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Abstract—The emerging deployment of geographically dis-
tributed data centers (DCs) incurs a significant amount of
data transfers over the Internet. Such transfers are typically
charged by Internet service providers with the widely adopted
qth percentile charging model. In such a charging model, the time
slots with top (100 — q) percent of data transmission do not
affect the total transmission cost and can be viewed as “free.”
This brings the opportunity to optimize the scheduling of inter-
DC transfers to minimize the entire transmission cost. However,
a very little work has been done to exploit those “free” time slots
for scheduling inter-DC transfers. The crux is that existing work
either lacks a mechanism to accumulate traffic to “free” time
slots, or inevitably relies on prior knowledge of future traffic
arrival patterns. In this paper, we present TrafficShaper, a new
scheduler that shapes the inter-DC traffic to exploit the “free”
time slots involved in the gth percentile charging model, so as to
reduce or even minimize the transmission cost. When shaping
traffic, TrafficShaper advocates a simple principle: more traffic
peaks should be scheduled in “free” time slots, while less traffic
differentiation should be maintained among the remaining time
slots. To this end, TrafficShaper designs a pricing-aware control
framework, which makes online decisions for inter-DC transfers
without requiring a prior knowledge of traffic arrivals. To verify
the performance of TrafficShaper, we conduct rigorous theoretical
analysis based on Lyapunov optimization techniques, large-scale
trace-driven simulations, and small-scale testbed implementation.
Results from rigorous mathematical analyses demonstrate that
TrafficShaper can make the transmission cost arbitrarily close
to the optimum value. Extensive trace-driven simulation results
show that TrafficShaper can reduce the transmission cost by
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up to 40.23%, compared with the state-of-the-art solutions.
The testbed experiments further verify that TrafficShaper can
realistically reduce the transmission cost by up to 19.38%.

Index Terms— Inter-datacenter network, Lyapunov optimiza-
tion, percentile pricing model.

I. INTRODUCTION

ARGE-SCALE organizations, such as Google, Microsoft,

and Amazon, have made huge investments in building
geo-distributed data centers (DCs) to deliver their online ser-
vices [1], [2]. A key feature of these services is that they con-
tinuously produce large volumes of data transmission among
different DCs [3]. A recent survey [4] highlighted that 70% of
the IT firms have huge data transmission among DCs, ranging
from 1Gbps to 10Gbps, nearly half having SGbps or more
— i.e., from 330 TB to 3.3 PB a month. Such huge data
transmission incurs substantial cost for the service provider.
In fact, the annual transmission cost is of up to hundreds of
millions of dollars, which approximately equals to the power
cost of DCs [5]. From the perspective of service provider,
the fundamental objective is to reduce, or even minimize the
transmission cost incurred by the inter-DC transfers.

Service providers typically purchase bandwidth from Inter-
net Service Providers (ISPs) for their inter-DC transfers, while
ISPs charge service providers based on the widely adopted g-th
percentile charging model [6]-[9]. Such charging model can
be described as follows: In a charging period of N time slots,
the ISP samples the bandwidth usage that a service provider
consumed in every time slot and sorts them in ascending
order (each time slot is typically 5 minutes). Then, the g-th
percentile of all samples is taken as the billed bandwidth.
For example, if 95-th percentile charging is in use and the
charging period is 30 days, then the billed bandwidth exactly
equals to the bandwidth usage of the 8208-th sorted time
slot (95% x 30 x 24 x 60/5 = 8208). Clearly, in such g-th
percentile charging model, the time slots with top (100 — q)
percent of data transmission actually do not affect the total
transmission cost, and can be viewed as “free”. This provides
an opportunity to reduce service provider’s transmission cost
by carefully scheduling their inter-DC transfers.

Further, the diverse time-sensitivities exhibited by different
inter-DC transfers also motivate the design of new scheduling
methods. For examples, interactive transfers are most sen-
sitive to delay, larger transfers require to be done within
several hours, while background transfers are without strict
time requirements [1]-[3], [10]. Hence, we believe that,
the transmission cost of a service provider can be effectively
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reduced, if inter-DC traffic can be accumulated to those “free”
time slots as much as possible, while satisfying the deadline
requirement of each traffic. In such a case, the optimal solution
would be to schedule all “free” time slots as traffic peaks, and
at the same time maintain no traffic differentiation among the
remaining time slots.

Intuitively, it may be a step towards the right direction
to design an offline inter-DC transfer scheduling method to
obtain the optimal solution. However, such offline optimization
inevitably relies on prior knowledge of traffic arrival patterns,
which are actually unavailable in practice. To the best of
our knowledge, no existing methods are in place to exploit
the “free” time slots in the g-th percentile charging model
to minimize the transmission cost as well as to guarantee
deadlines for inter-DC transfers. First, state-of-the-art methods
on inter-DC traffic either lack a mechanism to accumulate
traffic to “free” time slots [10], [11], or cannot guarantee the
deadlines of inter-DC transfers [12]. Second, although some
Internet traffic scheduling methods investigated the impact
of the percentile charging model, they either require prior
knowledge of future traffic demand [7], or assume uniform
deadline requirements for all traffic [13].

In this paper, we propose TrafficShaper, a new sched-
uler that aims to minimize the transmission cost of inter-
DC transfers by fully exploiting the advantages of “free”
time slots in g-th percentile charging model and the diverse
deadline requirements among inter-DC transfers. TrafficShaper
advocates to shape the inter-DC traffic to construct more
traffic peaks during those “free” time slots, and maintain
less traffic differentiation among the remaining time slots.
To this end, TrafficShaper designs a pricing-aware online
control framework to practically make scheduling decisions
for inter-DC transfers, without prior knowledge of the traffic
arrival patterns. Specifically, a stochastic optimization problem
is formulated to guide the design of such control framework.
This problem takes into account different percentile values
across DCs, practical constraints of heterogeneous link capa-
bilities, and different time-sensitivities of inter-DC transfers.
Nevertheless, it is impractical to obtain an optimal solution
for this problem, due to the unknown information of future
traffic arrivals. This motivates TrafficShaper to transform it
into a relaxed problem, which is then solved by designing
an online control algorithm based on Lyapunov Optimization
techniques [14], [15]. Such relaxation does not have much
of an impact on the optimality of this online algorithm,
in terms of both transmission cost and system stability. More
precisely, results from rigorous theoretical analysis prove that
TrafficShaper can arbitrarily approach the optimal solution
within an O(1/V) gap, where V is a control parameter
representing how much we emphasize the transmission cost
minimization compared to the deadline guarantee. To make
TrafficShaper more practical, we further present a distributed
manner to elaborate how it can be implemented in real-world
inter-datacenter networks. Finally, we evaluate TrafficShaper
using large-scale trace-driven simulations as well as small-
scale testbed implementation. Simulation results show that
compared to the Equal Split (ES) [13] and Shortest-Deadline-
First (SDF) [16], [17] methods, TrafficShaper reduces the
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transmission cost by up to 26.19% and 40.23%, respectively,
while accommodates considerable amount of inter-DC trans-
fers with deadlines guaranteed. The testbed results further
verify that TrafficShaper can practically reduce the transmis-
sion cost by up to 19.38%.

In summary, the main contributions of this paper include:

o We address the challenging problem of minimizing trans-
mission cost under the q-th percentile charging model,
when scheduling a large amount of inter-DC transfers
with diverse time requirements and without any prior
knowledge of future traffic arrival patterns.

o We present TrafficShaper, a new scheduler that exploits
the “free” time slots in q-th percentile charging model
to minimize the transmission cost of inter-DC trans-
fers. Specifically, TrafficShaper employs a pricing-aware
online control framework to schedule inter-DC transfers,
and can provably approach a transmission cost that is
arbitrarily close to optimum.

e« We proceed to design a distributed method for imple-
menting the TrafficShaper scheduler. Specifically, in the
sender side, this distributed method determines how much
bandwidth to be allocated to each flow; and in the receiver
side, it decides the receiving rate for each flow; finally,
the minimal value between sending rate and receiving
rate is chosen as the rate for each flow.

o We conduct extensive trace-driven simulations as well
as a small-scale testbed implementation to evaluate the
performance of TrafficShaper. Both simulation and imple-
mentation results have shown that TrafficShaper is cost-
effective and can provide deadline guarantees for inter-
DC transfers, when compared to the state-of-the-art
methods.

The rest of this paper is organized as follows. Section II
introduces the background and motivation of TrafficShaper.
Section III presents the system model and problem formu-
lation. In Section IV, we describe the key component in
TrafficShaper — pricing aware online control framework.
In Section V, we evaluate and analyze the performance of
TrafficShaper. We discuss current limitations of TrafficShaper
and relevant future research in Section VI. Section VII summa-
rizes the related work and Section VIII concludes this paper.

II. TrafficShaper: BACKGROUND AND MOTIVATION

In this section, we first present the inter-DC network model.
Then, we use an illustrative example to motivate the design of
TrafficShaper. Finally, we show some practical factors faced
by percentile charging model.

A. Inter-DC Network Model

In this paper, we consider an inter-DC network model where
all DCs, geographically distributed across the world, connect
to the ISPs with logical uplinks and downlinks, as shown
in Fig. 1. To complete an inter-DC transfer, each DC only
needs to send data to ISPs, and then the ISPs forward the
data to the destination DC. Many recent studies [18], [19]
have revealed that the ISPs’ networks are non-blocking, and
the network bottlenecks only appear between DCs and ISPs.
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Fig. 2. An illustrative example with one link and four flows whose
information is shown in Fig. 2(a). Assuming the 75-th percentile charging
model is in use, then the billed bandwidth usage incurred by (b) FS is 5;
(c) SDF is 5; (d) ES is 4; (e) optimal schedule is 4. Both FS and ES miss
some flows’ deadlines. Though SDF and optimal schedule accommodates all
flows with deadlines guaranteed, SDF incurs a higher transmission cost than
the optimal schedule.

Such an inter-DC network model is widely used in practice,
and can ease the presentation and analysis due to omitting
the routing details inside the ISP networks. Some routing
proposals [11], [12] are orthogonal to our methods in this
paper, and can further reduce the transmission cost of inter-
DC transfers if combined with our work.

B. A Motivating Example

Instead of directly scheduling inter-DC transfers regardless
of the percentile charging model, an intelligent scheduling
should be pricing-aware. As such, the “free” time slots in
the percentile charging model can be efficiently utilized for
data transmission, and accordingly the transmission cost can
be significantly reduced.

For a better intuition of our problem, we consider an
example in Fig. 2, where a link is capable of serving up to
5 units of data in one time slot, while carrying four flows in a
period of 4 time slots. As shown in Fig. 2(a), the data sizes for
these four flows are 8,4, 1, 4, respectively, while the deadlines
are the end of the 2nd, 3rd, 3rd, 4th time slot, respectively.
Assuming flows arrive at the link at the beginning of each time
slot and the 75-th percentile charging model is in use (second

largest in this case), the billed bandwidth usages for four
scheduling methods are illustrated in Fig. 2(b)-Fig. 2(e). The
default fair sharing ensures fairness among concurrent flows
in a link, which misses one flow’s deadline and incurs high
billed bandwidth usage [20]. Shortest-Deadline-First follows
the shortest- or smallest-first policy [16], [17]. It is effective
in guaranteeing deadlines for the four flows, but results in high
billed bandwidth usage. The recently proposed equal splitting
method mainly considers that all flows can be delayed by a
uniform time D, e.g., one time slot, and splits the arriving
flows into D + 1 sets of equal size [13]. Then each set is
served in one time slot. It can reduce the billed bandwidth
usage with large values of D, but may lead to high deadline
miss rate as well as significant congestion in some time slots,
i.e., it causes flow 1 and flow 2 congested at the second time
slot and misses the deadlines of both flow 3 and flow 4. Finally,
the optimal schedule would make one time slot become the
traffic peak, and maintains no traffic differentiation among
the other three time slots. The time slot of traffic peak is
identified as a “free” time slot, and it does not affect the total
cost based on the percentile charging model. In this case, all
flows can be accommodated with guaranteed deadlines, and
the transmission cost is reduced to 4.

C. Practical Factors Faced by the Percentile Charging Model

The basic g-th percentile charging model encounters three
practical factors when it comes to more general cases. First,
service providers today rely on multiple ISPs to connect their
geographically distributed DCs [21]. The per unit bandwidth
cost as well as the percentiles to be complied to can vary sig-
nificantly across different DCs, due to the regional pricing and
peering competitions among ISPs [22]. Second, ISPs usually
measures both the inbound and outbound traffic, calculates
the percentile billed bandwidth for each direction, and uses
the maximum of these two values [23]. So, both uplink and
downlink bandwidth usage should be jointly considered when
calculating the transmission cost. Third, service provider may
contractually commit to an amount of bandwidth regardless of
whether the committed bandwidth can be used up [24]. Fur-
ther, additional cost occurs when percentile billed bandwidth
exceeds the committed bandwidth.

I1. TrafficShaper: SYSTEM MODEL AND
PROBLEM FORMULATION

In this section, we first describe the system model and then
present the problem formulation.

A. System Model

We consider an inter-DC network where a service provider
runs its service over a set of DCs, M = {dy,da, - ,ds}. For
each DC d;, let UjE and U]I denote the bandwidth capacities
of its uplink /7 and downlink 1!, respectively. We consider
a system that operates in a discrete-time mode, where the
time can be divided into T (I’ € NT) time slots. Each
time slot ¢ (= 0,1,---,7 — 1) has a same duration, e.g.,
5 minutes. Let .S denote the total number of available sessions.
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At time ¢, session s transmits exactly one flow at a rate of
rs(t), with the remaining data size and the time till deadline
being denoted as A4(t) and 74(t), respectively. Actually, such
deadline information can be passed to the transport layer [25].
In such case, let es(t) = Aq(t)/75(t) denote the expected rate
for session s at t. Note here the session s will be closed once
the corresponding flow is finished or past its deadline. Let
xP(t) denote the aggregate bandwidth usage on the uplink

17 of dj at t. It is calculated as z¥(t) = Eses(lE)r (),

where S(ZJE) is the set of flows traversing the uphnk ZE

Similarly, we have z}(t) = ZseS(ZI) rs(t) for the downhnk

lI of d; at t. For each d;, let ¢; denote the percentile that
1t comphes to, let ¢; and Bj; denote the per unit bandwidth
cost and the committed bandwidth, respectively. Consider
that each charging period consists of N time slots, emerging
K =T/N charging periods. At the end of a charging period
k (= 0,1,--- K — 1), the percentile billed bandwidth for
uplink Zf can now be calculated as follows:

bP (k) = Py, (

a¥ (kN), -+ 2 (kN + N — 1)), (1)

where Py, (-) is a function defined as the [ Ofoom N-th largest
number in the bandwidth usage sequence of a charging period.
Similarly, the percentile billed bandwidth for the downlink l;

at charging period £ is calculated as:

bE(k) = Py, (2l (kN), -

af (kN + N —1)). )

Finally, the actual bandwidth that the service provider needs
to pay for its DC d; during charging period k is defined as

b;(k) = max{bJ (k), b} (k), B;}. 3)

Given this definition, we actually need to schedule traffic to
“free” time slots as much as possible, and simultaneously
utilize the committed bandwidth at other time slots with best
efforts, so as to follow the simple principle of “more peak,
less differentiation”.

It is worth noting that even though we mainly focus on
the g¢-th percentile charging method, our model can roughly
support other pricing methods. For example, when ¢ = 100,
our model supports the peak bandwidth pricing that is based
on the maximum bandwidth usage over all time slots in a
charging period. Furthermore, when ¢ = 50, our model can
approximately support the average bandwidth pricing model
that charges customers based on the average bandwidth usage
across all time slots in a charging period.

B. Problem Formulation

We now study the inter-DC transfer scheduling problem
that minimizes the transmission cost, and at the same time
guarantees deadlines for inter-DC transfers. The problem is
stated and formulated as follows.

1) Transmission Cost: For service providers that operate
multiple DCs across the world, one of the most important oper-
ation costs is the transmission cost for a large amount of inter-
DC traffic. Specifically, in charging period k, the transmission
cost is the summation of bandwidth cost incurred by each DC,
ie., Z =1 ¢;jbj (k). In this paper, we define the objective as the
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long term average of transmission cost, which is calculated as
the average cost over all charging periods

**1 M

— 1
CZ;MIEZZ% @
N k=0 j=1

2) Deadline Constraint: Deadline is important for the per-
formance of inter-DC transfers. To complete an inter-DC flow
within its deadline, we require the transmission rate to be
larger than or equal to the expected rate, 7s(t) — es(t) >
0,Vs,Vt. In our formulation, we relax this constraint with its
long term time-average:

=

g&;g;@m—m@hm,w. )
By incorporating this constraint, we are essentially guarantee
that, for every flow that requires es(t), the allocated rate
rs(t) is on average larger than eg(t). It should be noted
that this constraint is a relaxation because that realistic flows
will not last forever. This relaxation is attractive because of
its simplicity in formulating the deadline constraint, yet is
effective to guarantee deadlines in practice [26].

3) Link Capacity Constraint: When scheduling the inter-DC
transfers, both the uplink and downlink bandwidth capacities
of each DC should be satisfied, i.e., 2 Eit) < UE and z; L) <

I V/j,Vt. Specifically, we impose the long- term averaged
aggregate rates with the following inequalities satisfied:

T—-1

1 .

Jim = (1) <UF, (©)
t=0
1 T—-1

Jim > aj(t) < U], V. @

These constraints mean that the long-term averaged aggregate
rates on each DC must not exceed the link capacities. In these
constraints, the temporary overloading is allowed due to the
buffering in switches or routes [27]. It should be noted that the
buffer size (typically 30KB [26]) may not be very large, but the
traffic to be buffered in a stable network should be relatively
little. Otherwise, the network could be overloaded and no
mechanism can avoid packet loss. In such a case, the over-
capacity traffic has to wait at the source nodes until there
is free bandwidth in the network. In our analysis, we mainly
focus on the scenario where the long-term averaged traffic load
generated can be handled by the capacity of the network, such
that we can have a chance to design a proper flow scheduling
scheme to stabilize the network.

4) Decision Variable: For all s € S at each time t,
the allocated rate r4(¢) should be a non-negative value,

rs(t) >0, Vs,Vi. ®)

Given the above objective function and constraints, we now
can formulate the following stochastic optimization P1:

rnianhrn—E ECJ
T—oo L
N k=0 j=1

subject to: Egs. (5)(6)(7)(8).
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Problem P1 is a long-term optimization problem, where the
current control decisions are coupled with the future decisions.
For example, current decisions on inter-DC flow scheduling
may delay excessive flows and hence block the transfer of
future flows. To solve such long-term optimization, one may
design an offline optimal scheduling algorithm, or leverage the
dynamic programming techniques [28]. However, it encounters
two challenges when it comes to realistic networks: (/) The
traffic arrival pattern is usually unknown in advance, yet is
difficult to be accurately predicted; (2) The percentile function
Py;(-) relies on the bandwidth usage over a large number
of time slots in a charging period. These challenges make it
infeasible to identify and use the “free” time slots, and thereby
impractical to reduce or minimize the transmission cost.

IV. TrafficShaper: PRICING-AWARE ONLINE CONTROL
FRAMEWORK

In response to the challenges of problem P1, we take advan-
tage of Lyapunov optimization techniques [14], [15] to design
an online control framework. In particular, this framework is
proved to approach a time-averaged transmission cost that is
arbitrarily close to optimum, while still guaranteeing deadlines
and system stability.

A. Decomposition Using Lyapunov Optimization

We first provide a brief primer on Lyapunov optimization
technique, which has recently received renewed interest in
solving resource allocation problems in both wireless and
wired networks [15], [29]. Lyapunov optimization typically
solves problems in the form of stochastic programming, and
the key idea is to decompose a long-term stochastic optimiza-
tion problem into several sub-problems that can be sequentially
solved in each time slot. To this end, it first transforms
the long-term constraints into well-studied queue stability
problems by introducing a set of actual or virtual queues.
It then defines a non-negative function, called a Lyapunov
function, to measure the aggregate congestion of all queues
in the network. Based on the Lyapunov function, it further
defines a Lyapunov drift to indicate the expected change in
the Lyapunov function from one time slot to the next. Finally,
it adds the Lyapunov drift to the objective of the stochastic
programming and minimizes a supremum bound on such drift-
plus-objective expression, such that the long-term stochastic
optimization problem can be efficiently decomposed into per
time slot sub-problems.

While recognizing the significance of Lyapunov optimiza-
tion, our problem P1 cannot be directly solved with Lya-
punov optimization technique, as the percentile function Py, (-)
imposes tightly coupling among variables of a:f (t) or xjf (t)
over all time slots in a charging period. Thus, we are inspired
to first transform problem P1 to a relaxed optimization prob-
lem P2 that is decomposable. We then decompose the problem
P2 using the Lyapunov optimization techniques [14]. Such
decomposition follows two steps: /) transforming the long-
term constraints (Egs. (5)(6)(7)) into queue stability problems;
2) constructing the drift-plus-cost to divide the relaxed prob-
lem P2 into several sub-problems that can be solved in each

time slot. The drift-plus-cost can actually characterize the cost-
deadline tradeoff.

1) A Relaxed Optimization Problem: To construct a relaxed
problem, we consider that all system information including
azf (t) and x§ (t) cannot be observed till the end of time
slot ¢. In other words, at the end of each time slot ¢,
we only know these information for this time slot ¢ as
well as each of the previous t — 1 time slots. Therefore,
we set z¥(#') = 0 and x§(t’) = 0 for ¢ > t, and
define AZ(t) = Py, (xP([t/NIN), -, aE(t),0,- - ,0) to
indicate the bandwidth that contributes to the percentile
billed bandwidth for uplink lf at time slot ¢ in [t/N |-
th charging period. Specifically, when ¢t = [¢t/N|N +
N — 1, BF(t) is exactly the percentile billed band-
width in \_t/NJ -th charging period Similarly, we define

Lt) = Py, (x (\_t/NJN) z1(t),0 ,0) for downlink
lI7 Define 5]( ) rnax{ﬁE( ) ﬂ%( t), B } and then we have

the following relaxed problem P2

T—1 M
El%g C = Jim Z > " ¢;B;(t) st. Egs. (5)(6)(T)(). (9)
t=0 j=1

Even though problem P2 and P1 have different objectives,
P2 is equivalent to the original problem P1 in terms of the
optimal solution, which is shown in the following theorem.

Theorem 1: The optimal solution of P2 is the same as
that of PI, and the objectives of the two problems satisfy
Zj 1 6B <C<C<NC.

Proof: Please see the Appendix A in the online supple-
mentary material. |

2) Queue-Based Constraints: We construct two groups
of actual queues and one group of virtual queues. Firstly,
to accommodate the constraint in Eq. (5), we construct a group
of virtual queues Q4(t) for each s € S. Initially, we define
Qs(0) = 0,Vs € S, and then update the queues in each time
slot as follows:

Qs(t+1) = max{Qs(t) + es(t) — rs(t),0}, Vs.

These virtual queues take es(t) as input and r4(¢) as output.
They stores the difference in the expected transmission rate
and actual transmission rate. The queue lengths are essentially
historical deviation from expected rates of the inter-DC flows.

Secondly, we construct a group of actual queues Q]E (t) for
the uplink of each DC. When inter-DC flows arrive, they are
actually stored in queue Qf (t) to await be scheduled. The
queueing dynamics are then

QY (t+1) =max{QF(t) — U +z7(t),0}, Vi (11)

For each DC d;, QE( )=0.z; E(t) can be viewed as arrivals
of queue Q¥ (1), while the capa01ty UF can be viewed as the
service rate of such a queue. Add1t10nally, for each d; € M,
we call Qf (t) the backlog at time ¢, as it represents an amount
of output bandwidth that needs to be allocated.

Thirdly, we construct another group of actual queues Q§ (t)
for the downlink of each DC, with the backlog being empty
at time slot 0, i.e., QJI-(O) =0.

QL(t +1) = max{QL(t) -

(10)

Ul +l(t),0}, Vi (12)
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These queues can actually accommodate the constraints in
Egs. (5) (6) (7) if they are stable, as proved in the following.
Theorem 2: Equalities (10) (11) (12) are essentially equiv-
alent to constraints (5) (6) (7) if the following sta-
bility conditions are satisfied: limp_. Qs(T)/T = 0,
limy oo QF(T)/T = 0, limp oo QI(T)/T = 0.
Proof: Please see the Appendix B in the online supple-
mentary material. [ |
3) Characterizing the Cost-Deadline Tradeoff: Let Q(t)
denote the concatenated vector of all virtual and actual queues,
Q) = [Qs(1), Qf (1), Q§ (t)]. Then, we define the Lyapunov
function as follows:

1 (S M M
LQ) =5 D Q.+ _QF M) +> Qi)
s=1 j=1 j=1
(13)

This equality quantitatively reflects the congestion [14] of all
queues. On the premise of all queues having strong stability,
a small value of L(Q(t)) directly implies that queue backlogs
are small. To keep the stabilities of queues, the Lyapunov
function needs to be persistently pushed towards a lower
congestion state. Thus, we are inspired to introduce one-step
Lyapunov drift A(Q(t)) [14], which is the expected' change
of queue backlogs over one time slot.

A(Q(1) = E{L(Q(t + 1)) - L(Q()|Q(1)} -

In addition to stabilize the queue backlog to ensure the
constraints on deadlines and link capacities, we also need to
consider the transmission cost given by the objective function
of the problem P2. In this case, the problem P2 can be
approximately solved by minimizing the drift-plus-cost in each
time slot, which jointly considers the queue backlogs and
the incurred transmission cost. Mathematically, we have the
following sub-problem P3 in each time slot ¢

(14)

M
min A(Q(t)) + VE{D ¢;3;(t)|Q(t)},s.t. Eq. (8). (15)
j=1
where V' is a control parameter that represents an importance
weight on how much we emphasize the transmission cost
minimization, compared to constraints on deadline guaran-
tees (Eq. (5)) and link capacities (Egs. (6) (7)). This provides a
flexible design choices among various tradeoff points between
transmission cost minimization and deadline guarantees. For
example, one may prefer to incur as smaller expected transmis-
sion cost as possible, while keeping A(Q(t)) small to guar-
antee deadlines as well as ensuring the consumed bandwidth
to not exceed the corresponding link capacity.

B. Pricing-Aware Online Control Algorithm (POCA)

It is easy to check that directly minimizing the objective
in Eq. (15) involves unknown backlog information Q(t + 1).

'We assume that the data sizes of all the flows in all time slots are random
variables, and these variables are independent and identically distributed (i.i.d).
Similarly, the deadlines of all the flows in all time slots are also assumed to
be i.i.d. Hence, when we refer to taking expectations of a certain term, e.g.,
Q(t) and c;3;(t), this term contains random variables, and thus is random.
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Algorithm 1

rithm (POCA)

1: In the beginning of each time slot ¢, update the expected
rate es(t) for each flow s based on its remaining data size
and the remaining time to deadline;

2: Given e,(t) and current queue backlogs Q(t), deter-
mine the control decisions rs(¢),Vs € S to mini-
mize the objective Y1) E{Ve;3,(t) + QF (H)xF(t) +
QM2 (MIQ(N)} = 7 E{Qu(t)(rs(t) — es(£)IQ()}
in problem P4.

3: Update the queue backlogs Q(t) according to equalities
(10) (11) (12) and the newly determined decisions.

Pricing-Aware  Online Control  Algo-

We therefore seek to minimize its supremum bound, without
undermining the optimality and performance.

1) Bounding Drift-Plus-Cost: A key derivation is to obtain
the upper bound for the drift-plus-cost, which relies on the
following theorem.

Theorem 3: Assume that there exist certain peak levels of
expected rates €pqz, such that es(t) < emaz,Vs,Vt. Then,
in each time slot t, given any value of Q(t), the drift-plus-
cost can be bounded as follows

M
AQ) + VELY ¢;B,(1)Q()} < H

=1

M S
—Z(@}E (OUFHQI(OU]) =y “E{Qs(t)(rs(t) —es(1)|Q(1)}

M
+ B{Ve;8i(t) + QF ()af (1) + Qf (1)af ()|Q(1)}-

j=1

(16)

where the constant H = 2MUZ,,. + 3SUZ,,.
Umaz = maxj{UjI, UJE}
Proof: Please see the Appendix C in the online supple-
mentary material. |
Given the theorem above, we are essentially solving the
following sub-problem P4 in each time slot ¢.

1 2
+ §Semam’

M
min Y E{Ve;B;(t) + QF (1)=F (1) + QI (1)1 (1) Q(t)}

j=1
s
= E{Qus()(rs(t) = es(1)IQ()} s.t. Eq. 8).  (17)

With the above problem P4, we now can design our POCA
algorithm, as shown in Algorithm 1. In each time slot ¢, based
on the online observation of the queue backlogs Q(t) and the
updated expected rate e4(t),Vs, POCA strives to solve the
problem P4 for the purpose of determining the transmission
rates for all inter-DC flows in time slot . Finally, POCA
updates the queue backlogs Qs(¢), Qf (1), Q§ (t) according
to equalities (10) (11) (12) and the newly determined trans-
mission rates.

To solve problem P4, we need to first know the form
of the term f;(t) = max{B(t),5](t),B;}. Since P4
is solved in each time slot ¢t with knowing all the
past (historical) information, @E (t) can then be expressed as
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Fig. 3. Of(;oqj NT-th largest number

and the (10?00‘1’ N — 1] th largest number respectively, in the sequence
@P([t/NIN), - ,2P(t-1),0, ) Then, the [ %% N'-th largest
number in the sequence (x (lt/N] N) E(t),0,---,0) can be calcu-
lated as ﬁE(t) = max(mln(w (t)) { )

Let w p and w ' denote the [

BT

BE(t) = max(min( j2E, f(t)),wj{E), as shown in Fig. 3.
Note that both w g and w]2 g are constants, because the
sequence (x; (Lt/NJN) o f(t —1),0,---,0) is already
known in tlme slot 7. Snmlarly, we can calculate 51( ) as
max(mm(w]’px;r(t)) ) With the expressions of BE( )
and ﬁf (t), we can easﬂy ‘check that P4 is actually a linear
programming problem and can be solved with classical linear
programming approaches, e.g., simplex and interior point
methods [30]. This implies that our POCA is computationally
efficient, as it only needs to solve a much smaller scale
LP problem P4. Furthermore, P4 can also be solved in a
decentralized fashion, which will be shown in Section IV-C.
2) Performance Analysis: We now analyze the optimality of
POCA algorithm, in terms of a well-balanced tradeoff between
transmission cost minimization and deadline guarantees.
Theorem 4: For any V. > 0, the POCA algorithm can

achieve the following performance guarantee:

T—1 M _
Jim —E{Z > eiBit)} +C., (18)
t=0 j=1
—  H, +VC.
Q< % (19)
where H1 =H+ gM( - 1)Uv2nagc + %M(N - 1)egnax and

C. is the optimal averaged transmission cost (equivalent to
the minimum value in problem P2), ¢ > 0 and Q is the time-
averaged queue length, given as

Q2 lim ilfiE{@E(kNH@’-(kN)}
K K k=0 j=1 ! ’
K—-1 S
+ Jim kz > E{Qs(kN)}

Proof: Please see the Appendix D in the online supple-

mentary material. [ |
Insights: This theorem demonstrates an
O(1/V) gap between the objective C =

limy oo 2E{Y " S0, ¢;B;(t)}  and  the
C, of problem P2. Specifically, by using an arbitrarily
larger V, we can make C' arbitrarily close to the optimum,
while maintaining the virtual queues are stable. As such,
the time-averaged transmission cost C defined in P1 can,

in turn, be bounded by using POCA algorithm, because that

optimum

Fig. 4. An illustrative example of the decentralized implementation of the
POCA algorithm.

C<N C (proved in Theorem 1). Note that the transmission
cost reduction may be achieved at the cost of a larger
deadline miss rate, as Eq. (19) implies that the time-averaged
queue backlogs grows linearly with parameter V. However,
if the total capacity is insufficient to serve all transfer
requests, POCA will strive to reduce the transmission cost
as much as possible while serving all transfer requests.
Furthermore, POCA can also be flexibly extended to enforce
a budget by denying an appropriate amount of transfer
requests [31].

C. Decentralized Implementation of POCA

An alternative way to implement the POCA algorithm is to
leverage a centralized controller across all DCs [1], known as
“centralized way”. More precisely, such centralized way uses
the controller to periodically collect the global information
of all DCs (i.e., U]E and U]E) as well as the associated
parameters (i.e., Q¥ (t), Q(t) and Q,(t)). It then solves the
problem P4 to derive the decisions on how much rate should
be allocated to each inter-DC transfer. Finally, the decisions
are forwarded to the underlying network devices (perhaps
SDN switches) with the purpose of enforcing the bandwidth
allocated to each inter-DC flows via standardized SDN func-
tions (i.e., the MeterTable in OpenFlow).

The centralized way may be efficient; however, it inevitably
faces some practical challenges. First, it involves high com-
putation complexity when solving the problem P4. Compared
to the long-term original problem P1, problem P4 may have
a smaller scale. However, it still has high computational com-
plexity. Furthermore, such complexity significantly increases
as the number of DCs and inter-DC flows grows, as it has
M| x |S]| variables. In fact, the number of DCs is around
0O(10?) and the number of inter-DC flows is around O(10°)
in some production clouds [3], [32]. Second, the centralized
way causes high delay between the time that a time slot
begins and the time that rate decision really works. The
root reason is that it involves substantial communication
overhead to collect the parameters needed for the POCA
algorithm and to forward the decisions to underlying network
as well.

In response to the above challenges, we seek to implement
our POCA algorithm in a decentralized way. Such decentral-
ized implementation is shown in Fig. 4. First, in the beginning
of each time slot ¢, each DC d; € M collects the set
S(IF) of flows on its uplink /”, and then performs a locally
computation to derive a sending rate for each flow issued from
it (rf,Vvs € S(IF)). Specifically, this involves the following
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sub-problem P5:

min E{V¢;max(87 (), Bi) + QF ()= (1)|Q(t)}
— D E{Qs(t)(rs(t) — es(1)|Q(t)}

seS(IF)

s.t.7e(t) >0, Vs e S(F). (20)

The sub-problem PS5 is of much smaller scale than prob-
lem P4, with only |S(IF)| variables. For each s € S(IF),
once the decision 7 () is derived, the DC d; then marks the
value of sending rate in the ToS field of each packet belonging
to the flow. Note that the sub-problem PS5 can be solved in a
way similar to that solves problem P4.

On the other hand, each DC d; € M collects the set .S (Zf )
of flows on its downlink ZJI- , by counting the number of TCP
connections it established. Then, it computes a receiving rate
rL(t) for each flow s € S(I]), by solving the following sub-
problem P6.

min E{Ve; max(8] (), B;) + Qj ()= (1)|Q(t)}
= > E{Qu(0)(rs(t) — es())IQ(1)}

SES(l§)

st.rs(t) >0, VseS(). Q1

Upon obtaining the receiving rate 7.(¢), it is the need
to feedback the value rI(t) to the source DC associated
with s. As such, the source DC can change the sending rate
of flow s to the minimum value between 7 (¢) and rI(¢).
Note that we perform such feedback action in a laissez-fair
manner. More precisely, the DC d; extracts the value of
rE(t) from its received packets, and conducts comparison
between this value and the corresponding 71(t). The DC d,
will feed back the receiving rate to the source DC, only if
rI(t) is smaller than rZ(t) for a certain flow s. Otherwise,
it will not trigger the feedback action. This directly reduces
the communication overhead when implementing the POCA
algorithm. On receiving a feedback for a flow s, a source DC
will change the sending rate of the flow to min(rZ(¢), 71 (¢)).

Finally, each DC updates the queue backlogs Q(t) based
on Egs. (10) (11) (12) and the decisions r4(t)Vs € S.

V. TrafficShaper: PERFORMANCE EVALUATION

In this section, we evaluate the performance of our proposed
TrafficShaper scheduler through large-scale simulations as
well as small-scale testbed implementation.

A. Large-Scale Trace-Driven Simulation

Simulation setup: We simulate an inter-DC network with
40 DCs, which is a common network size in typical service
companies, e.g., Microsoft [2]. In this 40-DC setup, we vary
the link bandwidth from 1Gbps to 2Gbps, hoping to mimic
the heterogeneous bandwidths across different DCs.

Datasets: Our experiments are conducted on Yahoo! net-
work flow datasets [33]. These datasets, collected from the
border routers of five major Yahoo! DCs during a period
of 24-hour, contain not only traffic between Yahoo! servers
and clients, but also traffic across different Yahoo! DCs.

IEEE/ACM TRANSACTIONS ON NETWORKING

Total traffic (Mb)

. . . . . . . . . .
24 48 72 96 120 144 168 192 216 240 264 287
Time slot (5-min)

(@)

1 1

0.8 0.8

L 0.6 1 0.6
o a

©o4 Co4

0.2 0.2

0 0

0 10000 20000 0 4000

2000
Flow size (Mb) Deadline (second)
(b) (©)

Fig. 5. Total inter-DC traffic extracted from the Yahoo network datasets.
(a) Total traffic. (b) CDF of per flow size. (c) CDF of per flow deadline.

Each line in these datasets includes the following fields: 1)
timestamp, 2) source and destination IP address, 3) source and
destination port, 4) protocol, 5) number of packets and bytes
transferred from the source to the destination. All IP addresses
in these datasets are permuted to hide the identities of Yahoo!
application providers. Hence, we extract the inter-DC traffic
based on the study of [3], and use 10% of them to represent
the inter-DC transfers. We scale the extracted traffic to our
simulated inter-DC network, and set each charging period to be
2 hours. Each time slot is 5 minutes. Each transfer’s deadline
is set to be a random value within [0,12] time slots, so as
to construct different time-sensitivities for inter-DC transfers.
Fig. 5(a) plots the total inter-DC traffic every 5-minute for
24 hours. To have complete understanding of the datasets,
we also show the CDFs of per flow size and per flow deadline
in Fig. 5(b) and Fig. 5(c), respectively. From these two figures,
we observe that the flows are short relative to their deadlines.
This provides more flexibility in scheduling them to minimize
the transmission cost.

Parameters settings: The per unit bandwidth price is
determined from a tiered structure based on the link capacity,
where a DC with larger link capacity has a lower cost.
To determine the exact per unit bandwidth price, we use
Amazon EC2 data transfer prices [34]. For instance, if the
transfer price is 0.0012$/Mb, then the per unit bandwidth
price is calculated as the multiplier of this transfer price
and the time-length of a complete charging period. Similarly,
we consider a tiered structure of percentiles, where a DC
with lower per unit bandwidth price has a higher billing
percentile. TABLE I summarizes such tiered bandwidth prices
and percentiles. Without loss generality, each DC is equipped
with a same committed bandwidth (e.g., B; = B, Vj).

Compared methods: We compare TrafficShaper with the
following four scheduling methods:

e SDF (Shortest-Deadline-First): SDF [16], [17] method
prioritizes flows based on their deadlines, and schedules
a flow with smallest deadline each time.
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o ES (Equal Splitting): ES [13] method divides each arriv-
ing flow into a uniform (i.e., D + 1) sets of equal size in
each time slot, and then serves each set in this time slot as
well as each of the following D time slots. Specifically,
we consider that all flows can be delayed by 2 time slots
for the ES method (i.e., D=2), as this is a convincible
setting for the performance of ES method [13].

o Heuristicl: This heuristic method first seeks to schedule
flows in time slots that currently are traffic peaks, and
then balances the traffic scheduled in other time slots.

o Heuristic2: Different from Heuristicl, this heuristic
method balances the bandwidth consumption among all
time slots when scheduling flows.

Impact of control parameter ': From Theorem 4, we note
that the performance of TrafficShaper depends on the control
parameter V, which indicates how much we emphasize the
transmission cost minimization. To evaluate the impact of
control parameter V' on both the time-averaged cost and time-
averaged queue backlog during a period of 24-hour, we fix B
to be 500Mbps, and vary V from 10~* to 10'°. As shown
in Fig. 6(a), the time-averaged cost achieved by TrafficShaper
decreases as the value of V increases, and can converge to
a stable and low value with larger V. In contrast, the time-
averaged backlog increases as V' increases. One way wonder
at this point that the time-averaged backlog is relatively stable
at the beginning and around the equilibrium (maximum value).
The root reason is that when V' is small, the queue backlog
dominates the minimization of Eq. (15). On the other hand,
when V' is large, the transmission cost takes the dominate
place. In each of the above two cases, the time-averaged
queue backlog will be maintained at a stable value. Recall that
the time-averaged queue backlog could be caused by missing
the deadlines of flows or overloading the uplink or downlink
capacities of DCs. However, in our simulations, the queue
backlog is dominated by backlog in the virtual queues Q4(t).
This implies that a higher time-averaged queue backlog can
cause more inter-DC transfers to get a data rate lower than
the corresponding expected data rate, leading to a higher
deadline miss rate (we will show this point in Fig. 10(a)).
From Fig. 6(a), we observe that by choosing an appropriate
value of V, eg., V = 106, TrafficShaper can achieve a
significantly lower transmission cost while guaranteeing an
acceptable queue backlog as well as deadline miss rate.

Impact of committed bandwidth B: As aforementioned,
a service provider will contractually commit to an amount of
bandwidth B. Different values of B can lead to different cost
of the service provider. To evaluate the impact of committed
bandwidth, we fix V to be 108, and plot the time-averaged

Fig. 6. Impact of parameter V, committed bandwidth B and percentile
q on the performance of the proposed POCA algorithm. (a) Impact of V.
(b) Impact of B.
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Fig. 7. Total transmission cost across different charging period.

cost and time-averaged queue backlog with different values
of B in Fig. 6(b). Clearly, the time-averaged cost increases
significantly while the time-averaged queue backlog decreases
significantly, as the value of B increases. The root reason
is that a higher committed bandwidth results in a higher
transmission cost, but incurs less deadline miss rate (which
will be shown later). Note that one can flexibly trade off the
transmission cost and deadlines by choosing an appropriate
value of B (e.g., B = 500Mbps). To make the figures easy to
read, we mainly show the simulation results in the following
two scenarios for TrafficShaper: 1) V = 10%, B = 500Mbps;
2) V = 10°, B = 1000Mbps.

Transmission cost: We now present the main performance
metric, the total transmission cost across all DCs and all
charging periods. As we can see in Fig. 7, TrafficShaperl is
substantially more cost-effective than all the other methods,
because it can efficiently exploit the “free” time slots in the
g-th percentile charging model. On the other hand, Traffic-
Shaper2 cannot bring much benefit in reducing the transmis-
sion cost. This is because that TrafficShaper2 is configured
with a relatively high value of committed bandwidth B. It is
worth noting that Heuristicl makes some efforts on exploiting
the “free” time slots in the g¢-th percentile charging model,
since it incurs less transmission cost than Heuristic2 which
purely balances traffic across all time slots. Even so, the time
slots it heuristically found for each flow are essentially the
current traffic peaks and may not be viewed as “free” when
coming to the end of a certain charging period. We can further
observe that our TrafficShaper can reduce the transmission cost
by up to 40.23%, 26.19%, 30.63% and 45.78%, compared to
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SDF, ES, Heuristicl and Heuristic2, respectively. Moreover,
the average cost reductions can also reach 27.46%, 18.86%,
24.78% and 28.74%. These results directly demonstrate that
our TrafficShaper is efficient in reducing the transmission cost
for a large amount of inter-DC transfers.

Bandwidth consumption: To have a comprehensive under-
standing of the transmission cost, we record the bandwidth
consumption across all DCs and all time slots for all methods.
Note that when recording these bandwidth consumptions,
we only use the traffic that is successfully transferred before
its corresponding deadline. In other words, once a flow is
past its deadline, we will discard this flow immediately for
all methods, and the traffic after the deadline will not be
transferred accordingly. Bearing this point in mind, we plot
the CDF of bandwidth consumption in Fig. 8. As we can
see, the fraction of bandwidth consumptions that are lower
than 500Mbps can be up to 19.99% for TrafficShaper, while
those values are only 0.35%, 0%, 0% and 2.45% for ES,
SDF, Heuristicl and Heuristic2 methods, respectively. Further-
more, all bandwidth consumptions for TrafficShaperl, Traffic-
Shaper2, ES, SDF, Heuristicl and Heuristic2 are lower than
1480Mbps, 1540Mbps, 1620Mbps, 1780Mbps, 1760Mbps,
1996Mbps, respectively. The observant readers may notice that
why different methods involve different bandwidth consump-
tion on average, since they need to send a same amount of
total traffic. The reasons are two folds: 1) different methods
will cause different traffic distribution across all time slots
and all DCs; 2) different methods will drop different amounts
of traffic that is past its corresponding deadline, resulting in
different deadline miss rates (we will show this point later on).

Average gap between consumed bandwidth and billed
bandwidth: To characterize the “more peak, less differentia-
tion” feature of TrafficShaper, we define a metric — the gap
between consumed bandwidth and billed bandwidth. For each
time slot ¢ and each DC d;;, such gap is defined as x} (t)—b7 (k)
for downlink or xf (t) —bf (k) for uplink. With such definition,
we can quantitatively describe the bandwidth usage on “free”
time slots when such gap is greater than 0, as well as describe
such usage on other time slots when such gap is less than 0.
Fig. 9(a) and Fig. 9(b) present the average gap across all
DCs at two sampled charging periods, 7 and 10, respectively.
Charging periods 7 and 10 correspond to the cases of a low
and a high traffic demand, respectively. As we can see, at both
sampled charging periods, TrafficShaperl maintains higher
value of average gap in the beginning three time slots, and then
approaches a relatively stable average gap in other time slots,
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Fig. 9. Average gap between bandwidth consumption and billed bandwidth
over all DCs at two sampled charging periods. (a) Charging period 7.
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with varying V for TrafficShaper. (b) Deadline miss rate with varying B for
TrafficShaper. (c¢) Deadline miss rate for different methods.

compared to the ES, SDF, Heuristicl and Heuristic2 methods.
This implies that TrafficShaper can schedule more traffic in
“free” time slots and utilize the billed bandwidth as much
as possible, with appropriate values of V' and B. One may
question why Heuristicl cannot schedule more traffic in the
“free” time slots, since it schedules flows in time slots that
are traffic peak times. The reason is that the peaks it found
only reflect current traffic condition, and may not appear to
be traffic peaks later on. These results quantitatively confirm
the “more peak, less differentiation” feature of TrafficShaper.

Deadline miss rate: As most inter-DC transfers have
different time-sensitivities, we conduct quantitative analysis on
the deadline miss rate. Fig. 10(a) first shows the deadline miss
rate with different values of the control parameter V. It is clear
that the deadline miss rate for TrafficShaper increases as the
value of V increases, which indirectly demonstrates the trend
of queue backlog in Fig. 6(a). An interesting observation is
that the curve in Fig. 10(a) approximately follows a sigmoidal
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Fig. 11. Time-averaged cost with varying values of percentiles q.

trend with gradual change rate at the beginning and around
the stable value. The root reason is that when V' is relatively
small or large, the change of the queue backlogs does not
have much impact on the minimal value of the objective
function in Eq. (15). While the queue backlogs are dominated
by the virtual queues (Q,(t) which are closely related to
the deadline miss rate. We proceed to depict the deadline
miss rate with varying committed bandwidth B in Fig. 10(b).
We can easily check that the deadline miss rate decreases
significantly as the value of B increases. Fig. 10(c) further
shows the deadline miss rate for different methods. We make
the following observations from this figure: (1) SDF performs
best while ES performs worst in guaranteeing the deadlines
of inter-DC flows; (2) Heuristc1, Heuristic2 and TrafficShaper
can achieve a deadline miss rate between that of SDF and that
of ES; (3) TrafficShaper can achieve an acceptable deadline
miss rate by choosing appropriate values of parameters V' and
B. More specifically, when V = 10~* and B = 500Mbps,
TrafficShaper accommodates 11.5% more transfers with dead-
lines guaranteed than ES, with incurring only 1.27% more
deadline miss rate than SDF. Thus, this gives a flexible design
for the trade-off point between the objectives of minimizing
transmission cost and guaranteeing deadlines.

Impact of ¢ on the transmission cost: In ¢-th per-
centile charging model, the percentile ¢ directly determines
the number of “free” time slots, and accordingly impacts the
transmission cost. To evaluate the impact of ¢, we fix V' = 109,
B = 500Mbps and consider that all DCs comply to a same
percentile (i.e., ¢; = ¢,Vj). Fig. 11 shows the time-averaged
transmission cost with varying values of ¢ for all methods.
We can easily observe that the time-averaged cost achieved
by each method increases with the increasing of ¢. This is
mainly because that a higher value of ¢ immediately leads to a
smaller number of “free” time slots in the percentile charging
model, leaving little space for scheduling to take effect for
reducing the transmission cost. We can further observe that
our TrafficShaper can always maintain a lower time-averaged
cost, compared to the other four methods. Moreover, the cost
reduction ratio achieved by TrafficShaper is highest when
g = 80 (ie., 31.65%) and is lowest when ¢ = 95 (ie.,
23.75%). This implies that the smaller value of ¢, the more
benefit our algorithm can have. One may wonder at this point
that why TrafficShaper achieves very similar time-averaged
cost when ¢ = 85 and ¢ = 90. This is because that the
committed bandwidth B equals to 500Mbps, while both the
[100-55 x 24]-th and the [*%%90 x 24]-th largest numbers

in the bandwidth usage sequences of each charging period are
around 500.

As aforementioned, temporary overloading may happen, due
to the long-term average capacity constraints. Hence, we have
also evaluated how often can such temporary overloading
happen, and what buffer sizes would in general be necessary.
Please find the detailed results in the Appendix E in the online
supplementary material.

B. Small-Scale Testbed Implementation

We build a small testbed with 8 servers to emulate an inter-
DC network, with each server representing a DC. All servers
are connected to a Pica8 3297 48-port Gigabit switch with
an 1Gbps link. Each server has installed Ubuntu, 12.04 64bit
version system, and has a 2-core Intel(R) Pentium(R) 3.00GHz
CPU, 2GB of RAM, and 1G Ethernet NICs.

With such emulated inter-DC network, we perform distrib-
uted per-flow rate limiting on end hosts. At the beginning of
each time slot, each end host intercepts all outgoing packets,
computes the sending rate for each flow, and marks the sending
rate as well as expected rate in the header of each packet.
The modified packets are then delivered to Linux Traffic
Control (TC) for rate limiting. Like the study of [35], we use
two-level Hierarchical Token Bucket in TC to implement rate
limit. That is, the root nodes classifies all packets of each
flow to a leaf node, and the leaf nodes enforce per-flow rates.
From another point of view, the corresponding destination will
similarly compute a receiving rate for each flow. Moreover,
it will send a feedback to source end host once the receiving
rate is smaller than sending rate, such that the source end host
can reduce the sending rate to the feedback value.

We conduct our experiments 10 rounds. In each round,
it runs one hour, with each time slot being one minute.
Following an all-to-all communication pattern, we generate
more than 300GB of traffic with 55 flows. Each flow’s deadline
is set to be a random value within (0, 60) minutes. Similarly,
we set the committed bandwidth to be 500Mbps, and use 95-th
percentile pricing charging model, for each link. The baseline
is the default fair sharing method.

Table II first lists the average transmission cost and the
average number of failed flows across all DCs and all exper-
iment times. We can easily check that our TrafficShaper can
reduce the transmission cost by 19.38% on average, while
accommodating more flows with deadlines guaranteed, com-
pared to the default fair sharing. It should be noted that due
to the dynamic nature of network, each round of experiment
may lead to different number of failed flows. This is why
the average number of failed flows may come out to be
a decimal. To have a comprehensive understanding of the
transmission cost, we plot the average bandwidth consumption
across all DCs in Fig. 12. It is clear that TrafficShaper
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achieves a lower bandwidth consumption at most of the time,
compared to default fair sharing. Furthermore, TrafficShaper
can schedule two time slots (e.g., time slot 10 and 11) as
traffic peaks, and maintain less traffic differentiation among
other time slots. Under the 95-th percentile charging model,
the billed bandwidths for TrafficShaper and default fair sharing
are 747.49Mbps and 935.13Mbps, respectively. These results
demonstrate that TrafficShaper can practically reduce the
transmission cost for inter-DC traffic, while provide acceptable
deadline guarantees.

VI. DISCUSSION

Why percentile-based charging models are popular?
First, from the perspectives of ISPs, the g-th percentile pricing
is the most prevalent method that transit ISPs use for charging
their customers [6]—[9]. This method is simple to implement
and uses data (e.g., SNMP) that an ISP typically already
collects. Second, from the perspectives of customers, the most
attractive property in the ¢-th percentile charging model is that
it allows a customer to burst beyond its committed bandwidth,
and a few bursts can be carried free of charge. This can
be beneficial to customers whose peak bandwidth usage is
limited to less than ¢% (e.g., 5%) of the time every month,
e.g., customers that utilize more bandwidth during mornings
and nights [11]. Moreover, when customers utilize our Traffic-
Shaper scheduler to shape their traffic, the transmission cost
could be significantly reduced.

What promise can ISPs provide to their customers
under the ¢-th percentile model? The committed bandwidth
is a guarantee in the ¢-th percentile charging model. Once
the committed bandwidth is contractually negotiated, service
providers (or customers) will have to pay for it, even if it
cannot be used up. On the other hand, it will be regarded as a
breach of contract if an ISP fails to guarantee the committed
bandwidth, and accordingly an ISP needs to pay a penalty
to the service provider. As for missing deadlines of service
provider’s flows, no penalty will be incurred for the ISP
because the g-th pricing model does not cover latency.

Determining optimal value of the control parameter V.
Finding the optimal value of the control parameter V' remains
an open problem. A simple approach to determine the control
parameter V' would be to leverage the historical traffic matrix
to run our POCA algorithm multiple rounds, with each round
using different values of V. To be more practical, one can also
dynamically change the value of V' based on online learning
method. We leave this point as one direction of future work.

Handling interactive traffic. The relaxation of inter-DC
flows’ deadlines, i.e., Eq. (5), makes TrafficShaper less effi-
cient for interactive traffic with tight deadlines; however,
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interactive flows only account for around 10% of the inter-
DC traffic [3]. One can use a simple approach to statically
divide the bandwidth into two parts: one part of bandwidth is
used for interactive traffic while another part can be used by
our TrafficShaper scheduler. To support interactive traffic in
TrafficShaper, we need to add new constraints in our model
and design new algorithms. We leave it as another direction
of future work.

How to optimize the committed bandwidth B? One may
wonder at this point that the performance of TrafficShaper
is correlated with the committed bandwidth B. In this case,
how to optimize the committed bandwidth is also an important
problem. Actually, one can formulate a new optimization
problem, where the objective is to minimize the amount
of committed bandwidth and the constraints are three-fold:
1) the link capacity constraint; 2) the deadline constraint;
3) the constraint of limiting the percentile billed bandwidth
less than or equal to the committed bandwidth. Then, one
can design new algorithms or still exploit the advantages
of Lyapunov optimization techniques to solve the problem.
We leave this point as an open issue.

Determining the optimal percentile. Determining the
optimal percentile to maximize both the utilities of the ISP
and the customer (e.g., DC provider) is out of the scope
of this work and can be difficult as the utilities of the ISP
and the customer are conflicting with each other. But then
again, one can design some heuristics. For instance, one can
design a scheme that assigns lower percentile to customers
whose peak traffic does not contribute significantly to the ISP’s
cost, and higher percentiles to customers that contribute most
to the ISP’s cost. Such scheme would retain the attractive
properties of the percentile-based charging model, while better
accounting for a customer’s contribution to ISP’s cost.

VII. RELATED WORK

Inter-DC traffic optimization has become an active research
topic recently. However, none of the existing work can directly
solve the problem proposed in this paper. Regarding the traffic
engineering in inter-DC networks, B4 [1] and SWAN [2],
designed by Google and Microsoft, respectively, focus on
improving the utilization of inter-DC WAN based on the pop-
ular software-defined networking technology. Unfortunately,
they both are deadline-agnostic, yet are unaware of the per-
centile pricing model because of the private WANs they
owned.

Regarding the transmission cost on inter-DC traffic,
Laoutaris et al. [11] present NetStitcher, which uses a store-
and-forward approach to schedule inter-DC bulk transfers
with the aim of fully utilizing the remaining bandwidth.
Similar to NetStitcher, Feng et al. present Jetway [12], which
conservatively utilize remaining bandwidth for multiple inter-
DC video flows. However, they both are incapable of accu-
mulating traffic into “free” time slots of the ¢-th percentile
charging model. Moreover, neither of them considers the traffic
deadline. However, neither of them is insufficient to mini-
mize the transmission cost incurred by the inter-DC transfers.
Most recently, Jalaparti et al. [8] present a framework called
Pretium, which combines dynamic pricing with wide-area
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network traffic engineering for ensuring the service guarantees
and maintaining low costs of the platform.

Regarding the deadlines of inter-DC Kandula ef al. present
Tempus [10], which aims to maximize the fraction of transfer
delivered before deadline. It achieves fairness among all
transfer requests, but does not guarantee the completion of
any of them. By taking one step further, Zhang et al. propose
Amoeba [35], which allows users to explicitly specify the
amount of data and deadline. Jia et al. [36] propose approx-
imate algorithms to schedule transfers over optical WANS,
with the goal of minimizing the makespan for finishing all
transfers; however, they don’t provide deadline guarantee on
any transfer.

In the context of Internet, there are some studies focused on
designing appropriate pricing method for benefiting both ISPs
and uses. For example, TUBE [37] focuses on mobile data
pricing; it moves delay-tolerant users out of the peak traffic
periods by using time-dependent dynamic pricing. Zhang et al.
uses a similar idea for pricing wireless data [38]. Our work is
different as we advise to send more traffic in “free” time slots
of percentile pricing model, and construct more peak traffic
periods. Valancius et al. [22] propose a destination-based
tiered pricing for transit ISPs by using the traffic demand and
the cost of carrying it. In terms of investigating the impact of
pricing model on traffic optimization, Laoutaris ef al. propose
to use already-paid-for off-peak bandwidth for the delay-
tolerant bulk data, and design a source scheduling policy and
a store-and-forward policy [7]. Unfortunately, their methods
inevitably rely on prior knowledge of the traffic arrivals, and
ignore deadlines for the inter-DC transfers. More recently, Gol-
ubchik et al. study the 95-th percentile minimization problem
for scheduling data transfers over the Internet, with constraints
on delay requirements [13]. They present both offline and
online algorithms to solve this problem. Nevertheless, they
assume uniform deadline requirements for all traffic, and care
only about the single-sender percentile minimization.

In addition, interest has been growing in datacenter net-
works using Lyapunov optimization. For example, several
works have been proposed to leverage Lyapunov optimization
techniques [14], [29] to design optimal power or energy man-
agement in datacenter networks [15], [39]-[43]. On the hand,
Chen et al. [27] propose to use the Lyapunov optimization for
designing a deadline-driven transport protocol. Most recently,
Chen et al. [26] apply the Lyapunov optimization to schedule
a mix of flows with and without deadlines in datacenter
networks. Our work is different, as we leverage the Lyapunov
optimization to identify the “free” time slots in percentile
pricing model, and accordingly send more traffic on such free
time slots.

VIII. CONCLUSIONS

In this paper, we argue that a simple principle of “more
peak, less differentiation” should be followed when scheduling
inter-DC traffic under the g-th percentile charging model.
To this end, we present TrafficShaper, a new scheduler that
leverages the diverse deadlines of inter-DC transfer requests
to exploit the “free” time slots involved in the g-th per-
centile charging model. TrafficShaper takes the advantage

of Lyapunov optimization technique to design and analyze
a pricing-aware online control framework. Without a prior
knowledge of traffic arrivals, this framework dynamically
determines the transmission rates for each inter-DC flow,
by efficiently decomposing a long-term optimization into
multiple sub-problems that can be sequentially solved in
each time slot. To verify the performance of TrafficShaper,
we conduct rigorous theoretical analysis, large-scale trace-
driven simulations and small-scale testbed implementation. All
of them have shown that TrafficShaper is capable of reducing
the transmission cost, while maintaining satisfactory deadline
miss rate.
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