
1

Minimal Fault-tolerant Coverage of Controllers in
IaaS Datacenters

Junjie Xie, Student Member, IEEE , Deke Guo, Member, IEEE , Xiaomin Zhu, Member, IEEE , Bangbang
Ren, Honghui Chen

Abstract—Large-scale datacenters are the key infrastructures of cloud computing. Inside a datacenter, a large number of servers are
interconnected using a specific datacenter network to deliver the infrastructure as a service (IaaS) for tenants. To realize novel cloud
applications like the network virtualization and network isolation among tenants, the principle of software-defined network (SDN) has
been applied to datacenters. In the setting, multiple distributed controllers are deployed to offer a control plane over the entire
datacenter to efficiently manage the network usage. Despite such efforts, cloud datacenters, however, still lack a scalable and resilient
control plane. Consequently, this paper systematically studies the coverage problem of controllers, which means to cover all network
devices using the least number of controllers. More precisely, we tackle this essential problem from three aspects, including the minimal
coverage, the minimal fault-tolerant coverage, and the minimal communication overhead among controllers. After modelling and
analyzing such three problems, we design efficient approaches to approximate the optimal solution, respectively. Extensive evaluation
results indicate that our approaches can significantly save the number of required controllers, improve the fault-tolerant capability of the
control plane and reduce the communication overhead of state synchronization among controllers. The design methodologies
proposed in this paper can be applied to cloud datacenters with other networking structures after minimal modifications.

Index Terms—Cloud datacenters, Minimal coverage, Fault-tolerant, Cloud computing.

F

1 INTRODUCTION

LARGE-SCALE datacenters are the key infrastructures for
not only cloud services but also massively distributed

computing. Infrastructure as a Service (IaaS) is a form of
cloud computing, which enables tenants to multiplex com-
puting, storage and network resources in data centers. With
the rapid growth of IaaS, service providers have to rent or
build large-scale data centers. Inside a cloud datacenter, a
large number of servers are interconnected using a specific
datacenter networking topology. The research community
has studied various ways to improve the performance of
IaaS, which can be classified into two categories.

First, to improve the network capacity inside a cloud
datacenter, many novel topologies have been proposed to
improve traditional tree-like topologies, such as VL2 [1],
BCube [2], KCube [3], DCube [4], FBFLY [5], HyperX [6]
and Jellyfish [7]. They organize all of the switches into
other topologies instead of tree-like ones. Second, to realize
novel cloud applications like the network virtualization and
network isolation among tenants, IaaS prefers to utilize
the technology of software-defined network (SDN) [8], [9]
inside cloud datacenters. That is, IaaS requires to upgrade
the traditional datacenter networks as software-defined dat-
acenter networks (SDDN) [10], [11]. SDDN will change
the way tenants deploy cloud-based applications since it
gives the freedom to refactor the network control plane
and promote the innovations of network applications. One

• Junjie Xie, Deke Guo, Xiaomin Zhu, Bangbang Ren and Honghui Chen
are with the Science and Technology Laboratory on Information Sys-
tems Engineering, National University of Defense Technology, Chang-
sha Hunan, 410073, China. E-mail: {xiejunjie06, guodeke}@gmail.com,
xmzhu@nudt.edu.cn.

core benefit of SDN is that the control plane is decoupled
from the data plane [12], [13], [14], [15]. Accordingly, the
control logic and applications are moved to a programmable
software component, i.e., the controller, which maintains a
global network view.

When the implementation of SDDN relies on a single
controller to offer the centralized control plane, the con-
troller is deployed on a given server inside a datacenter.
Existing work has reported that one controller suffers the
limitations of capacity, reliability, and scalability [16], [17].
One controller can only control a limited number of switches
in large-scale datacenters. For each of uncontrolled switches,
all flows passed through it will fail to obtain the routing
paths from the control plane. Therefore, it is essential to
deploy multiple distributed controllers in SDDN because
of the super-large scale of datacenters. There have been de-
signers who resort to deploy multiple controllers and form
a physically distributed control plane, on which a logically
centralized control plane operates [14], [16], [18], [19]. This,
however, brings a crucial but open problem, which we call
the coverage problem of controllers in SDDN.

SDDN is closely related to the networking topology of
datacenters. Recently, Jellyfish is an instance of the switch-
centric topology [7]. It organizes homogeneous high-radix
switches, each connecting several servers, into the random
regular graph. The Jellyfish topology has many distin-
guished performances, e.g., the incremental expansion, the
cost-efficient, and the low network diameter. It, however,
suffers the complex routing and poor management of net-
work resource, due to the random topology. It is well-known
that the principles of SDN can naturally address the routing
and network management problems, with the support of
global network view [20]. Thus, this paper employs the



2

Jellyfish as an instance of SDDN and studies the coverage
problem of controllers.

In this paper, we first characterize the coverage model of
a single controller and model the minimal coverage problem
of controllers in SDDN. The goal is to find the minimal
number of sufficient controllers and their deployment loca-
tions such that each switch can be controlled by at least one
controller. We prove that this problem is NP-complete and
thus propose an approximation algorithm under the Jelly-
fish topology. Note that more controllers will not only incur
considerable cost but also complicate the synchronization
process among controllers. Accordingly, this will increase
the complexity of the distributed control plane of a SDDN.

Another challenge comes from common failures in data-
centers [21]. Any failure due to the host server, the involved
switch, and the link from the host to the switch will make
a controller become invalid. Consequently, those covered
switches fail to process upcoming new flows. To accom-
modate the failures of controllers, we propose the minimal
fault-tolerant coverage problem of controllers in SDDN,
a NP-complete problem. Its goal is to infer the minimal
number of controllers and their locations such that each
switch is controlled by at least two controllers. In this way,
each switch will be taken over by another controller when
the master one fails. To tackle this NP-complete problem,
we further design an approximation algorithm under the
Jellyfish topology.

Moreover, the distributed control plane, based on mul-
tiple controllers, operates on a consistent global network
view, so as to ensure correct control behaviors [22]. This
requires controllers to frequently synchronize their local
network views. Such a behavior consequently results in con-
siderable communication overhead on those limited control
channels inside datacenters [23]. It further brings non-trivial
synchronization delay, which can lead to suboptimal control
decisions. Thus, it is essential to reduce the communication
overhead of synchronization. To tackle this issue, we model
and solve the minimal communication overhead of syn-
chronization problem. Traditionally, synchronization among
n controllers incurs n2 unicast transmissions. We replace
such unicast transmissions with n one-to-many multicast
transmissions. Multicast refers to the minimal Steiner tree
problem [24], which is a NP-hard problem in a Jellyfish
datacenter. Therefore, we design a dedicated algorithm to
significantly reduce the communication overload, due to the
state synchronization among controllers.

The evaluation results demonstrate that our approaches
significantly decrease the number of required controllers,
improve the fault-tolerant capability of the control plane and
reduce the communication overhead of state synchroniza-
tion among controllers. Note that the proposed approaches
in this paper can be applied to other switch-centric datacen-
ter networks after some modifications.

The rest of this paper is organized as follows. In Section
2, we characterize the minimal coverage problem of con-
trollers. Section 3 studies the fault-tolerant coverage prob-
lem of controllers. We tackle the minimal communication
overhead of synchronization among controllers in Section 4.
In Section 5, we evaluate the performance of our approach-
es. Section 6 discusses the related work. We conclude this
paper in Section 7.

2 MINIMAL COVERAGE PROBLEM OF CON-
TROLLERS IN SOFTWARE-DEFINED DATACENTER
NETWORKS

We start with the coverage model of a single controller
in SDDN with the Jellyfish topology. We then propose
the minimal coverage problem of controllers and design a
dedicated approach to approximate the optimal solution.

2.1 Coverage model of a controller in datacenters

In Jellyfish [7] topology, all of ToR switches form a random
regular graph. Each ToR switch utilizes γ of κ ports, 0<γ<κ,
to interconnect with other switches. Other κ−γ available
ports at each switch are used to directly connect servers.
Fig. 1(a) gives an example of a Jellyfish with 12 switches,
each of which allocates 3 ports to connect other switches. A
random regular graph is denoted as RRG(N,κ, γ), where N
is the number of switches.

On the one hand, it is the distributed nature of network-
ing devices that leads to complex routing and management
in datacenters with Jellyfish topology. On the other hand,
SDN controllers provide a global view to manage networks
and make forwarding policies. By the SDN deployment,
it is possible to customize the routing policy and control
the flow transmission. Meanwhile, the SDN is also helpful
to promote the innovation of applications in datacenters.
Therefore, deploying SDN controllers in a Jellyfish-based
datacenter is very useful to resolve the complex routing
and network management. Before discussing the coverage
problem of a controller, we first give two definitions as
follows.

Definition 1. (Dominant Switch) Since the controller covers
and serves some switches, the switch connecting the host
server of that controller is called a dominant switch. To
ease the presentation, we say that the dominant switch
covers those switches served by the controller.

Definition 2. (r-cover) If the distance from a switch to a
dominant switch is r hops, and the dominant switch
covers such a switch. We can say that the dominant
switch can r-cover the switch.

The precondition of enabling SDN functions in data-
centers is that each of switches is assigned at least one
controller. It is impractical to control all of switches in a
large-scale datacenter, using only one controller due to the
limitation of its capacity [16]. Thus, one controller is able to
control a part of all switches in datacenters. If a controller
controls too many switches, it will become the bottleneck
of network applications. That is, the capacity of a controller
determines the number of switches it can control.

Besides the capacity of a controller, the propagation
latency also limits the number of switches the controller
can control [25]. The propagation latency is determined by
the distance from a general switch to the dominant switch
of a controller. Given a threshold r, a switch r-hops away
from the dominant switch of a controller has the chance to
be controlled by the controller if the controller’s capacity is
still sufficient. In this case, we say that the dominant switch
can r-cover the switch, as shown in Definition 2. If the
latency constraint is one hop and its capacity exceeds four,



3

the dominant switch1 can only 1-cover switch1, switch2,
switch3, and switch9, as shown in Fig. 1(b). That is, the
propagation latency and the controller’s capacity jointly
limit the number of switches a controller can control.

2.2 Minimal coverage problem of controllers

According to the coverage model of a controller, it is clear
that SDDN should offer a distributed control plane con-
sisting of multiple controllers. In this setting, the principal
challenge is to determine the minimal number of sufficient
controllers and their locations, such that each switch is con-
trolled by at least one controller. This challenge is defined as
the minimal coverage problem of controllers in SDDN.

Definition 1 demonstrates that a dominant switch
covers all switches which are controlled by the relat-
ed controller, including itself. Thus, the minimal cover-
age problem of controllers can be transferred to find
the minimal set of dominant switches. For example,
{switch1, switch4, switch6, switch7, switch10} is the min-
imal set of dominant switches in Fig. 1(b). They can 1-cover
all switches in the datacenter. Given the minimal set of
dominant switches, the deployed locations of controllers can
be achieved in a simple way. Each dominant switch assigns
one of connected servers as the host server for one controller.
It is clear that some switches will not be covered if any one
leaves from the minimal set of dominant switches.

So far, we can formulate the minimal coverage problem
of controllers in a switch-centric datacenter as follows. We
use N to denote the set of switches in a datacenter, and E to
represent the set of links among switches. The topology of
switches is modeled as an undirected graph, G(N,E). We
use a binary vector X=

⟨
x1, x2, . . . , x|N |

⟩
to denote whether

a switch is a dominant switch. A switch j for 1≤j≤|N | is a
dominant one only if xj=1; otherwise, it is not a dominant
switch. We further define Y= [yij ]|N |×|N |, where yij is a
binary variable and yij=1 means that switch j is a dominant
switch and covers switch i. Let T= [tim]|N |×|N | be a traffic
matrix, where tim denotes the average number of flows from
switch i to switch m in one second.

Given the capacity of each controller, let k denote the
maximum number of flows each controller can process per
second. The delay matrix is denoted as D= [dij ]|N |×|N |,
where dij is the propagation latency from switch i to switch
j. We assume that the allowed propagation latency from
switch i to a dominant switch j is ε.

The optimization objective of the coverage problem is
to minimize the number of controllers, i.e., the number of
dominant switches, and can be expressed as follows:

min
∑
j∈N

xj (1)

Meanwhile, to ensure a feasible solution, the following
constraints have to be satisfied.

∀j ∈ N :
∑
i∈N

∑
m∈N

yijtim ≤ k (2)

∀i ∈ N, j ∈ N : yijdij ≤ ε (3)
∀i ∈ N :

∑
j∈N

yij ≥ 1 (4)

∀i ∈ N, j ∈ N : yij ≤ xj (5)
∀j ∈ N : xj ∈ {0, 1} (6)

∀i ∈ N, j ∈ N : yij ∈ {0, 1} (7)

Inequality (2) guarantees that each controller can process all
of flows, coming from switches controlled by it. Inequality
(3) ensures that the propagation latency, between a switch
and a dominant switch, is less than the given threshold.
Inequalities (4) and (5) ensure that each switch is controlled
by more than one controller. Equations (6) and (7) present
two binary variables, xj and yij .

The above optimization problem is an Integer Linear
Programming (ILP) problem. Meanwhile, the minimal cov-
erage problem in SDDN can be reduced to the minimum
dominating set problem, and Johnson et al. have proved
that the minimum dominating set problem is a NP-complete
problem [26]. Furthermore, Theorem 1 shows that the mini-
mal coverage problem is a NP-complete problem. Thus, we
design a dedicated approach to approximate the optimal
solution for this problem in Section 2.3.
Theorem 1. The minimal coverage problem is a NP-complete

problem.
Proof: A dominating set is a set of nodes S such that

every node in the graph G is a neighbor of at least one
node of S. The minimum domination set problem (MDS)
is to find a minimum dominating set that can dominate all
nodes in the graph G, and this problem is a classical NP-
complete problem [26]. In fact, we can describe a polynomial
reduction from MDS to a very special minimal coverage
problem (MCP*), where the propagation delay is 1-hop and
the controller’s capacity is equal to the maximum degree of
node ∆(G) in the graph G. This ∆(G) capacity ensures all
switches connected to dominant switch can be controlled by
the controller. In this case, an instance of MDS is also an
instance of MCP*. The node in dominating set of MDS can
be seen as a dominant switch in MCP*. Nodes dominated
in MDS can be 1-hop away from the dominant switch.
Therefore, we have shown that MDS≤pMCP*, and MCP*
is NP-complete. Furthermore, it is always good to prove
the NP-completeness of an especially restricted variant of
a problem, since then the NP-completeness of all general-
izations follows immediately. Thus the MCP is also a NP-
complete problem.

2.3 Solution to minimal coverage problem
The minimal coverage problem in SDDN differs from the
traditional domination problem [27] and the coverage prob-
lem [26]. The domination problem means that any node in
the dominant set can only dominate its 1-hop neighbors. The
traditional coverage problem means that the node can cover
its edges. For the minimal coverage problem in this paper,
a dominant switch may cover other far-away switches in its
coverage range, besides those 1-hop neighboring switches.
The coverage range of each controller may be more than one
hop. Moreover, a dominant switch can not cover a switch if
its capacity is insufficient, even the constraint on the prop-
agation latency is satisfied. That is, the minimal coverage
problem in this paper suffers extra constraints and is more
complex than the traditional domination problem and the
coverage problem. Thus, it can not be well addressed by
simply using existing solutions to such two problems.

Therefore, we propose an approximation algorithm
based on the complete control, denoted as ACC. The input



4

(a) A datacenter with a Jellyfish topology. (b) 1-coverage of controllers in SDDN. (c) 2-coverage of controllers in SDDN.

Fig. 1. The 1-coverage and 2-coverage of controllers in a software-defined datacenter with the Jellyfish topology.

of the algorithm ACC includes a Jellyfish topology G(N,E),
the number of hops that can meet the time constraint r, and
the capacity of each controller u. Note that the capacity of
a controller is measured by the number of switches it can
control. The time constraint for each flow is measured by
the number of hops from the original switch to a related
controller.

As shown in Algorithm 1, we first derive the neighboring
switches of each switch from the datacenter’s topology G.
We then select a switch that can cover the largest number
of new switches as a dominant switch, and we achieve this
by the for loop in Step 6. The dominant switch hosts a
controller and tries to cover a set of switches recursively, by
invoking the function CONTROL() in Algorithm 1. The
above steps are executed repeatedly until all switches are
covered by a controller. That is, Algorithm 1 will terminate
when all switches are covered. Meanwhile, the function
CONTROL() performs the breadth-first search. The search
process will be terminated if the depth of recursion exceeds
allowed hops or the number of covered switches exceeds
the controller’s capacity. In each round of recursion, all of
num-hop neighbor switches of the dominant switch will be
checked orderly, where num denotes the current depth of
the recursion. If a num-hop neighbor switch has not been
controlled, the dominant switch will cover it, and the avail-
able capacity of the controller decreases one. The function
getControlNum() is similar to the function CONTROL()
and used to get the number of switches covered by switchi.
Algorithm 1 can ensure that each switch in a datacenter
will be controlled by at least one controller, i.e., covered
by at least one dominant switch. Theorem 2 shows that
the approximation ratio of the Algorithm 1 is lower than
1 + ln(u).
Theorem 2. The approximation ratio of the algorithm 1 is

lower than 1 + ln(u), where u denotes the capacity of a
controller.

Proof: Let A∗ denote the optimal solution. A is the
approximation solution the Algorithm ACC generated. Sup-
pose that the elements of A include x1, x2, . . . , xk, and they
are orderly added to A. Let Ai={x1, x2, ..., xi} where xi is
a dominant switch; specially, A0=∅. Let S denote the set
which includes all switches. For each B ⊆ S, use c(B)
to denote the number of the dominant switches in B. We
use H(u) to denote the harmonic function H(u) =

∑u
i=1

1
i .

Note that H(u)≤1+ln(u).

ALGORITHM 1: Find the minimal set of controllers,
ACC

Input: G(N,E), r, and u.
Output: Set of controllers, C

1 Let CS [N ] record if the switches has been covered;
2 Let Nbors record the relationships between switches;
3 Construct Nbors based on the topology G;
4 while there are still switches that are not covered do
5 maxi=0,maxnum=0;
6 for i=1 to N do
7 if switchi is not controlled then
8 tempnum=getControlNum(switchi);
9 if tempnum ≥ maxnum then

10 maxi=i;
11 maxnum=tempnum;
12 switchmaxi is selected as a dominant switch;
13 Let num=1 denote the control distance;
14 CS ← CONTROL(CS,Nbors, r, u,maxi, num);
15 return the set of controllers, C ;

16 function CONTROL(CS,Nbors, r, u, i, num)
17 if num > r or exceed the capacity of the controller

then
18 return CS;
19 else
20 for j=1 to i.neighbor.size() do
21 if switchj has not been controlled then
22 switchj is controlled by the controller;
23 Controller’s available capacity

decreases one;
24 if the controller exhaust its capacity then
25 break;
26 for j=1 to i.neighbor.size() do
27 tempj = i.neighbor[j];
28 num = num+ 1;
29 CONTROL(CS,Nbors, r, u, tempj, num);
30 return CS ;

To simplify the notation, use ri=△xi f(Ai−1) to denote
the number of new switches the switchxi can cover, when
these switches in Ai−1 have coved some switches. Let
zy,i=△y f(Ai−1). For each element y in A∗, define

w(y) ≡
∑k

i=1(zy,i−zy,i+1)
1
ri

= 1
r1
zy,1+

∑k
i=2(

1
ri
− 1

ri−1
)zy,i.



5

Similarly,

c(A) =
∑k

i=1
ri
ri
=
∑k

i=1(
∑k

j=i rj−
∑k

j=i+1 rj)
1
ri

= 1
r1

∑k
j=1 rj+

∑k
i=2(

1
ri
− 1

ri−1
)
∑k

j=i rj .

According to the greedy policy of the algorithm 1, r1 ≥ r2 ≥
· · · ≥ rk; equally, for each i=1, 2, . . . , k, 1

ri
− 1

ri−1
≥ 0.

Moreover, ∑k
j=i rj=

∑k
j=i△xjf(Aj−1)

=
∑k

j=i(f(Aj)−f(Aj−1))=f(A)−f(Ai−1)
=f(A∗)−f(Ai−1)=△A∗ f(Ai−1)
≤

∑
y∈A∗ △yf(Ai−1)=

∑
y∈A∗ zy,i.

So,
∑k

j=i rj ≤
∑

y∈A∗ zy,i.
Then, the inequality (8) holds.

c(A)=
1

r1

k∑
j=1

rj+
k∑

i=2

(
1

ri
− 1

ri−1
)

k∑
j=i

rj

≤
∑
y∈A∗

1

r1
zy,1+

∑
y∈A∗

k∑
i=2

(
1

ri
− 1

ri−1
)zy,i=

∑
y∈A∗

w(y)

(8)

Due to the greedy policy of the algorithm 1, when zy,i ≥
0, for each i=1, 2, . . . , k, 1

ri
≤ 1

zy,i
. Meanwhile, zy,i ≥ zy,i+1.

Let ℓ=max{i|1 ≤ i ≤ k, zy,i ≥ 0},

w(y)=
∑ℓ

i=1(zy,i−zy,i+1)
1
ri
≤

∑ℓ
i=1(zy,i−zy,i+1)

1
zy,i

=
∑ℓ

i=1
zy,i−zy,i+1

zy,i
.

Note that for any p ≥ q ≥ 0,
p−q
p =

∑p
j=q+1

1
p ≤

∑p
j=q+1

1
j=H(p)−H(q).

Therefore,

w(y) ≤
∑ℓ−1

i=1(H(zy,i)−H(zy, i+1))+H(zy,ℓ)=H(zy,1).

For each y in A∗, zy,1 ≤ u. Then, there is the equation
(9).

w(y) ≤ H(u) (9)

Based on the equation (8) and (9), we can get c(A) ≤∑
y∈A∗ w(y) ≤

∑
y∈A∗ H(u)=c(A∗) · H(u) ≤ c(A∗) ·

(1+ln(u)). Thus proved.
For Algorithm 1, let h denote the maximum number of

switches a controller actually control in the software-defined
datacenter. The time complexity of the function Control is
O(h). Let ℓ denote the number of controllers that are solved
by Algorithm 1. The main function has one while loop, and
its time complexity is O(ℓ). The time complexity of the for
loop is O(N), where N is the number of switches in the
datacenter. Therefore, The time complexity of Algorithm 1
is O(N×h×ℓ).

3 FAULT-TOLERANT COVERAGE PROBLEM OF
CONTROLLERS IN SOFTWARE-DEFINED DATACEN-
TERS

In this section, we consider the fault-tolerant requirement
of controllers. Although the minimal coverage problem of
controllers has been tackled in Section 2, it is essential
to guarantee that each switch still supports all of SDN
functions when its controller fails.

3.1 Problem of the minimal fault-tolerant coverage

Recently, one trend of designing modern datacenters is to
utilize commodity devices, including servers and switch-
es. Such large-scale devices face various failures, result-
ing from the hardware, software, link, etc. As pointed in
many literatures, device failure is very common in current
datacenters [21]. The Onix controller has considered four
types of network failures [14]: forwarding element failures,
link failures, controller failures and failures in connectivity
between network elements and controllers (and between the
controllers themselves). Such kinds of failures would make
a controller fail to serve the allocated switches. In this case,
there are switches that are not covered by any controller.
Consequently, this will destroy the guarantee of the minimal
coverage model of controllers proposed in this paper. To
tackle such a crucial issue, we propose the minimal fault-
tolerant coverage model of controllers in SDDN.

The basic idea is to calculate the minimal number of
controllers and their locations; thus, each switch will be
controlled by at least two controllers. Accordingly, each
switch will be taken over by another controller when the
master one fails. We call this problem as the 2-coverage in
Definition 3.

Definition 3. (2-coverage) Each switch is controlled by t-
wo controllers, i.e., covered by two dominant switches.
Meanwhile, each dominant switch is covered by another
dominant switch.

It is clear that more strength fault-tolerant coverage mod-
els can better against the failure of controllers. These models,
however, dramatically increase the number of deployed
controllers. For this reason, we focus on the 2-coverage in
this paper. The proposed methodologies, however, can be
applied to other fault-tolerant coverage models, such as the
3-coverage model.

Recall that we have deployed a set of controllers to
ensure that each switch has been covered by at least one
controller. As shown in Fig. 1(c), five controllers are de-
ployed to locations switch1, switch4, switch6, switch7,
and switch10 so as to realize the 1-coverage problem. To
address the 2-coverage problem, some extra controllers need
to be further deployed. For example, three new controllers
are deployed to locations switch2, switch5, and switch8.
In this way, such controllers need to guarantee that each
switch can be controlled by two controllers. Any switch can
be controlled by another slave controller in a cooperative
manner, when its master controller fails. Meanwhile, the
controllers cooperate to ensure the fault-tolerant coverage.
When each switch is controlled by two controllers, the fault-
tolerant coverage is achieved. For any general switch, the
controller at the other end of its solid incoming arc denotes
the master controller, and the controller at the end of its
dotted incoming arc is the slave controller. For a general
switch switch9 in Fig. 1(c), its master and slave controllers
are attached to switch1 and switch8, respectively.

While solving the 2-coverage problem, the number of
utilized extra controllers should also be as fewer as possible.
We model this problem as the minimal 2-coverage problem
in Definition 4.



6

Definition 4. (Minimal 2-coverage) The minimal 2-coverage
problem means to find the minimal set of controllers to
satisfy the 2-coverage in Definition 3.

We formulate the minimal 2-coverage problem in SDDN
as an optimization problem as follows. Note that prior
Inequality (4) imposes a constraint that each switch is
controlled by at least one controller. However, for the 2-
coverage problem, each switch should be controlled by at
least two controllers. Thus, Inequality (4) should be updated
as Inequality (10) in this setting. Additionally, Equations
(2), (3), (5), (6), and (7) are inherited. We introduce an-
other binary vector C=

⟨
c1, c2, . . . , c|N |

⟩
, where cj=1 for

1≤j≤|N | means that a controller has been deployed to a
host connected to switch j via Algorithm 1. Equation (11)
introduces a new constraint to ensure that those controllers,
determined by Algorithm 1, continue to be valid.

∀i ∈ N :
∑
j∈N

yij ≥ 2 (10)

∀j ∈ N : xj ≥ cj (11)

The optimization objective is to minimize the number of
additional controllers such that each switch is controlled by
two controllers, and can be expressed as follows:

min
∑
j∈N

(xj − cj) (12)

The optimization problem is an Integer Linear Program-
ming (ILP) problem and is similar to the minimal coverage
problem of controllers in Section 2.2. Corollary 1 shows
that the minimal 2-coverage problem is also a NP-complete
problem and very difficult to find the optimal solution in
polynomial time. We then propose a dedicated algorithm to
approximate the optimal solution.

Corollary 1. The minimal 2-coverage problem in software-
defined datacenters is NP-complete.

Proof: The minimal 2-coverage problem is to use the
minimal number of controllers while ensuring that each
switch is controlled by two controllers. That is, find the
minimal number of dominant switches to ensure that each
switch is covered by two dominant switches. The minimal
coverage problem is to find the minimal number of con-
trollers while ensuring that each switch is controlled by
one controller. Because Theorem 1 shows that the mini-
mal coverage problem in software-defined datacenters is
NP-complete, the minimal 2-coverage problem is also NP-
complete. Thus proved.

3.2 Solution to fault-tolerant coverage problem

To achieve the minimal 2-coverage, we propose an approxi-
mation Algorithm 2, denoted as ABC. The set of controllers
resulting from Algorithm 1 acts as one of the input. Let
CS [N ] record if the switches has been covered by two
controllers. Algorithm 2 firstly derives the relationships of
switches, based on the datacenter topology G. It then checks
the state of each switch in the datacenter in turn. Since
each switch only needs to be controlled by one controller
in Algorithm 1, some controllers might have not been fully

ALGORITHM 2: Finding extra controllers, ABC

Input: G(N,E), r, and u; Let C denote a set of
controllers resulting from Algorithm 1.

Output: the set of extra controllers, C2.
1 Let CS [N ] record if the switches has been covered by

two controllers;
2 Let Nbors record the relationships between switches;
3 Construct Nbors based on the topology G;
4 Construct CS [N ] based the set of controllers C;
5 for i=1 to N do
6 if a controller has deployed in the location of switchi

in Algorithm 1 then
7 Let the controller control other switches;
8 while There exist other switches that are not covered by

two controllers do
9 Let maxi=0,maxnum=0;

10 for i=1 to N do
11 if switchi is not a dominant switch then
12 tempnum=getControlNum(switchi);
13 if tempnum ≥ maxnum then
14 maxi=i;
15 maxnum=tempnum;
16 switchmaxi is selected as a dominant switch;
17 switchmaxi is added into C2;
18 Let switchmaxi control other switches;
19 return the set of extra controllers, C2.

utilized. If a switch has been a dominant switch and its con-
troller is in C, the controller will continue to control other
switches when its capacity is still sufficient. Furthermore, if
there exist switches, which have not been covered by two
controllers, Algorithm 2 will select a switch that can cover
the most number of other switches as the dominant switch,
which is achieved by the for loop in Step 10. The dominant
switch will host a controller. Algorithm 2 will terminate
when all switches have been controlled by at least two
controllers. Similarly, the approximation ratio of Algorithm
2 is also lower than 1 + ln(u), and u denotes the capacity of
a controller.

The time complexity of the first for loop in Algorithm
2 is O(N×h), where N is the number of switches in a
datacenter, and h denotes the maximum number of switches
a controller actually controls. Let t denote the number
of controllers that are identified by Algorithm 2. Then,
the time complexity of the while loop in Algorithm 2 is
O(N×h×t). Therefore, the time complexity of Algorithm
2 is O(N×h×t).

4 MINIMAL COMMUNICATION OVERHEAD OF SYN-
CHRONIZATION AMONG CONTROLLERS

We start with studying the minimal communication over-
head of Synchronization among controllers, after realizing
the minimal and fault-tolerant coverage of controllers. Thus,
we propose a dedicated approach to considerably reduce the
communication overhead due to the state synchronization.

4.1 Problem description
After realizing the minimal and fault-tolerant coverage of
controllers, those controllers must operate on a consistent



7

global network view, so as to ensure correct control be-
haviors. Each controller, however, only maintains a local
network view, which frequently changes due to many dy-
namic network behaviors [22]. To realize a consistent view
of the global network among controllers, Onix builds a
shared network information base that is a data structure
including all network entities within a network topology
[14]. However, the instance of network information base
has to handle the replication and distribution of data to all
of controllers. Additionally, there are also some researchers
who seek to achieve the benefits of network control cen-
tralization by passively synchronizing network-wide views
of controllers, such as HyperFlow [18]. It localizes decision
making to individual controllers and minimizes the control
plane response time to data plane requests.

Traditionally, synchronization among n controllers in-
curs n2 unicast. This process incurs non-trivial traffic over-
head in a datacenter, and imposes the synchronization delay,
which can lead to suboptimal control decisions. Thus, it
is essential to minimize the synchronization overhead and
delay. In this paper, we tackle this issue from two aspects.
First, we deploy as few controllers as possible in SDDN,
while ensuring the 2-coverage requirement. Among those
controllers, only the first part of controllers, which are
deployed in Section 2 need to synchronize their states. When
a master controller is broken, the related slave controller will
get the up-to-date states from other controllers.

Second, we replace the n2 unicast transmissions with n
one-to-many multicast transmissions among n controllers.
Such n multicast transmissions share the same multicast
tree. If the multicast tree utilizes the least network links,
we can minimize its communication overhead. The main
challenge is to find the minimal Steiner tree (MST) for such
n controllers in a datacenter. It is well-known that this is
a NP-hard problem in a general graph [24]. The Jellyfish
topology is a random regular graph and its minimal Steiner
tree is also NP-hard.

There exist many approximation methods for solving the
MST problem. Although some approximation methods for
the MST problem obtain the better approximation ratio, they
exhibit higher computation complexity compared to the one
proposed in [28]. Meanwhile, the approximation ratio of the
Steiner algorithm [28] is lower than 2. The time complexity
of the Steiner algorithm is O(C × N2), where C is the
number of controllers and N is the number of switches in a
datacenter. Although the Steiner algorithm is fast, it cannot
generate efficient multicast trees online for large number
of multicast groups simultaneously, due to the increasing
scale of datacenters. Therefore, there is an urgent need of an
efficient and fast algorithm for the MST problem in a large
datacenter. To ease the presentation, we further formulate
this problem in the next section.

4.2 Problem formulation

In this section, we formulate the minimal Steiner tree in a
Jellyfish datacenter as an Integer Programming (IP) prob-
lem. Let N denote the number of switches in the datacenter.
Let an adjacent matrix G = [aij ]|N |×|N | denote the topology
of a datacenter at the level of switch. aij=1 means that there
is an edge between node i and node j; otherwise, aij=0. Let

C denote the set of controllers, whose local network views
need to be synchronized.

We use W=[wij ]N×N to denote a Steiner tree, where
wij=1 means that an edge between node i and node j is
selected to appear in the Steiner tree. Moreover, if aij=0,
wij can not be 1. According to Theorem 3, Wn=[wn

ij ]N×N

is a reachable matrix with a constraint that the path
length between any pair of nodes is n. Let wn

ij denote the
number of paths with length n from node i to node j. Let
Z= [zij ]|N |×|N | ={I+W+W 2+W 3+ . . .+WN−2+WN−1}
denote the reachable matrix, where I is the unit matrix,
wij=1 when i=j, otherwise, wij=0. If zij>0, it means that
the message of node i can reach node j. Otherwise, zij=0.
Theorem 3. Wn=[wn

ij ]|N |×|N | represents a reachable matrix,
where the path length between any pair of nodes is n.

Proof: When n=1, Wn=W=[wij ]|N |×|N | denotes
a reachable matrix, where the path length between
any pair of nodes is 1. When n=k, W k=[wk

ij ]|N |×|N |
denotes a reachable matrix, where the path length
between any pair of nodes is k. When n=k+1,
W k+1=[wk+1

ij ]|N |×|N |=W k×W=
∑
l∈N

wk
il×wlj . It is clear

that W k+1 represents a reachable matrix, where the path
length between any node pair is k+1. So, Wn=[wn

ij ]|N |×|N |
represents the reachable matrix, where the path length be-
tween any two nodes is n. Thus, Theorem 3 is proved.

The optimization objective of the cost synchronization
problem is to minimize the number of edges in the related
Steiner tree, and can be expressed as follows:

min
∑

i,j∈N

wij . (13)

Meanwhile, the following constraints must be satisfied to
guarantee a feasible solution:

∀i ∈ N, j ∈ N : wij ≤ aij (14)

∀i ∈ C, j ∈ C : zij > 0 (15)

∀i ∈ N, j ∈ N : wij ∈ {0, 1} (16)

Inequality (14) ensures that the edge must be selected from
the topology of the datacenter. Inequality (15) guarantees
that all synchronization controllers are selected and connect-
ed. Constraints (16) indicates that wij is a binary variable.
This is an Integer Programming problem and is also a NP-
hard problem. Thus, we propose a dedicated algorithm to
approximate the optimal solution in the next section.

4.3 Solution to minimal communication overhead of
synchronization among controllers

To construct the minimal Steiner tree, we first derive a
multi-stage graph from the datacenter topology. The source
node in the graph can be any controller, which needs to
synchronize its state. A node in the graph may have mul-
tiple father nodes. For any node, if another node locates at
the same layer and connects to it, such a node is called a
brother node of the current one. Fig. 2 indicates a multi-
stage graph, resulting from a Jellyfish topology in Fig. 1.
The node switch1 is the source node and locates at the stage
0. The node switch11 has two father nodes, switch7 and



8

Fig. 2. A multi-stage graph from the Jellyfish topology in Fig. 1.

ALGORITHM 3: Find the Steiner tree, AMG
Input: The multi-stage graph, T ; the set of controllers,

C.
Output: Steiner tree, W

1 for i=lastlevel to 1 do
2 Get elements in the level i;
3 for j=1 to elems.size() do
4 flag=0;
5 if elem[j] is a controller or elem[j] is selected as a

relay node then
6 Get the father nodes of elem[j];
7 for x=1 to fnode.size() do
8 if fnode[x] must be passed then
9 Select the edge between elem[j] and

fnode[x];
10 flag=1; break;
11 if flag==0 then
12 Get the brother nodes of elem[j];
13 for y=1 to bnode.size() do
14 if bnode[y] must be passed and the

edge between bnode[y] and elem[j] has
not been selected then

15 Select the edge between bnode[y]
and elem[j];

16 flag=1; break;
17 if flag==0 then
18 Select the edge between elem[j] and a

father node;
19 return the selected edges W .

switch12. The nodes, switch2 and switch8, are the brother
nodes of switch3 and switch10, respectively.

After that we construct the multi-stage graph from the
datacenter topology, we need to select some switch nodes
and edges to construct the minimal Steiner tree. Those
dominant switches, determined in Section 2, have to be
selected into the Steiner tree. We need to find those Steiner
nodes to connect such dominant switches with as low cost
as possible.

Definition 5. (Relay Node) The relay node is a switch node
in the multicast tree, and the relay node is neither a
source node nor a destination node. However, the relay
node will transfer data to the destination nodes for the
multicast transfer.

We propose an approximation algorithm 3, AMG, which
constructs the Steiner tree in a bottom-up way, given the
multi-stage graph. That is, the algorithm starts from all

nodes at the last stage in the multi-stage graph to the
nodes at stage 1. If a switch node is associated with a
synchronization controller or acts as a relay node defined
in Definition 5, it has to be selected. If the current switch is
a relay node, Algorithm 3 first checks its father nodes in the
multi-stage graph. If one of its father node is also a relay
node, the edge connected to such father node should be
selected. Otherwise, Algorithm 3 selects the edge between
the relay switch and one of its brother nodes, if at least
one brother node is a relay node. If all of its father nodes
and brother nodes are not selected, Algorithm 3 randomly
selects a father node, which will become a relay node. Such
operations are repeated until the nodes at stage 1 is checked
in the multi-stage graph.

The first two ’for’ loops in Algorithm 3 try to traverse
each switch in the datacenter. So the time complexity is
O(N), where N is the number of switches in a datacenter.
The length of the first loop in Step 1 is the number of
stages in the multi-stage graph. The length of the second
loop in Step 3 is related to the number of nodes in each
stage. The first and the second loops will ensure that all
nodes are visited once. Therefore, we say that the com-
plexity is O(N) where N is the number of nodes in the
multi-stage graph. The last two ’for’ loops try to visit the
neighboring switches of a switch. The corresponding time
complexity is O(γ), where γ denotes the number of ports
per switch allocated for switch interconnections in a Jellyfish
datacenter. The third loop in Step 7 and the fourth loop in
Step 13 are to visit those father nodes and brother nodes,
respectively. The total number of father nodes, brother n-
odes and child nodes is γ. Meanwhile, the third loop and
the fourth loop are parallel. Therefore, the time complexity
is O(γ). Therefore, the time complexity of Algorithm 3 is
O(N×γ). For a Jellyfish datacenter with 1000 switches,
there are 16000 servers, when each switch allocates 8 ports
for switch interconnections. Owing to the time complexity
of the Steiner algorithm in [28] is O(C×N2). It is obvi-
ous that N×γ=1000×8≤C×10002=C×N2, where C ≥ 1.
Therefore, Algorithm 3 is faster than the Steiner algorithm
in [28].

5 PERFORMANCE EVALUATION

We conduct extensive simulations to evaluate the perfor-
mance of our algorithms, which are used to tackle the
minimal coverage, the minimal fault-tolerant coverage, and
minimal communication overhead of state synchronization
problems. We do these simulations based on the Jellyfish
topologies, which are random regular graphs. The results
show that our algorithms always exhibit good performance
in these settings.

For the minimal coverage and minimal fault-tolerant
coverage problems of controllers, the main input parameters
include the network topology, the controller capacity and
the propagation delay constrains. The random networks
are abstracted as the random graph, which are constructed
based on the construction method [7]. Given a network,
the objective is to find the number of employed controllers
and their locations. Our algorithms can be achieved by
any programming language in any computing platform.
Through abstracting the network topology and inputting



9

200 400 600 800 1000
0

20

40

60

80

100

120

140

The number of switches

T
he

 n
um

be
r 

of
 c

on
tr

ol
le

rs

 

 

Random Algorithm
Our Algorithm, ACC
A Lower Bound

(a) A switch uses 8 ports for switches’
interconnection.

200 400 600 800 1000
0

10

20

30

40

50

60

70

The number of switches

T
he

 n
um

be
r 

of
 c

on
tr

ol
le

rs

 

 

Random Algorithm
Our Algorithm, ACC
A Lower Bound

(b) A switch uses 12 ports for switches’
interconnection.

Fig. 3. The impact of the amount of switches on the number of controller-
s, where each switch possesses 24 ports.

corresponding parameters, our algorithms can achieve the
number of required controllers and their locations. For
the minimal communication overhead of synchronization
among controllers, the main goal is to find employed links
for multicast transfer. Given the network topology and the
locations of controllers, our algorithm 3 can achieve the
employed links for synchronization.

5.1 Performance of the minimal coverage method
As far as we know, there exists no other appropriate method,
which can be compared with our methods. Therefore, we
evaluate the performance of Algorithm 1 and prior random
algorithm, in the term of the number of required controllers.
The impact of datacenter size and controller’s capacity are
reported in Section 5.1.1 and Section 5.1.2, respectively.
In each setting, we construct 10 random networks. The
showing results is the average value under the 10 random
networks. For the random placement, we will run it 100
times to achieve the average result in each random network.

The insight behind the random algorithm is to randomly
select the location for a controller, which will control around
switches according to the coverage model in Section 2.1. If at
least one switch have not been controlled, a new controller
is randomly deployed. This algorithm repeats until each
switch in a datacenter has been controlled by at least one
controller.

5.1.1 Impact of datacenter size
We evaluate the performance of Algorithm 1 under variable
datacenter sizes. The results indicate that it always utilizes
much fewer controllers than the random algorithm, irre-
spective of the datacenter size.

It is clear that the capacity of a controller directly affects
the number of required controllers. Kandula et al. have
found that a cluster of 1500 servers exhibits a median flow
arrival rate, i.e., 100K flows per second [29]. The average
generation rate of flows at a server is 67 in a second. When
a switch with 24 ports allocates 8 ports for interconnection
with other switches, a switch can connect 16 servers. The
median flow arrival rate for a switch is 1072 per second.
Additionally, an individual controller can deal with at least
30K flows per second [30]. Thus, it is easy to calculate that
the capacity of a controller is 27. That is, one controller can
control 27 switches. The propagation delay in datacenters is
mainly decided by hops while it is affected by the physical

10 20 30 40 50 60
0

50

100

150

200

250

300

The capacity of controllers

T
he

 n
um

be
r 

of
 c

on
tr

ol
le

rs

 

 

Random Algorithm
Our Algorithm, ACC
A Lower Bound

(a) A switch uses 8 ports for switches’
interconnection.

10 20 30 40 50 60
0

50

100

150

200

250

The capacity of one controller

T
he

 n
um

be
r 

of
 c

on
tr

ol
le

rs

 

 

Random Algorithm
Our Algorithm, ACC
A Lower Bound

(b) A switch uses 12 ports for switches’
interconnection.

Fig. 4. The impact of the controller’s capacity on the number of con-
trollers, where the datacenter has 1000 switches.

distance in wide-area networks. In Jellyfish datacenters, the
number of switches that are 2 hops away from a controller
is between 8 and 64 when each switch uses 8 ports for
switches’ interconnection. Therefore, we set 2 hops as the
coverage range of each controller. It means that the farthest
switch a controller can control is 2-hops away, so as to satisfy
the constraint of the propagation latency.

Fig. 3(a) shows that Algorithm 1 always deploys fewer
controllers than the random algorithm, where each switch
reserves 8 of 24 ports for connecting other switches, ir-
respective of the number of switches. Additionally, the
number of controllers Algorithm 1 deploys is close to the
lower bound. The lower bound is equal to the ratio of the
total number of switches to the capacity of one controller.
The coverage ranges of controllers may overlap, thus even
the optimal solution is larger than the lower bound. The
required number of controllers increases as the number of
switches varying from 100 to 1000, i.e., the datacenter size
increases from 1, 600 to 16, 000. To measure the influence of
port allocation policy at each switch, we further make each
switch reserve 12 of 24 ports for connecting switches. We
can see from Fig. 3(b) that Algorithm 1 still outperforms the
random algorithm, irrespective of the number of switches.
Moreover, the number of controllers deployed by Algorithm
1 gets closer to the lower bound. The similar results are
achieved, when the number of ports used to interconnect
switches is set to other values.

5.1.2 Impact of controller’s capacity
We evaluate the performance of Algorithm 1 under variable
capacity of a controller. We find that it always utilizes much
fewer controllers than the random algorithm, irrespective of
the capacity of a controller.

Given a Jellyfish datacenter with 1000 switches, the
capacity of each controller varies from 10 to 50. That is, the
amount of switches one controller can control ranges from
10 to 50. To satisfy the constraint on the propagation latency,
the coverage range of each controller is at most 2 hops. We
evaluate Algorithm 1 and the random algorithm, when each
switch assigns 8 or 12 ports to connect other switches.

Fig. 4(a) shows that Algorithm 1 always utilizes much
fewer controllers than the random algorithm, where each
switch uses 8 ports for switches’ interconnection. Addition-
ally, the amount of required controllers decreases as the
capacity of a control ranges from 10 to 60, under our algo-
rithm and the random algorithm. The number of required



10

200 400 600 800 1000
0

20

40

60

80

100

120

140

160

The number of switches in the data center

T
he

 n
um

be
r 

of
 a

dd
iti

on
al

 c
on

tr
ol

le
rs

 

 

Random Algorithm
Our Algorithm, ABC
A Lower Bound

(a) A switch uses 8 ports for switches’
interconnection.

200 400 600 800 1000
0

20

40

60

80

100

The number of switches in the data center

T
he

 n
um

be
r 

of
 a

dd
iti

on
al

 c
on

tr
ol

le
rs

 

 

Random Algorithm
Our Algorithm, ABC
A Lower Bound

(b) A switch uses 12 ports for switches’
interconnection.

Fig. 5. The impact of the number of switches on the number of extra
controllers to achieve 2-coverage.

controllers, however, will not continue to decrease, when
the capacity of a controller approaches and exceeds 50. The
reason is that the coverage range of each controller becomes
the major impact factor. Although a controller has sufficient
capacity, other switches, which is too far from the controller,
do not satisfy the constraint on the propagation latency.
Meanwhile, in Fig. 4(a), we give the lower bound, which
is equal to the ratio of the total number of switches to the
capacity of one controller. The optimal solution is larger
than the lower bound because the control ranges of con-
trollers may overlap. The number of controllers Algorithm
1 deploys is close to the lower bound. We can see that the
number of controllers our Algorithm 1 derives is very close
to the lower bound when the capacity of one controller is
not sufficient large from Fig. 4(a).

To measure the influence of port allocation policy at
each switch, we make each switch allocate 12 ports for
connecting switches. We can see from Fig. 4(b) that Algo-
rithm 1 still outperforms the random algorithm, irrespective
of the capacity of each switch. We found that the similar
results are achieved, when the number of ports used to
interconnect switches is set to other values besides 8 and 12.
In a summary, Algorithm 1 always deploys fewer controllers
than the random algorithm. Moreover, when the capacity of
a controller exceeds a threshold, the major factors affecting
the amount of controllers become the number of allocated
ports for connecting switches and the constraint on the
propagation delay.

5.2 Performance of the minimal fault-tolerant coverage
method
In this section, we evaluate the cost and effectiveness of
Algorithm 2 when addressing the minimal fault-tolerant
coverage problem.

5.2.1 The number of extra controllers
Note that Algorithms 1 and 2 deal with the 1-coverage and
2-coverage problems of controllers in SDDN, respectively.
The goal of Algorithm 2 is to add the minimal number of
extra controllers to the set of existing controllers derived by
Algorithm 1. In this section, we compare Algorithm 2 with
the random algorithm under different size of datacenters,
in terms of the new controllers. Given the set of controllers
for addressing the 1-coverage problem, the random algo-
rithm randomly redeploys some new controllers until the
constraint on the 2-coverage problem is satisfied.

0 10 20 30 40 50
0

200

400

600

800

1000

The number of invalid controllers

T
he

 n
um

be
r 

of
 in

va
lid

 s
w

itc
he

s

 

 

1−coverage
2−coverage

(a) A switch uses 8 ports for switches’
interconnection.

0 10 20 30 40
0

200

400

600

800

1000

The number of invalid controllers

T
he

 n
um

be
r 

of
 in

va
lid

 s
w

itc
he

s

 

 

1−coverage
2−coverage

(b) A switch uses 12 ports for switches’
interconnection.

Fig. 6. The impact of invalid controllers on switches in the datacenter
with 1000 switches, each of which has 24 ports.

We conduct evaluations when the number of switches
ranges from 100 to 1000 in datacenters. The set of controllers
resulting from Algorithm 1 is one of the input of Algorithm
2. Other input variables are inherited from Section 5.1.1.
After conducting 100 rounds of experiments in each setting,
we calculate the average number of new controllers for the
two algorithms.

Fig. 5(a) indicates that the number of extra controllers
calculated by Algorithm 2 is much fewer than the random
algorithm, where each switch allocates 8 ports for switch
interconnection. Moreover, when the amount of switches in
a datacenter increases, the benefit of Algorithm 2 becomes
more prominent. Meanwhile, we can see that the number
of controllers our Algorithm 2 derives is very close to the
lower bound from Fig. 5(a) and Fig. 5(b). The lower bound
is equal to the difference between the ratio of the 2 times
total number of switches to the capacity of one controller
and the number of controllers resulting from Algorithm 1.
Since the coverage ranges of all existing and new added
controllers may overlap, the optimal solution is larger than
the lower bound.

In order to measure the impact of different port alloca-
tion policies, we increase the number of ports for switch
interconnection at each switch from 8 to 12. In this setting,
Fig. 5(b) indicates that Algorithm 2 always outperforms
the random algorithm since it redeploys fewer additional
controllers to ensure the demand of 2-coverage. Additional-
ly, the number of required additional controllers decreases,
when each switch has more ports for switch interconnection,
under the same datacenter size. In summary, our algorithm
always utilizes fewer number of new controllers than the
random algorithm to enable the demand of 2-coverage,
irrespective of the datacenter size.

5.2.2 The impact of invalid controllers

This section evaluates the importance and effectiveness of
the 2-coverage, where each switch is controlled by two
controllers. The evaluation results show that the 2-coverage
can significantly improve the fault-tolerant capability of the
1-coverage. Note that the 1-coverage problem means that
each switch is controlled by one controller.

In the experiment setting, the Jellyfish datacenter utilizes
1000 switches, each of which has 24 ports. The capacity and
coverage range of each controller are the same as Section
5.1.1. A given number of controllers are randomly set to



11

200 400 600 800 1000
0

50

100

150

200

250

The number of switches

T
he

 n
um

be
r 

of
 li

nk
s 

in
 th

e 
tr

ee

 

 

Unicast Method
Prior Multicast
Our Algorithm, AMG

(a) A switch uses 8 ports for switches’
interconnection.

200 400 600 800 1000
0

20

40

60

80

100

120

140

The number of switches

T
he

 n
um

be
r 

of
 li

nk
s 

in
 th

e 
tr

ee

 

 

Unicast Method
Prior Multicast
Our Algorithm, AMG

(b) A switch uses 12 ports for switches’
interconnection.

Fig. 7. The impact of the number of switches on the number of links in
the multicast tree.

become invalid. We then observe the number of invalid
switches on average, which is not controlled by any con-
troller, under the 1-coverage and 2-coverage.

Fig. 6 reports that the amount of resulting invalid switch-
es increases along with the increase of failed controllers
under both algorithms. However, under the same number
of failed controllers, the 2-coverage exhibits much fewer
invalid switches than the basic 1-coverage, irrespective of
the number of invalid controllers. Additionally, the similar
results are achieved when each switch increases the number
of ports, allocated to switch interconnection, from 8 to 12.
Moreover, the number of invalid switches, due to the same
number of failed controllers, increases when each switch
uses more ports for switch interconnection. That is, the
impact of invalid controllers is more serious during such
an increasing process under both algorithms. In a summary,
the 2-coverage can considerably improve the fault-tolerant
capability of the 1-coverage.

5.3 Performance of the method minimizing the commu-
nication overhead of synchronization
In this section, we evaluate the cost of our method min-
imizing the communication overhead of synchronization
among controllers, compared to prior unicast method and
the steiner algorithm in [28]. For prior unicast algorithm,
the sender synchronizes information to each other controller
along the shortest path. In this way, the synchronization
among n controllers incurs n2 unicast transmissions. For the
Steiner algorithm, a complete graph containing all multicast
group members is firstly constructed, based on which a min-
imum spanning tree is derived. Then, each virtual link in
the minimal spanning tree is replaced by its corresponding
shortest path in practice. Finally, the minimum spanning
tree is derived based on the resultant graph again. Specif-
ically, unnecessary edges are deleted until all the leaves in
the graph are multicast group members.

Given a datacenter, we first derive the locations of these
controllers from Algorithm 1. We then construct a multicast
tree to connect these controllers by Algorithm 3 and the
Steiner algorithm, respectively. Thus, all controllers syn-
chronize their states along the resultant multicast tree. To
minimize the synchronization overload, it is obviously that
the number of links in the multicast (Steiner) tree should be
minimized.

As shown in Fig. 7, the multicast tree resulting from Al-
gorithm 3 employs fewer number of links than prior unicast-

driven synchronization method and the Steiner algorithm
[28]. Thus, the synchronization among controllers incurs
much less network cost via the multicast tree derived by
Algorithm 3. Additionally, we find that the same results are
achieved, when each switch increases the number of ports
allocated for switch interconnections. Meanwhile, given the
same datacenter, the resulting multicast tree utilizes fewer
links, when each switch uses more ports for switch intercon-
nection. We also note that it is not obvious that Algorithm 3
is better than the Steiner algorithm. When there are 1000
switches in the datacenter, our AMG algorithm employs
10 fewer links than prior multicast (Steiner) algorithm in
Fig. 7(b). It is because that the size of datacenters is small
in the experiment settings. We can see that the advantage
of Algorithm 3 increases with the number of switches in a
datacenter in Fig. 7. Thus, when the size of a datacenter is
larger, the advantage of Algorithm 3 will be more obvious.
Moreover, it is worth noting that Algorithm is faster than the
Steiner algorithm in [28] to generate the multicast tree. This
is important for instant applications in large datacenters.

In summary, Algorithm 3 always constructs a multicast
tree for the state synchronization among controllers, with
much fewer number of links than the unicast method and
the Steiner algorithm. Owing to fewer links, the resultant
tree can reduce the communication overhead due to the
frequent state synchronization among all of controllers.

6 RELATED WORK

For the controller’s placement problem, Heller et al. firstly
studied how many controllers are sufficient and where
they should be deployed [25] in WAN. The propagation
latency between a controller and a switch is a constraint
on the number and locations of controllers. This metric
alone, however, cannot characterize the real requirements
of SDN applications. Yao et al. extend this work to take into
consideration the load of controllers [31]. They formulate
the capacitated controller placement problem that accounts
for the different capacities of controllers to ensure that the
controller can deal with its load at any time. However,
these works all assume that each node only connects to
one controller. That is to say, these placement policies do
not consider the failure of controllers. Bari et al. propose
two heuristics to dynamically provisioning controllers [32].
Their goals are to minimize flow setup time, control traffic
and switch-to-controller reassignments. But, the dynamic
assignments need more time and they also do not consider
the failure of controllers.

Hock et al. also extend Heller et al.’s work [25] and
propose the POCO framework to achieve the whole solution
space for placements of k controllers [33]. By generating all
possible placements for k controllers, the trade-offs between
some metrics including inter-controller latency, load balanc-
ing between controllers, and failure resilience are explored.
Recently, Lange et al. extended the POCO framework with
heuristics to make it work in large or dynamic topologies
[34]. However, the authors only focus on one and two failure
scenarios for nodes and links and do not consider the failure
of controller itself in their formulation. In addition, the
number of controllers k to be deployed in the network is



12

given as an input parameter in the POCO framework, and
that is our optimizing objective.

Hu et al. deal with controller placements from a reli-
ability view point [35]. In this case, the authors develop
several placement algorithms to make informed placement
decisions and use the reliability of SDN as the placement
metric. Then, the authors compare through simulation d-
ifferent placement algorithms [36]. To measure reliability,
they propose a metric called expected percentage of control
path loss. Moreover, they proof that the reliability-aware
controller placement is NP-hard and analyze the trade-off
between reliability and latency by testing different place-
ment algorithms. However, similar to [33], the number k of
controllers is also an input of placement algorithms.

Ros et al. have studied the southbound reliability in
software-defined networks and employed connectivity as a
surrogate for reliability [37].They heuristically rank facilities
according to their expected contribution to southbound
reliability for as most nodes as possible. Given threshold
β, for every node, it has to connect to a subset of deployed
controllers such that the probability of having at least an
operational path is higher than the given threshold. The
same authors have extended their previous work and en-
hanced the performance and the results of their previous
work by simplifying the flow network [37]. However, the
main goal of their works is to achieve high reliability in
the southbound interface between controllers and nodes. In
this paper, we systematically solve the minimal coverage
problem, the minimal fault-tolerant coverage problem and
the minimal communication overhead of synchronization
among controllers, which are not considered in other works
about controller placements at present. Moreover, afore-
mentioned works mainly focus on wide-area networks or
Internet topologies, but our works start from datacenters,
and we hope the work in this paper to promote research on
the topic.

7 CONCLUSION

Currently, cloud datacenters still lack a scalable and resilient
control plane due to the coverage problem of controllers.
In this paper, we systematically study the essential prob-
lem from three aspects. We first propose an approximation
method to deploy the minimum number of controllers such
that each switch is controlled by one controller. We then
design a dedicated method to address the minimal fault-
tolerant coverage problem. Thus, each switch will be taken
over by another controller when the master one fails. More-
over, controllers have to synchronize their local network
views for operating on a global network view. To reduce
the resulting overhead, we minimize not only the number
of involved controllers but also the cost of multicast tree
used for synchronization. Extensive evaluation results show
that our approaches can significantly decrease the number
of required controllers, improve the fault-tolerant capability,
and reduce the communication overhead of state synchro-
nization. Moreover, these models and approaches proposed
in this paper can be applied to cloud datacenters with other
network topologies.

ACKNOWLEDGMENTS

The authors thank all the anonymous reviewers for their
insightful feedback. Besides, this work is partly support-
ed by the National Natural Science Foundation for Out-
standing Excellent young scholars of China under Grant
No.61422214, National Basic Research Program (973 pro-
gram) under Grant No.2014CB347800, the Program for New
Century Excellent Talents in University, the Hunan Provin-
cial Natural Science Fund for Distinguished Young Scholars
under Grant No.2016JJ1002, the Research Funding of NUDT
under Grant Nos.JQ14-05-02 and ZDYYJCYJ20140601.

REFERENCES

[1] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta, “Vl2: a scalable and flexible
data center network,” ACM SIGCOMM Computer Communication
Review, vol. 39, no. 4, pp. 51–62, 2009.

[2] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang,
and S. Lu, “Bcube: a high performance, server-centric network
architecture for modular data centers,” ACM SIGCOMM Computer
Communication Review, vol. 39, no. 4, pp. 63–74, 2009.

[3] D. Guo, H. Chen, Y. He, H. Jin, C. Chen, H. Chen, Z. Shu,
and G. Huang, “Kcube: A novel architecture for interconnection
networks,” Information Processing Letters, vol. 110, no. 18-19, pp.
821–825, 2010.

[4] D. Guo, C. Li, J. Wu, and X. Zhou, “Dcube: A family of network
structures for containerized data centers using dual-port servers,”
Computer Communications, vol. 53, pp. 13–25, 2014.

[5] D. Abts, M. R. Marty, P. M. Wells, P. Klausler, and H. Liu, “Energy
proportional datacenter networks,” in Proc. 37th ACM ISCA, Saint-
Malo, France, 2010, pp. 338–347.

[6] J. H. Ahn, N. L. Binkert, A. Davis, M. McLaren, and R. S. Schreiber,
“Hyperx: topology, routing, and packaging of efficient large-scale
networks,” in Proc. ACM/IEEE Conference on High Performance
Computing(SC), Portland, Oregon, USA, 2009.

[7] A. Singla, C.-Y. Hong, L. Popa, and P. B. Godfrey, “Jellyfish:
Networking data centers randomly.” in Proc. USENIX NSDI, San
Jose, CA, USA, April 2012.

[8] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, and M. Zhu, “B4: experience
with a globally-deployed software defined wan,” Acm Sigcomm
Computer Communication Review, vol. 43, no. 4, pp. 3–14, 2013.

[9] C. Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri,
and R. Wattenhofer, “Achieving high utilization with software-
driven wan,” Acm Sigcomm Computer Communication Review,
vol. 43, no. 4, pp. 15–26, 2013.

[10] D. Li, Y. Shang, and C. Chen, “Software defined green data
center network with exclusive routing,” in Proc. IEEE INFOCOM,
Toranto, Canada, April 2014.

[11] P. Tammana, R. Agarwal, and M. Lee, “Cherrypick: tracing packet
trajectory in software-defined datacenter networks,” in ACM SIG-
COMM Symposium on Software Defined NETWORKING Research,
2015, pp. 1–7.

[12] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Pe-
terson, J. Rexford, S. Shenker, and J. Turner, “Openflow: Enabling
innovation in campus networks,” ACM SIGCOMM Computer Com-
munication Review, vol. 38, no. 2, pp. 69–74, 2008.

[13] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and
S. Shenker, “Ethane: Taking control of the enterprise,” ACM SIG-
COMM Computer Communication Review, vol. 37, no. 4, pp. 1–12,
2007.

[14] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski,
M. Zhu, R. Ramanathan, Y. Iwata, H. Inoue, T. Hama et al.,
“Onix: A distributed control platform for large-scale production
networks.” in Proc. USENIX OSDI, Vancouver, BC, Canada, Octo-
ber 2010.

[15] O. N. Fundation, “Software-defined networking: The new norm
for networks,” ONF White Paper, 2012.

[16] A. Dixit, F. Hao, S. Mukherjee, T. Lakshman, and R. Kompella,
“Towards an elastic distributed sdn controller,” in Proc. ACM
HotSDN, HongKong, August 2013.



13

[17] J. Xie, D. Guo, Z. Hu, T. Qu, and P. Lv, “Control plane of software
defined networks: A survey,” Computer Communications, vol. 67,
pp. 1–10, 2015.

[18] A. Tootoonchian and Y. Ganjali, “Hyperflow: A distributed control
plane for openflow,” in Proc. USENIX INM/WREN, SAN JOSE,CA,
April 2010.

[19] M. Jarschel, T. Zinner, T. Hoßfeld, P. Tran-Gia, and W. Kellerer,
“Interfaces, attributes, and use cases: A compass for sdn,” IEEE
Communications Magazine, vol. 52, no. 6, pp. 210–217, 2014.

[20] V. Kotronis, X. Dimitropoulos, and B. Ager, “Outsourcing the rout-
ing control logic: better internet routing based on sdn principles,”
in Proc. ACM HotNets, Redmond, WA, USA, October 2012.

[21] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu, “Dcell: a
scalable and fault-tolerant network structure for data centers,”
ACM SIGCOMM Computer Communication Review, vol. 38, no. 4,
pp. 75–86, 2008.

[22] D. Levin, A. Wundsam, B. Heller, N. Handigol, and A. Feldmann,
“Logically centralized?: state distribution trade-offs in software
defined networks,” in Proc. ACM HotSDN, Helsinki, Finland,
August 2012.

[23] Z. Guo, M. Su, Y. Xu, Z. Duan, L. Wang, S. Hui, and H. J.
Chao, “Improving the performance of load balancing in software-
defined networks through load variance-based synchronization,”
Computer Networks, vol. 68, pp. 95–109, 2014.

[24] R. M. Karp, Reducibility among combinatorial problems. Springer,
1972.

[25] B. Heller, R. Sherwood, and N. McKeown, “The controller place-
ment problem,” in Proc. ACM HotSDN, Helsinki, Finland, August
2012.

[26] M. Garey and D. Johnson, Computers and intractability: a guide to
the theory of NP-completeness. New York: free-man, 1979.

[27] T. W. Haynes, S. Hedetniemi, and P. Slater, Fundamentals of domi-
nation in graphs. CRC Press, 1998.

[28] L. Kou, G. Markowsky, and L. Berman, “A fast algorithm for
steiner trees,” Acta Informatica, vol. 15, no. 2, pp. 141–145, 1981.

[29] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken,
“The nature of data center traffic: measurements & analysis,” in
Proc. ACM SIGCOMM IMC, Chicago, Illinois, USA, August 2009.

[30] A. Tavakoli, M. Casado, T. Koponen, and S. Shenker, “Applying
nox to the datacenter.” in Proc. ACM HotNets, New York, USA,
October 2009.

[31] G. Yao, J. Bi, Y. Li, and L. Guo, “On the capacitated controller
placement problem in software defined networks,” IEEE Commu-
nications Letters, vol. 18, no. 8, pp. 1339–1342, 2014.

[32] M. F. Bari, A. R. Roy, S. R. Chowdhury, Q. Zhang, M. F. Zhani,
R. Ahmed, and R. Boutaba, “Dynamic controller provisioning
in software defined networks.” in CNSM, Zurich, Switzerland,
October 2013.

[33] D. Hock, M. Hartmann, S. Gebert, and M. Jarschel, “Pareto-
optimal resilient controller placement in sdn-based core net-
works,” in Teletraffic Congress (ITC), 2013 25th International, 2013,
pp. 1–9.

[34] S. Lange, S. Gebert, T. Zinner, P. Tran-Gia, D. Hock, M. Jarschel,
and M. Hoffmann, “Heuristic approaches to the controller place-
ment problem in large scale sdn networks,” IEEE Transactions on
Network & Service Management, vol. 12, no. 1, pp. 1–1, 2015.

[35] Y. Hu, W. D. Wang, X. Y. Gong, X. R. Que, and S. D. Cheng, “On the
placement of controllers in software-defined networks,” Journal of
China Universities of Posts & Telecommunications, vol. 19, no. 19, pp.
92–97, 2012.

[36] Y. Hu, W. Wang, X. Gong, X. Que, and S. Cheng, “Reliability-
aware controller placement for software-defined networks,” Wire-
less Communication Over Zigbee for Automotive Inclination Measure-
ment fChina Communications, vol. 11, no. 2, pp. 672–675, 2013.

[37] F. J. Ros and P. M. Ruiz, “On reliable controller placements in
software-defined networks,” Computer Communications, vol. 77, pp.
41–51, 2016.

Junjie Xie Junjie Xie received the B.S. degree in
computer science and technology from Beijing
Institute of Technology, Beijing, China, in 2013.
He received the M.S. degree in College of Infor-
mation System and Management, National Uni-
versity of Defense Technology (NUDT), Chang-
sha, China, in 2015. He is currently a PhD stu-
dent in NUDT. His research interests include dis-
tributed systems, data centers, software-defined
networking and interconnection networks. Email:
xiejunjie06@gmail.com

Deke Guo Deke Guo received the B.S. degree
in industry engineering from Beijing University
of Aeronautic and Astronautic, Beijing, China,
in 2001, and the Ph.D. degree in management
science and engineering from National Univer-
sity of Defense Technology, Changsha, China,
in 2008. He is a Professor with the College of
Information System and Management, Nation-
al University of Defense Technology, Changsha,
China. His research interests include distribut-
ed systems, software-defined networking, data

center networking, wireless and mobile systems, and interconnection
networks. He is a member of the ACM and the IEEE.

Xiaomin Zhu Xiaomin Zhu received the BS and
MS degrees in computer science from Liao ning
Technical University, Liao ning, China, in 2001
and 2004, respectively, and Ph.D. degree in
computer science from Fudan University, Shang-
hai, China, in 2009. In the same year, he won the
Shanghai Excellent Graduate. He is currently an
associate professor in the College of Information
Systems and Management at National Univer-
sity of Defense Technology, Changsha, China.
His research interests include scheduling and

resource management in green computing, cluster computing, cloud
computing, and multiple satellites. He has published more than 50
research articles in refereed journals and conference proceedings such
as IEEE TC, IEEE TPDS, JPDC, JSS and so on. He is also a frequent
reviewer for international research journals, e.g., IEEE TC, IEEE TNSM,
IEEE TSP, JPDC, etc. He is a member of the IEEE, the IEEE Communi-
cation Society, and the ACM.

Bangbang Ren Bangbang Ren received the
B.S. degree in management science and en-
gineering from National University of Defense
Technology,Changsha, China, in 2015. He is
currently working toward the M.S. degree in
College of Information System and Manage-
ment,National University of Defense Technolo-
gy, Changsha, China. His research interests in-
clude software-defined networking, data center
networking.



14

Honghui Chen Honghui Chen received the M-
S degree in operational research and the PhD
degree in management science and engineering
from the National University of Defense Tech-
nology, Changsha, China, in 1994 and 2007,
respectively. Currently, he is a professor of Infor-
mation System and Management, National Uni-
versity of Defense Technology, Changsha, Chi-
na. His research interests include information
system, cloud computing and Information Re-
trieval.


