovered switch, the worst
failure scenario means that its master and multiple salve
controllers fail at the same time. Note that each uncovered
switch has k available controllers. Furthermore, for each
uncovered switch s;, we can relax Formulation (B) as:

max w(v)

(-
<
RS
I
~

<.
Il
—

s.t. 6)
vij =1,

M=

1
<ol <1,0<0l, <1 v

O .

Formulation (B) is a relaxation LP, which can determine
the worst failure scenario, causing the highest MCU. Those
branches with M CU <1 will be pruned. Those unexplored
switches is visited continually. The process is repeated until
a failure scenario is found such that M C'U >1. This indicates
that the control plane with the current setting fails to accom-
modate the failure scenario. The search procedure solves
at most as many LPs (Formulation (B)) as the number of
uncovered switches in the network to find the worst failure
scenario. That is, the number of the explored branches is at
most the same as the number of uncovered switches. If all
MCUs solved by those LPs are lower than 1, it means that
the design of the control plane can accomodate to all given
failure scenarios.

4.3 Augmenting capacities to existing controllers

In this section, we discuss how our validation framework
can guide the capacity augmentation to the control plane.
The capacity of a set of given controllers can be extended
incrementally, such that all failure scenarios can be han-
dled after the capacity augmentation. The augmentation
process needs to consider two goals, enabling M CU <1 and
minimizing the additional cost of augmentation. The aug-
mentation problem is the development of Formulation (I);
hence, we formalize the problem of capacity augmentation
as follows:

(pj+0;)(1—v]) >
|S—s7| |S7]

*
E TgMy; + g riMyj
z=1 i=1

bij(1—-vj;) > my;
M
> mi =1
i=1

In Formulation (), the set V' contains all failure scenarios.
We increase the capacity of controller ¢; by §;. Let ¢; denote
the cost of an unit capacity. The first constraint captures that
the number of flow requests received by controller c¢; should
not exceed its capacity p;+0; after augmentation. The out-
ermost min can minimize the cost of capacity augmentation.

Inspired by the solution of Formulation (0l), we use
an iterative approach to solve Formulation (@), and then
guide the capacity augmentation. In each iteration, we first
identify the worst failure scenario, according to the method
in Section E2. Then, we resolve the problem of augmenting
capacities under the worst failure scenario and add the
calculated capacities to those involved controllers. In the
next iteration, we would continue to solve the validation
problem in Formulation (I) to identify the worst failure
scenario after updating the capacity of the control plane. The
iterative process continues until the vailidation result shows

min max min
630 veV

M
> pid;
j=1

Controller

OpenFlow
Switch

Secure Link Data Link

Fig. 2. A SDN testbed consists of Pica8 switches and ONOS controllers
under the Abilene backbone topology.

MCUK]1. The iterative solution works well in practice for
the augmentation of capacity.

5 PERFORMANCE EVALUATION

In this section, we demonstrate the ability of our validation
framework through experiments on a SDN testbed and ex-
tensive simulations on two practical and typical topologies.

5.1 Experiments on a SDN testbed

We build a small-scale SDN testbed, employing the open-
source ONOS controller platform, Falcon 1.5.0 [14], and the
SDN switches, Pica8 P-3297 [I5]. The SDN switch realizes
the industry-leading OpenFlow 1.4 protocol through the
integration of Open vSwitch (OvS) 2.0. Those OpenFlow
switches are interconnected according to the Abilene back-
bone topology [I2]. Furthermore, we adopt the real traffic
traces of the Abilene backbone network on April 14, 2004
[16], and inject them into our testbed. The traffic data is
recorded every five minutes. Therefore, we produce flow
requests every five miniutes based on the flow record from a
source to a destination in the traffic matrix. We implemented
the validation framework, which is written in Java. The
validation framework collects the number of flow requests
from active controllers. Note that our validation framework
can be applied to any traffic data. In SDN, the control
plane calculates the routing path for each new arrival flow.
Therefore, if there is a flow record, the related source switch
sends a flow request to its master controller for configuring
the routing path. The capacity of each controller is set as 500
since the traffic traces indicate that the number of received
flow requests per second is not too many.

We first verify the performance of the control plane with
three controllers against failures. We can see from Fig.
that the MCU fluctuates around 40% when no failures occur.
Meanwhile, Fig. indicates that the design of the control
plane with 3 controllers is resilient to all scenarios of one
failed controller. In this case, the MCU fluctuates around
55%. However, the control plane fails to accommodate all
failure scenarios of two controllers since the MCU exceeds
1 at certain moments in that day. Furthermore, we consider
another setting of our testbed with four controllers where
the network topology is shown in Fig. B. As shown in Fig.
B(b), the MCU always fluctuates around 60%; hence, the
control plane can accommodate all failure scenarios of two
controllers. However, the MCU exceeds 1 at some moments,

312 312
= =
5 1% z 5 AP ittt T
7 o
g 2failures S 3 falres
Z 08 - - Liailue 508 - - - 1failure
T No failures B —— Nofailures
S o6 vor, Vv o8 A
€ LT R A PRI et MG g
S Q
8 o
£ 04 £ 04 ras St
5 >
E = "
% oo ‘ ‘ ‘ 8 o2
= 00:00 06:00 12:00 18:00 2359 = :00 06:00 12:00 18:00 23:59
Time Time

(a) There are three controllers. (b) There are four controllers.

Fig. 3. The impact of the failure scenarios on the MCU on the SDN
testbed.

when three controllers fail simultaneously. This indicates
that the control plane is not resilient to failures of three
controllers at the worst case.

In addition, Fig. B shows that the MCU always varies
over the time slots in one day. In each time slot, we can
get a MCU among all controllers. Furthermore, a robust
control plane needs to ensure M CU<1 across all time slots
in the whole day. The fluctuation is caused by the varied
number of flow requests. More precisely, for scenarios of
three simultaneous failures, the MCU is always lower than 1
from 6 am to 12 am but is higher than 1 from 12 am to 6 pm,
as shown in Fig. B(b]. Note that each switch generates flow
requests according to the real trace in our testbed validation.
Furthermore, for the case of other real applications, we
predict the flow requests using many existing methods, such
as the exponential moving average method [[2].

5.2 Evaluations based on large-scale simulations

In this section, we evaluate our validation framework and
the failure recovery strategies by large-scale simulations.

5.2.1

We further conduct large-scale simulations using two prac-
tical and typical topologies, a campus network [I7], and
a datacenter topology of a 16-ary fat-tree [I8]. The former
topology contains 100 switches, 397 links and 200 servers.
The latter topology utilizes 320 switches, 3072 links and 1024
servers. All LPs and IPs in our proposals are resolved by
CPLEX. Each server generates 500 flow requests per second
on average.

When there is no failed controller, the utilization of the
whole control plane is about 50%. The number of flow
requests and the capacity of a controller can be adjusted
in practice. Different settings of such two factors determine
the number of controllers employed by the control plane,
however, do not influence the effectiveness of our valida-
tion framework. To indicate that our validation framework
can accommodate a rich set of failure recovery strategies,
we compare four failure recovery strategies. They are the
MM-election strategy, the RB-election strategy, the optimal
solution (using CPLEX to solve the Integer Programming),
and the prior election strategy. The prior election strategy
selects a slave controller in turn to replace the initial master
controller, when the master controller of a switch fails.

The settings of simulations

'e- 60K Capacity
-5~ 70K Capacity
== 80K Capacity
——90K Capacity
—+— 100K Capacity

-©- 10K Capacity
-E 20K Capacity
== 30K Capacity
—— 40K Capacity
—+— 50K Capacity

%3

10

W~

Z by A

e
N

g
=
=N

Maximum Controller Utilization (MCU)

Maximum Controller Utilization (MCU)
=

o
e
o

w
oo

9 o 11 12 13 14 15

5 6 7 8
The number of controllers The number of controllers

(a) The campus network. (b) The datacenter topology.

Fig. 4. The impact of the number of controllers on the MCU under varied
settings of the controller capacity.

5.2.2 Validating the design of a control plane

We verify if the design of a control plane meets the demand
of the MCU, under different settings of the amount and
capacity of controllers.

The campus network. The number of controllers de-
ployed in this campus network increases from 3 to 10, while
each controller manages the same number of switches as
possible. The capacity of each controller changes from 10k to
50k. Fig. plots the validation results of the control plane.
If the design demand is that the MCU should be lower than
70% when no failures occur, the control plane needs at least
4 controllers, and each controller has the capacity of 50K.
Accordingly, 10 controllers, each of which has the capacity
of 20K, are also enough to meet the design demand. In
addition, if the control plane requires that the MCU does not
exceed 40%, 5 controllers are enough to meet the demand
where each controller has the capacity of 50K.

The datacenter topology. To reflect the difference in the
amount of flow requests sent out by each switch, the number
of flow requests resulting from each server is randomly set
from 100 to 1000. The number of controllers varies from 8
to 15, and the capacity of each controller increases from 60k
to 100k, Fig. Eb) shows the changing trend of the MCU
with the increase of the number of controllers. We can see
from Fig. that the MCU decreases as the number of
controllers increases, and a lower MCU is achieved when
each controller has higher capacity. Furthermore, the val-
idation results can guide the design of the control plane.
For example, if the demand of interest is that the MCU is
under 60%, Fig. E(b) indicates that the control plane requires
at least 11 controllers, and the capacity of each controller
should be 100K. However, the setting of 15 controllers is also
sufficient to meet the demand of interest if each controller
has the capacity of 80K.

5.2.3 Validation across failure scenarios

In this section, we validate the performance of the control
plane across various failure scenarios. The key issue is to
find the worst failure scenario. Note that the control plane
can not cope with the simultaneous failure of three con-
trollers in the worst case when each switch is only assigned
one master controller and two slave controllers. Here, the
three controllers of a switch may fail at the same time. In this
case, the switch would not be covered by any one controller.
Therefore, we verify if the design of a control plane can meet
the demand of utilization under the 1-failure and 2-failures

10

~
~

[Prior e\e‘ction
[SSXY MM-election

L RB-election
[Optimal solution

[Prior e\e‘ction
[SSXY MM-election

| ZZZ2 RB-election
[Optimal solution

—
n
—
n

H
T

H
T

e
«»
T
o
o«
T

o
o

The hightest MCU across all failures
The hightest MCU across all failures

1-failure 2-failure 1-failure 2-failure

(a) Validation for the campus network. (b) Validation for the datacenter net-
work.

Fig. 5. The highest MCU across all failures under different failure recov-
ery strategies.

1800 1800

T
1 . MM-election -
600 - 7 RB-election 7

1400 |- C——2 Optimal solution -

T
mmmm MM-election
[=== RB-election
1400 - C——2 Optimal solution -

1600
1200 [R 1200 R
1000 [R 1000 R
800 - 800 |-
600 - 600 |-

400 - 400 |

0

1-failure

The total running time (ms)
The total running time (ms)

200
0]

1-failure

2-failure 2-failure

(a) Validation for the campus network. (b) Validation for the datacenter net-
work.

Fig. 6. The total running time of validation across all failures under
different failure recovery strategies.

scenarios. In addition, the control plane that maintains more
slave controllers for each switch can resist the simultaneous
failure of more controllers.

Figure B indicates the highest MCU across all failures
under different failure recovery strategies. Fig. and Fig.
b(b) plot the validation results across all 1-failure and 2-
failures scenarios in the campus network and the datacenter
network, respectively. The highest MCUs, achieved by our
MM-election and RB-election strategies, are obviously lower
than prior election strategy, and are very close to the optimal
solution.

Fig. B shows the total running time of validation across
all failures under different failure recovery strategies. Figs.
and reflect the total validation time in the campus
network as well as the datacenter network, respectively. We
can see that our MM-election strategy significantly saves
the running time than our RB-election (solving LPs) and
the optimal solution (solving IPs) strategies. Moreover, as
the network scale increases, the advantage of the running
time of our MM-election strategy would be more obvious,
especially when a failure scenario causes more uncovered
switches. That is, our MM-election strategy takes less time
to re-elect the new master controller for each uncovered
switch. This makes the control plane can quickly (online)
adapt to various failure scenarios. Although the validation
can be offline, the failure recovery is required to make a
decision online, which is latency-critical. Next, we further
report the details of the validation under our MM-election
strategy since it almost achieves the similar performance

11

- = - Prior election
—— MM-election
' Optimal solutiol

2| - = = Prior election
= MM-election
= Optimal solutiol

1.8

| ol i
N, P b W s

Maximum Controller Utilization (MCU)
© o o

Maximum Controller Utilization (MCU)

- = - Prior election
= MM-election
'+ Optimal solutiol

- = = Prior election
= MM-election
2 ''1e Optimal solutio

2.2
1.3

1.2 -

Maximum Controller Utilization (MCU)
Maximum Controller Utilization (MCU)

2 4 6 8 10 10 20 30 40
The failed controller The failure scenarios

(b) Scenarios of two simultaneous fail-
ures.

(a) Scenarios of one failure.

Fig. 7. Finding the worst failure scenarios, under different failure recov-
ery strategies in the campus network.

with the optimal solution, while exhibiting considerably
lower time complexity than the optimal solution.

Validation in the campus network. In this section, the
campus network employs 10 controllers, each of which is
set to process at most 20k flow requests per second. Fig.
plots that our MM-election strategy achieves the same
MCUs as that of the optimal strategy under the scenarios
of one failure. The similar results can be observed in Fig.
V(b] when the MCUs are lower than 1 under the scenarios
of two simultaneous failures. However, the MM-election
strategy achieves higher MCUs than the optimal strategy
when the MCUs are higher than 1 in some failure scenarios.
Meanwhile, in our experiments, we note that those peak
values appear in Fig. [{b] when the failure scenarios make
the master and multiple salve controllers of some switches
fail at the same time. In this case, those switches ony can
be taken over by the controllers that have already exhibited
high utilization. Furthermore, Fig. @ reflects also that our
MM-election strategy achieves significantly lower MCUs
than the prior election strategy under various failure sce-
narios.

Validation in the datacenter network. For processing a
large amount of flow requests in a datacenter, the control
plane employs 13 controllers, each of which can deal with
80k flow requests per second. The evaluation results are

TABLE 2
Iterative capacity augmentation for the campus network.

Iteration Validation Step Augmentation
Solu- Step
tion
Iteration | MCU The worst Identified New (old)
step scenario Con- capacities
troller
1 1.275 c7 and cg cg 25.5K (20K)
2 1.25 c1 and c19 co 25K (20K)
3 1.2 c3 and ¢4 co 24K (20K)
4 1.175 c2 and ¢4 c3 23.5K (20K)
5 1.15 co and c3 c1 23K (20K)
6 1.1 c3 and c5 c4 22K (20K)
7 1.05 Cc1 and Cc2 C10 21K (ZOK)
8 1.05 cg and cg cr 21K (20K)
9 1.05 c7 and cg c6 20.5K (20K)
10 1.0 - - -

12 10 20 30 40 50 60 70

4 6 8 10
The failed controller The failure scenarios

(b) Scenarios of two simultaneous fail-
ures.

(a) Scenarios of one failure.

Fig. 8. Finding the worst failure scenarios, under different failure recov-
ery strategies in the datacenter network.

plotted by Fig. B@). It is clear that all MCU do not exceed 1,
when adopting our MM-election strategy. This means that
the current design of the control plane can cope with all 1-
failure scenarios under our MM-election strategy. Fig. B(b],
however, indicates that some scenarios of two failures cause
that the MCUs exceed 1. Thus, the control plane can not
withstand the worst scenario of two failures even adopting
the optimal strategy. Moreover, we find that the highest
MCUs are not the same under different failure recovery
strategies in Fig. B(b). The highest MCU is 1.315 and is
achieved in the 76th failure scenario with our MM-election
failure recovery strategy. However, when the control plane
employs the prior failure recovery strategy, our validation
framework identifies the 73th failure scenario as the worst
case with the MCU of 1.79. Therefore, our validation frame-
work closely interdepends to the employed failure recovery
strategy , and it is critical to determine the failure recovery
strategy before conducting the validation.

5.2.4 Guiding the augmentations of capacities

In Section 73, we have found that the design of the control
plane can not cope with all failure scenarios of two simul-
taneous controllers in the campus network even adopting
our MM-election failure recovery strategy. To meet the de-
mand of interest, Table B illustrates the iterative solution to
incrementally augment the capacities of the controllers in
the campus network.

The iteration procedure consists of two steps, including
a validation step and an augmentation step. The first step
verifies if MCU<1. When MCU>1, the validation step
will identify the controller with the maximum utilization
and the related worst failure scenario. For example, in the
first row of Table B, the controller cg has the maximum
utilization and the worst failure scenario means that con-
trollers c7 and cg fail simultaneously. The second step is to
minimize the augmentation cost of the identified controller,
while coping with the worst failure scenario. Recall that the
capacity of controller cg is 20K at the beginning. To cope
with the simultaneous c; and cg failures, the capacity of
controller cg should be added at least 5.5K. Then, in the next
validation step, another MCU would appear. In this case,
the new worst failure scenario would be identified and the
augmentation step would be conducted again. The iteration
terminates when M CU<1 in the validation step. In addi-

tion, some practical constraints can be easily incorporated
to the augmentation step.

6 RELATED WORK

Chang et al. proposed the robust validation of network de-
signs [12], which aims to validate that the network designs
provide assurable performance in a wide-area network.
However, it is obvious that the proposed method is not
applicable to our problem because it focuses on bounding
worst-case link utilizations in the data plane, which is
orthogonal to our work. In this paper, we focus on vali-
dating the worst-case performance of the control plane in
SDN. Furthermore, we design two efficient failure recovery
stratigies for the control plane.

Distributed SDN control plane: At current, there have
been many researches on the design of distributed control
plane in SDN. The Onix [A] distributed controller partitions
application and network state across multiple controllers us-
ing distributed storage. Hyperflow [7] is an SDN controller
where network events are replicated to the controller repli-
cas using a publish-subscribe messaging paradigm among
the controllers. ONOS [B] is an experimental controller
platform that provides a distributed, but logically central-
ized, global network view and fault tolerance by using a
consistent store for replicating application state. Panda et al.
present the design of a simple coordination layer (SCL) that
can seamlessly turn a set of single-image SDN controllers
into a distributed SDN system, based on the eventual cor-
rectness [B]. Current controllers can manage those switches
by using either a separate control network (out-of-band
control) [#] or using the same networks as the one being
controlled (in-band control). In this paper, we focus on the
distributed control plane and just consider the out-of-band
control mechanism between the control plane and the data
plane. We leave the validation on the hierarchical control
plane [I9][20] and the control plane adopting the in-band
control mechanism [8] as our future work.

Controller fault-tolerance: There have been several re-
searches on the controller fault-tolerance, whose main con-
cern is how to ensure consistency under controller failures.
Statesman [21] takes the approach of allowing incorrect
switch state when a master fails. Ravana [4] is a fault-
tolerant SDN controller platform that processes the con-
trol messages transactionally and exactly once (at both the
controllers and the switches). In addition, some researchers
study the problem of dynamic controller provision [22], [23],
[74], [25], which can dynamically re-assigned controllers
to switches based on the variations of network states.
However, our validation framework is able to verify if the
control plane offers assurable performance across uncertain
failures. Furthermore, our UMR is to re-select a new master
controller for the switch from its slave controllers after
assigning the master and slave controllers to each switch.
Therefore, the dynamic controller provision is orthogonal to
our work.

7 CONCLUSION

Little is known about how to validate whether the control
plane offers assurable performance, especially across vari-
ous failures. In this paper, we develop a general framework

12

to derive the worst-case performance of the control plane
under any failure recovery strategy, across various failure
scenarios. We prove that designing an optimal recovery
strategy is NP-hard, and further design two approximation
solutions to minimize the MCU under failures. We then
develop efficient methods to find the worst failure scenario,
which leads to the highest MCU among all failure scenarios.
Moreover, we show how our validation framework can
effectively augment the capacity of the control plane. The ex-
tensive evaluations via a testbed and large-scale simulations
demonstrate the promise and effectiveness of our design.

ACKNOWLEDGMENTS

This work is partially supported by the National Natural
Science Foundation for Outstanding Excellent young schol-
ars of China under Grant No.61422214, National Natural
Science Foundation of China under Grant Nos.61772544
and U1536202, National Basic Research Program (973 pro-
gram) under Grant No.2014CB347800, the Hunan Provincial
Natural Science Fund for Distinguished Young Scholars
under Grant No.2016JJ1002, and the Guangxi Cooperative
Innovation Center of cloud computing and Big Data under
Grant Nos.YD16507 and YD17X11.

REFERENCES

[1] S.Jia, X. Jin, G. Ghasemiesfeh, J. Ding, and J. Gao, “Competitive
analysis for online scheduling in software-defined optical wan,”
in Proceedings of IEEE INFOCOM, May 2017.

[2] W. Ma, O. Sandoval, J. Beltran, D. Pan, and N. Pissinou, “Traffic
aware placement of interdependent nfv middleboxes,” in Proceed-
ings of IEEE INFOCOM, May 2017.

[3] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,
B. Lantz, B. O’Connor, P. Radoslavov, and W. Snow, “Onos:
towards an open, distributed sdn os,” in Proceedings of ACM
HotSDN, Chicago, Illinois, August 2014.

[4] N. Katta, H. Zhang, M. Freedman, and]J. Rexford, “Ravana:
controller fault-tolerance in software-defined networking,” in Pro-
ceedings of ACM SOSR, June 2015.

[5] A.Panda, W. Zheng, X. Hu, A. Krishnamurthy, and S. Shenker,
“Scl: Simplifying distributed sdn control planes,” in Proceedings of
14th USENIX NSDI, March 2017.

[6] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski,
M. Zhu, R. Ramanathan, Y. Iwata, H. Inoue, T. Hama et al., “Onix:
A distributed control platform for large-scale production net-
works.” in Proceedings of USENIX OSDI, Vancouver, BC, Canada,
October 2010.

[7] A.Tootoonchian and Y. Ganjali, “Hyperflow: A distributed control
plane for openflow,” in Proceedings of USENIX INM/WREN, SAN
JOSE,CA, April 2010.

[8]]. Xie, D. Guo, X. Li, Y. Shen, and X. Jiang, “Cutting long-tail
latency of routing response in software defined networks,” IEEE
Journal on Selected Areas in Communications, vol. PP, no. 99, pp. 1-1,
2018.

[9] D. Bertsimas, D. B. Brown, and C. Caramanis, “Theory and appli-
cations of robust optimization,” SIAM Review, vol. 53, no. 3, pp.
464-501, 2011.

[10] H. Wang, H. Xie, L. Qiu, Y. R. Yang, Y. Zhang, and A. Greenberg,
“Cope: Traffic engineering in dynamic networks,” in Proceedings of
ACM SIGCOMM, September 2006.

[11] D. Bertsimas and V. Goyal, “On the power and limitations of
affine policies in two-stage adaptive optimization,” Mathematical
programming, vol. 134, no. 2, pp. 491-531, 2012.

[12] Y. Chang, S. Rao, and M. Tawarmalani, “Robust validation of
network designs under uncertain demands and failures,” in Pro-
ceedings of 14th USENIX NSDI, March 2017.

[13] D. P. Williamson and D. B. Shmoys, The Design of Approximation
Algorithms. Cambridge University Press, 2011.

(14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

“This wiki documents the current development version of
onos (master),” [Online]. Available: https://wiki.onosproject.org/
display/ONOS/|, accessed April 2018.

“Pica8 p-3297 white pages.” [Online]. Available: https://www:.
pica8.com/wp-content/uploads/pica8-datasheet-48x1gbe-p3297|
ppdi, accessed April 2018.

“Abilene traffic matrices.” [Online]. Available: http:
/ /www.maths.adelaide.edu.au/matthew.roughan/project/
traffic_matrix/, accessed April 2018.

H. Xu, Z. Yu, C. Qian, X. Li, and Z. Liu, “Minimizing flow statistics
collection cost of sdn using wildcard requests,” in Proceedings of
IEEE INFOCOM, May 2017.

M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commod-
ity data center network architecture,” in Proceedings of the ACM
SIGCOMM, August 2008.

C. Chen, C. Liu, P. Liu, B. T. Loo, and L. Ding, “A scalable multi-
datacenter layer-2 network architecture,” in Proceedings of ACM
SOSR, 2015.

L. Fang, E. Chiussi, D. Bansal, V. Gill, T. Lin, J. Cox, and G. Ratter-
ree, “Hierarchical sdn for the hyper-scale, hyper-elastic data center
and cloud,” in Proceedings of ACM SOSR, 2015.

P. Sun, R. Mahajan,]J. Rexford, L. Yuan, M. Zhang, and A. Arefin,
“A network-state management service,” Acm Sigcomm Computer
Communication Review, vol. 44, no. 4, pp. 563-574, 2014.

A. Dixit, F. Hao, S. Mukherjee, T. Lakshman, and R. Kompella,
“Towards an elastic distributed sdn controller,” in Proceedings of
ACM HotSDN, 2013.

A. Krishnamurthy, S. P. Chandrabose, and A. Gember-Jacobson,
“Pratyaastha: An efficient elastic distributed sdn control plane,”
in Proceedings of ACM HotSDN, 2014.

M. E Bari, A. R. Roy, S. R. Chowdhury, Q. Zhang, M. F. Zhani,
R. Ahmed, and R. Boutaba, “Dynamic controller provisioning in
software defined networks,” in Proceedings of IEEE CNSM, 2013.
T. Wang, F. Liu, J. Guo, and H. Xu, “Dynamic sdn controller assign-
ment in data center networks: Stable matching with transfers,” in
Proceedings of IEEE INFOCOM, April 2016.

Junjie Xie Junjie Xie received the B.S. degree
in computer science and technology from the
Beijing Institute of Technology, Beijing, China,
in 2013. He received the M.S. degree in man-
agement science and engineering from the Na-
tional University of Defense Technology (NUDT),
Changsha, China, in 2015. He is currently a
Ph.D. student in NUDT, from 2016. He is also a
joint Ph.D. student in the University of California,
Santa Cruz (UCSC), USA, from October 2017.
His study in the UCSC is supported by the China

Scholarship Council (CSC). His research interests include distributed
systems, software-defined networking and edge computing.

Deke Guo Deke Guo received the B.S. degree
in industry engineering from the Beijing Uni-
versity of Aeronautics and Astronautics, Beijing,
China, in 2001, and the Ph.D. degree in manage-
ment science and engineering from the National
University of Defense Technology, Changsha,
China, in 2008. He is currently a Professor with
the College of Information System and Manage-
ment, National University of Defense Technol-
ogy, and a Professor with the School of Com-
puter Science and Technology, Tianjin Univer-

sity. His research interests include distributed systems, software-defined
networking, data center networking, wireless and mobile systems, and
interconnection networks. He is a senior member of the IEEE and a
member of the ACM.

13

Chen Qian Chen Qian is an Assistant Profes-
sor at the Department of Computer Engineer-
ing, University of California Santa Cruz. He re-
ceived the B.Sc. degree from Nanjing Univer-
sity in 2006, the M.Phil. degree from the Hong
Kong University of Science and Technology in
2008, and the Ph.D. degree from the University
of Texas at Austin in 2013, all in Computer Sci-
ence. His research interests include computer
networking, network security, and Internet of
Things. He has published more than 60 research

papers in highly competitive conferences and journals. He is a member

of IEEE and ACM.

Bangbang Ren Bangbang Ren received the
B.S.degree and M.S.degree in management sci-
ence and engineering from National University
of Defense Technology,Changsha,China,in 2015
and 2017. He is currently a Ph.D. student in
NUDT. His research interests include software-
defined network,data center network and net-
work function virtualization.

Honghui Chen Honghui Chen received the MS
degree in operational research and the PhD de-
gree in management science and engineering
from the National University of Defense Tech-
nology, Changsha, China, in 1994 and 2007,
respectively. Currently, he is a professor of In-
formation System and Management, National
University of Defense Technology, Changsha,
China. His research interests include information
system, cloud computing and Information Re-
trieval.

https://wiki.onosproject.org/display/ONOS/
https://wiki.onosproject.org/display/ONOS/
https://www.pica8.com/wp-content/uploads/pica8-datasheet-48x1gbe-p3297.pdf
https://www.pica8.com/wp-content/uploads/pica8-datasheet-48x1gbe-p3297.pdf
https://www.pica8.com/wp-content/uploads/pica8-datasheet-48x1gbe-p3297.pdf
http://www.maths.adelaide.edu.au/matthew.roughan/project/traffic_matrix/
http://www.maths.adelaide.edu.au/matthew.roughan/project/traffic_matrix/
http://www.maths.adelaide.edu.au/matthew.roughan/project/traffic_matrix/

	Introduction
	Motivation and Preliminaries
	Motivation of robust validation
	Preliminaries
	The uncertain failures of the control plane
	Modeling the adaptation of the control plane
	The performance metrics of the control plane
	Predicted requests

	Formalizing robust validation of distributed SDN control plane
	Framework of robust validation
	Concrete validation problems
	Formalizing the failure recovery strategy
	Making validation tractable

	Validation of distributed control plane
	Approximating the optimal recovery strategy
	A Rounding-based solution for UMR
	A lower-complexity solution using Double-Max

	Finding the worst failure scenario
	Augmenting capacities to existing controllers

	Performance Evaluation
	Experiments on a SDN testbed
	Evaluations based on large-scale simulations
	The settings of simulations
	Validating the design of a control plane
	Validation across failure scenarios
	Guiding the augmentations of capacities

	Related work
	Conclusion
	References
	Biographies
	Junjie Xie
	Deke Guo
	Chen Qian
	Bangbang Ren
	Honghui Chen

