
The Vertical Cuckoo Filters: A Family of
Insertion-friendly Sketches for Online Applications

Pengtao Fu, Lailong Luo, Shangsen Li, Deke Guo, Geyao Cheng, Yun Zhou
Science and Technology on Information Systems Engineering Laboratory

National University of Defense Technology, Changsha Hunan 410073, P.R. China
{fupengtao, luolailong09, lishangsen, dekeguo, chenggeyao13, zhouyun}@nudt.edu.cn

Abstract—Cuckoo filter (CF) and its variants are emerging
as replacements of Bloom filters in various networking and
distributed systems to support efficient set representation and
membership testing. Cuckoo filters store item fingerprints di-
rectly with two candidate buckets and a reallocation scheme is
implemented to mitigate the bucket overflow problem for higher
space utilization. Such a reallocation scheme, once triggered,
however, can be time-consuming. This shortcoming makes the
existing CFs not applicable for insertion-intensive scenarios such
as online applications wherein the items join and leave frequently.
To this end, in this paper, we propose the Vertical Cuckoo filter
(VCF) which extends the standard Cuckoo filter by providing
more candidate buckets to each item. Another challenging issue
with such a design is how to ensure that the candidate buckets
can be indexed by each other such that no additional hash
computation and item access are necessary during fingerprint
reallocation. Therefore, we present the vertical hashing, which
indexes the candidate buckets with the fingerprint and given
bitmasks. We further generalize and improve the VCF by
realizing k (≥ 4) candidate buckets and avoiding unnecessary
computation. The comprehensive experiments indicate that VCF
outperforms its same kinds in terms of space utilization and
insertion throughput, with a slight compromise of lookup speed.

Index Terms—Cuckoo filter, vertical hashing, space utilization,
insertion throughput, false positive rate, insertion-intensive

I. INTRODUCTION

Many caches, routers and storage systems in networking and
distributed systems, relying on space-efficient data structures
to decide whether a given item exists in a large set of items [1]
[2]. The most well-known data structures are Bloom filter (BF)
[3] and its variants, which provide high memory efficiency at
the cost of a few false positives. However, standard Bloom
filters cannot delete existing items without rebuilding the entire
filter. A body of work try to fix this drawback, including
Counting Bloom filters (CBF) [4], d-left counting Bloom
filters (dlCBF) [5], quotient filters [6], TinySet [7] and etc.
These efforts, however, often suffer from degradation in either
space or time efficiency, though Rank-Indexed Hashing [8]
makes a minor improvement on space-saving.

To this end, Cuckoo filter (CF) [9] is proposed for better
space utilization and faster deletion as a light-weight proba-
bilistic data structure. Unlike Bloom filters, the Cuckoo filter
stores the item fingerprints directly in two candidate buckets.
If both candidates are fully occupied, CF kicks out a stored

Deke Guo and Lailong Luo are the corresponding authors.

fingerprint from the candidate buckets to accommodate the
coming item while reallocating the victim to its alternative
bucket. Such a reallocation process ends successfully when no
more victims are triggered or failed if the number of such re-
allocations reaches a given threshold. Efforts have been made
to further improve its performance in terms of false positive
rate (Adaptive Cuckoo filter [10]), flexibility (the consistent
Cuckoo filter [11]), key set extension (Dynamic Cuckoo filter
[12]), theoretical guarantee (the simplified Cuckoo filter [13]),
lookup throughput (Vacuum filter [14], Morton filter [15]), etc.

However, the state-of-the-art Cuckoo filters rely on the
reallocation process for higher space utilization, making item
insertion time-consuming, especially when the filter is nearly
full [16]. Such designs are not friendly for insertion-intensive
online applications where items insert and delete frequently.
An intuitive insight, as stated in D-ary Cuckoo filter (DCF)
[17], is to explore more candidate buckets so that the filter can
find an empty bucket slot without reallocation. Nevertheless,
the d-ary cuckoo hashing is so cumbersome that a lot of
calculation overhead and time consumption are caused in the
insertion, lookup, and deletion processes.

This paper presents the Vertical Cuckoo filter (VCF), a
new Cuckoo filter design that also implements more than two
candidate buckets for each item. Standard CF can achieve
higher space utilization (i.e., load factor) by extending the
bucket size, while VCF does better in a vertical direction, i.e.,
increasing the number of candidate buckets. So we dub this
design the Vertical Cuckoo filter. We propose a novel indexing
scheme called vertical hashing to ease the reallocation process,
which easily derives out the candidate buckets with item
fingerprint and predefined bitmasks. This design benefits the
VCF from two aspects. First, the candidate buckets for an
arbitrary item can be indexed with each other without addi-
tional hash computation nor access to item content. Second,
VCF needs less hash computation for item insertion than the
existing Cuckoo filters. Because CF must execute one hash
computation when reallocating an evicted fingerprint. In this
manner, VCF achieves higher insertion throughput by avoiding
unnecessary fingerprint reallocation and hash computation.

Moreover, we further improve VCF from two aspects. First,
we generalize the number of candidate buckets for each item
in VCF from the fixed 4 to a flexible k (≥ 4). By doing
so, VCF provides a methodology to replace independent hash
functions used by other sketches while still guaranteeing the

Table I
COMPARISON OF DATA STRUCTURES.

Data structure Space Throughput Deletion

BF [3] 1× 1× no
CBF [4] 4× < 1× yes
CF [9] ≤ 1× ∼ 10× yes

4-ary CF [17] ≤ 0.98× ∼ 3.78× yes
VCF ≤ 0.98× ∼ 20× yes

randomness of the output. Second, we put forward two VCF
variants to realize a proper trade-off between false positive rate
and load factor. Specifically, the first variant realizes dynamical
adjustments of performance by changing the bitmasks in VCF.
While the second variant changes the threshold of fingerprint
hash value to achieve almost the same effect as the first one.

We show the empirical results through a brief compari-
son among several related approximate membership lookup
(AMQ) structures in both space utilization and insertion
throughput in Table I. VCF has the most remarkable advan-
tages compared to all other methods. The contributions of this
paper can be summarized as follows:
• We present the vertical hashing strategy and use it to

design VCF, a novel redesign of the Cuckoo filter that
can provide multiple candidate buckets for each item.

• We further improve the VCF by generalizing the number
of candidate buckets to k (≥ 4) and present two methods
to make performance metrics tunable.

• We conduct theoretical analysis and comprehensive ex-
periments to compare VCF with the existing methods.
The numerical results demonstrate that VCF can cut the
insertion time by half than CF and lead to an increment
of space utilization, with an acceptable compromise of
lookup speed.

The rest of this paper is organized as follows. Section II
reviews the background and the related work; Section III
describes the vertical hashing and the design principle of VCF.
This section also shows how to generalize VCF to k-VCF;
Section IV describes two variants of VCF. Section V presents
a theoretical analysis of VCF in different situations and proves
that VCF always offers the best performance. Section VI eval-
uates our design with comprehensive experiments compared
with DCF and CF. Finally, Section VII concludes this work.

II. RELATED WORK

A. Bloom Filter and Its Variants

Bloom filter. As the most well-known AMQ data structure,
Bloom filter (BF) provides a compact representation of a set
of items, which supports set membership insertion and lookup
effectively. A BF represents items with a bit array of length
m, and all m bits are initially set as 0. For item insertion
of xi in the set S = {x1, x2, . . . , xn}, k independent hash
functions {h1, h2, . . . , hk} are employed to map the item to
k positions in the array. The mapped positions, i.e., hj(xi)
where j ∈ {1, . . . , k}, in the bit array are all set to 1.
To achieve a set membership lookup, the BF checks the k

corresponding positions in the bit array. If all bits are 1, the
lookup returns true; otherwise, it returns false. BF is a space-
efficient probabilistic data structure [18] with a known false
positive probability ξ, and no false negative probability for set
membership queries. To be specific, an item may be affirmed
as the set member when its k hashed positions in the bit array
are set as 1, due to the unavoidable hash conflicts. The false
positive rate is ξBF = (1−e−kn/m)k. BF requires more space
overhead to achieve lower false positives. Naturally, standard
BF does not support item deletions. The reason is that resetting
the corresponding bits from 1 to 0 directly may cause false
negative results for other items.

Counting Bloom filter. Counting Bloom filter (CBF) [4]
extends the BF by adding a counter for each item of the data
structure. In this way, these counters help CBF to support item
deletion without affecting the existence of other items [19].
CBF also supports constant-time membership lookup.

d-left Counting Bloom filter. dlCBF proposes to replace
the general hash functions in CBF with a d-left hash function
[20] [21]. Compared with CBF, dlCBF achieves half space-
saving with the same false positive and two magnitude reduc-
tion of false positive rate with the same spatial scale.

B. Cuckoo Filter and Its Variants

Cuckoo filter. The recently proposed Cuckoo filter is a
light-weight probabilistic data structure to support item dele-
tions and constant-time membership queries. Structurally, a CF
is a table of m buckets, each of which contains b slots. CF
achieves satisfactory space efficiency for a given false positive
rates [9] when b = 4. Every slot stores an f -bit fingerprint
ηx of an item x, where ηx = h0(x) mod 2f . Standard CF
provides two candidate buckets B1(x) and B2(x) for each
item x through the partial cuckoo hashing technique [22]:

B1(x) = hash(x),

B2(x) = B1(x)⊕ hash(ηx)
(1)

The XOR operation in Equ. 1 ensures that the cyclic access
of two candidate buckets for an item x can be achieved by
utilizing only its fingerprint. To insert an item x, CF computes
its fingerprint ηx and indexes of the two alternate buckets
B1(x) and B2(x). Thereafter, the fingerprint ηx is stored in
bucket B1(x) or B2(x) if there is an empty slot. Otherwise,
if both candidates are occupied, the CF performs the eviction.
It randomly kicks out a fingerprint in one of the candidates
and then reinserts ηx in the slot that has just been vacated.
At the same time, CF calculates the other candidate bucket of
the victim fingerprint and tries to reinsert it into that bucket.
The CF recursively performs the eviction until a bucket has
an available slot or the number of such relocations reaches a
given threshold MAX . In the process of membership lookup
of set A, CF checks whether the fingerprint ηx is stored in the
two candidate buckets B1(x) and B2(x). If that fingerprint is
found, CF judges x ∈A, otherwise, x /∈A. However, for an
item y /∈A, CF may find a fingerprint that is the same as f -bit
fingerprint of y in one slot of candidate buckets. The reason
is that the potential hash collisions of fingerprints cause false

positive errors. Theoretically, the false positive rate of CF is
bounded as ξCF = 1− (1− 1

2f
)2b ≈ b

2f−1 when the size of a
fingerprint is f and each bucket has b slots.

Dynamic Cuckoo filters. Dynamic Cuckoo filter [12] sup-
ports the extension of the key set by using many linked
homogeneous CFs. However, each lookup needs to check all
linked CFs, which causes a dynamic Cuckoo filter with lower
lookup throughput and a higher false positive rate.

Vacuum filters.Vacuum Filters (VF) [14] divides the whole
table into multiple equal-size chunks and ensures two candi-
date buckets of each item in the same chunk. VF addresses
the issue that CF can only achieve its claimed advantage in
memory-efficiency when the size of the table is restricted to a
power of two, with a slight improvement in space utilization
and lookup throughput compared with CF.

Morton filters. Morton Filter (MF) [15] is designed to
provide high lookup throughput for unique hierarchical mem-
ory systems. MF introduces a compressed block format that
permits storing a logically sparse filter compactly in memory.
Besides the fingerprint storage array, each MF block contains
overflow flags and bucket counters by extending extra bits.
MF is claimed faster than CF on the ARM architecture.

D-ary Cuckoo filter. By allowing that each item has more
than two candidate buckets, D-ary Cuckoo Filter (DCF) [17]
achieves efficient space utilization. DCF introduces the base-d
digit-wise XOR operation that satisfies the limitation of only
fingerprints available. Two keys X and Y need to be converted
to their base-d form Xd and Yd at first, as XOR here is defined
in the base-d system. The result will be guaranteed to cycle
back to X if it performs the base-d digit-wise XOR operation
on Y for d times. Take d = 4 (each item has four candidate
buckets) as an example, the operation XOR here guarantees:

X4 = X4 ⊕ Y4 ⊕ Y4 ⊕ Y4 ⊕ Y4 (2)

However, Dynamic Cuckoo filter performs worse than CF
in false positive rate and lookup efficiency. The performance
improvements made by VF are negligible. MF only supports
certain lengths of fingerprints (hence specific false positive
rates). DCF needs to convert each index to base-d form
and then convert it back to binary form, increasing time
and calculation consumption of item insertion and lookup. In
insertion-intensive scenarios, both comprehensive high-speed
operations and maximized space utilization are essential for a
proper filter. In contrast, these CF variants suffer from severe
performance degradation that significantly restricts their appli-
cations in such scenarios. So we propose the Vertical Cuckoo
Filter to solve these problems with excellent comprehensive
performance and incredibly high insertion throughput.

III. DESIGN OF VERTICAL CUCKOO FILTERS

This section introduces a novel indexing method called
vertical hashing to ease the reallocation when inserting an
item. After that, the Vertical Cuckoo filter (VCF) is proposed
based on the vertical hashing. Generalizations of both vertical
hashing and VCF are also attached in this section.

1 0 0 1 1 1 0 0

1 0 0 1 0 0 0 0

0 0 0 0 1 1 0 0

Figure 1. An illustrative example of the fragmentation of the fingerprint’s
hash value.

A. Vertical Hashing

1) Standard vertical hashing: To ease the fingerprint re-
allocation and computation, we present vertical hashing to
index the candidate buckets with each other. It divides the
fingerprint’s hash value into multiple fragments using bitmasks
(bms). The vertical hashing implement cyclical access to
multiple buckets, which can be indexed by each other by
performing xor operations on these fragments. Specifically,
the implementation process is composed of two main steps.

First, for an f -bit fingerprint of each item to insert, vertical
hashing divides its fingerprint into two fragments by perform-
ing AND operations on the hash value with two bitmasks,
respectively. Each AND operation with a bitmask only keeps
half of the fingerprint. In Fig. 1, we use an 8-bit fingerprint as
an example, i.e., f = 8, and the fingerprint’s hash value of the
inserted item is hash(ηx) = 10011100 (expressed in binary).
Thereafter, we derive out the two hash value fragments f1 and
f2 by performing AND operations between the hash(ηx) and
bm1 and bm1, respectively. Thereby, the first fragment f1 can
be calculated as f1 = hash(ηx) ∧ bm1 = 10010000.

Second, based on the two fragments of fingerprint, we derive
four candidate buckets that can be indexed by each other
directly. Here is the detail:

B1(x) = hash(x),

B2(x) = B1(x)⊕ f1 = B1(x)⊕ hash(ηx) ∧ bm1,

B3(x) = B1(x)⊕ f2 = B1(x)⊕ hash(ηx) ∧ bm2,

B4(x) = B1(x)⊕ f = B1(x)⊕ hash(ηx)

(3)

Theorem 1: Only when bm1 = ¬bm2, vertical hashing can
circularly access all four candidate buckets for any item via its
current location, fingerprint and bitmasks, without additional
hash computation nor the access of its content.

Proof of Theorem 1: To displace an item x originally
in a bucket Bi, vertical hashing directly calculates its other
alternate buckets Bm, Bn and Bj from the current bucket
index Bi and the fingerprint ηx stored in this bucket by:

Bm = Bi ⊕ hash(ηx) ∧ bm1,

Bn = Bi ⊕ hash(ηx) ∧ bm2,

Bj = Bi ⊕ hash(ηx)

(4)

When bm1 = ¬bm2, substituting Bi of Equ. 4 with B2(x) in
Equ. 3, we can derive that Bm = B1(x), Bn = B4(x) and
Bj = B3(x). Let Bi = B1(x), Bi = B3(x) or Bi = B4(x),
we have the same conclusion.

We further consider a special case wherein hash(ηx) is
shaped like ∗ ∗ ∗ ∗ 0000 or 0000 ∗ ∗ ∗ ∗ (∗ = 1 or 0)
in the example of Fig. 1. Then we may only have two
candidate buckets since Bi, Bj = Bm or Bn. Assuming that
the fingerprint size of VCF is f , we can give the probability of
obtaining different alternate buckets successfully as follows.

P = 1 + 2−f − 21−
f
2 (5)

The probability that an item has only two candidate buckets
is small. Precisely, in our case, only one-eighth of the inser-
tions in Fig. 1 have two candidate buckets. With the increase
of fingerprint length, this ratio will decrease rapidly. Besides,
failing to extend the number of buckets does not affect the
insertion, deletion, or query of VCF.

2) Generalized vertical hashing: We further enhance the
basic vertical hashing by extending the two bitmasks to
k − 2 (k > 4) bitmasks. Suppose that there are k−2 random
different bitmasks with the same size as the hash value of
fingerprints, then all of the k candidate buckets for a given
item x can be derived as follows:

B1(x) = hash(x),

B2(x) = B1(x)⊕ hash(ηx) ∧ bm1,

B3(x) = B1(x)⊕ hash(ηx) ∧ bm2,

.

Bk−1(x) = B1(x)⊕ hash(ηx) ∧ bmk−2,

Bk(x) = B1(x)⊕ f = B1(x)⊕ hash(ηx)

(6)

Theorem 2: According to Equ. 6, for an item x, its any
candidate bucket Be(x) (1 < e < k) can be derived out
through any other candidate bucket Bg(x) (1 < g < k) with
the equation as follows.

Be(x) = Bg(x)⊕ hash(ηx) ∧ bmg ⊕ hash(ηx) ∧ bme (7)

Proof of Theorem 2: Since Bg(x) = B1(x)⊕hash(ηx)∧
bmg , we have Bg(x)⊕hash(ηx)∧bmg = B1(x). Substituting
this equation into Equ. 7, it is evident that Be(x) = B1(x)⊕
hash(ηx)∧bme. It proves that the generalized vertical hashing
can also circularly access all k−1 candidate buckets of Be(x)
with the bme as prior knowledge.

B. The Vertical Cuckoo Filters

Compared to partial cuckoo hashing, vertical hashing pro-
vides more candidate buckets for a given item, so each item
has a greater probability of finding an empty slot during the
insertion process, reducing the hash computation of fingerprint
reallocations. Moreover, vertical hashing is far more concise
in calculation than base-d digit-wise XOR operation in DCF.
Therefore, using vertical hashing can help VCF obtain higher
space utilization and insertion throughput than CF and faster
insertion, lookup, and deletion than DCF.

Like CF, VCF also uses slots as the basic unit of the
cuckoo hash tables, and each slot stores only one fingerprint.
Several such slots constitute a bucket, and these ranked buckets
construct a hash table for VCF. By using vertical hashing, VCF

relo
ca

te
relo

ca
te

cu d h

yo i v

r

s

eg

a

s

ro

4 slots

8
 b

u
ck

e
ts

y

x

(a) Before inserting item x.

c

u d h

o i v

r

s

eg

a

s

ro

y

x

(b) After inserting item x.

Figure 2. An illustrative example of VCF insertion.

can generally index four candidate buckets with the fingerprint
and bitmasks. However, VCF may only get two candidate
buckets as the insertion of item y shown in Fig. 2.

Insertion. The insertion of VCF is shown in Fig. 2. Suppose
x is the item to be inserted, and the sequence numbers of its
four candidate buckets are 1, 3, 5, and 7, as shown in Fig.
2(a). If any of these four candidate buckets have an empty
slot, we can store x there. Otherwise, if all candidate buckets
(1, 3, 5, and 7) are occupied, VCF will randomly choose
one of the candidate buckets, say bucket 3, and evict an item
randomly from it, e.g., item c. Then we reinsert this victim
item to its other alternate buckets. In this example, the victim
c will trigger another relocation of item y in bucket 8. Then
y will be reallocated to its alternative candidate bucket, i.e.,
bucket 5. This allocation procedure continues until an empty
slot is available or the times of such reallocations reach the
predefined threshold. The final storage state is shown in Fig.
2(b). Once the eviction times reach the threshold, the VCF
is considered too full to insert more items. Thus, the VCF
insertion returns an insertion failure. The details are shown in
Algorithm 1.

Lookup. The item lookup of VCF is shown in Algorithm 2.
For a given item x, the algorithm first calculates its fingerprint
and four candidate buckets according to Equ. 3. When any
existing fingerprint in these bucket matches, the VCF returns
true; otherwise, it returns false. VCF has no false negatives,
just like CF. Notice that if VCF fails to provide four candidate
buckets, only two buckets are involved in the lookup process.

Deletion. The deletion process of VCF is detailed in al-
gorithm 3. Similar to the lookup process, it checks all four
candidate buckets for the given item first. If any matched
fingerprint is found, one copy of that fingerprint will be
removed from the bucket. Similar to CF, VCF also overcomes
the mis-deletion problem. To be specific, even if several items
have the same candidate buckets and also have the same
fingerprint in one of these shared buckets, VCF can delete
all or part of these items safely as long as they have been
previously inserted.

Algorithm 1: Insert (x) in VCF
1 define bm1 and bm2;
2 f=fingerprint(x);
3 i1 = hash(x);
4 i2 = i1 ⊕ hash(f) ∧ bm1;
5 i3 = i1 ⊕ hash(f) ∧ bm2;
6 i4 = i1 ⊕ hash(f);
7 if Bucket[i1] or Bucket[i2] or Bucket[i3] or Bucket[i4] has

an empty slot then
8 add f to that bucket;
9 return Done;

10 // must relocate existing items;
11 Bi = randomly pick i1, i2, i3 or i4;
12 for s=0; s<MaxNumKicks; s+ + do
13 randomly select a slot e from Bucket[Bi];
14 swap f and the fingerprint stored in slot e;
15 Bm = Bi ⊕ hash(f) ∧ bm1;
16 Bn = Bi ⊕ hash(f) ∧ bm2;
17 Bj = Bi ⊕ hash(f);
18 if Bucket[z] (z = Bm, Bn or Bj) has an empty slot

then
19 add f to Bucket[z];
20 return Done;

21 Bi = randomly pick Bm, Bn or Bj ;

22 // Hashtable is considered full;
23 return Failure

Algorithm 2: Lookup (x) in VCF
1 f=fingerprint(x);
2 i1 = hash(x);
3 i2 = i1 ⊕ hash(f) ∧ bm1;
4 i3 = i1 ⊕ hash(f) ∧ bm2;
5 i4 = i1 ⊕ hash(f);
6 if Bucket[i1] or Bucket[i2] or Bucket[i3] or Bucket[i4] has
f then

7 return True;

8 return False

Algorithm 3: Delete (x) in VCF
1 f=fingerprint(x);
2 i1 = hash(x);
3 i2 = i1 ⊕ hash(f) ∧ bm1;
4 i3 = i1 ⊕ hash(f) ∧ bm2;
5 i4 = i1 ⊕ hash(f);
6 if Bucket[i1] or Bucket[i2] or Bucket[i3] or Bucket[i4] has
f then

7 remove a copy of f from that bucket;
8 return True;

9 return False

a

c

relo
ca

te
relo

ca
te

e

1

2

k-1

k

…
…
…
…

...

x

(a) Before inserting item x.

x

a

c

e

1

2

k-1

k

…
…
…
…

(b) After inserting item x.

Figure 3. An illustrative example of k-VCF insertion.

C. Generalization of Vertical Cuckoo Filters

VCF can be generalized to k-VCF that has k (k > 4)
candidate buckets for each given item, using the generalized
vertical hashing and additional mark bits. k-VCF can also
circularly access all of the k candidate buckets.

However, k-VCF does not satisfy Theorem 1 like VCF, so it
must add the mark bits to label the bitmasks, i.e., eth of bme

in Equ. 7 for each slot. Consequently, each slot must have two
fields, the fingerprint field and the counter field. For example,
k-VCF needs to add extra three bits as a counter field based
on a fingerprint when k = 7. Take Fig. 3 as an example, to
insert an item x into the k-VCF where all of the candidate
buckets are full, the item eviction process is triggered. Then
k-VCF will randomly choose a victim bucket, such as bucket
1 in Fig. 3(a), as well as a random slot in that bucket. After
accessing both the fingerprint field and the counter field of
bucket 1, k-VCF will compute another candidate bucket by
Equ. 7, such as bucket 3 in Fig. 3(a). This insertion procedure
will end until a bucket with an empty slot is found, such as
bucket m− 1 in Fig. 3(a) or the times of such displacements
reach the predefined threshold.

Most current sketch data structures, such as Count-Min
Sketch [23], Adaptive Sketch [24], and Level Hashing [25],
have to execute two or more hash calculations to index the
corresponding blocks. By contrast, k-VCF only requires one
hash computation, i.e., to derive out the item fingerprint.
Therefore, k-VCF can provide a much faster lookup in most
cases. Besides, most concurrent cuckoo hash tables fail to
efficiently address the problem of endless loops during item
insertion due to the potential hash collisions [26]. However,
as the number of candidate buckets increases, the probability
of such endless loop formation in both VCF and k-VCF can
be significantly reduced.

IV. VARIANTS OF VERTICAL CUCKOO FILTERS

VCF improves the load factor by increasing the candidate
buckets while also causes an increase in false positives.
Although the easiest way to reduce the false positive rate is to
reduce the number of slots of buckets in VCF, this method will

result in a more significant compromise of space utilization.
Extensive experiments have proved that VCF uses buckets of
size four cannot improve CF with buckets of size two or three
under the same table size. Therefore, reducing the number of
slots in candidate buckets of VCF is not an advisable choice.

To this end, all VCFs and their variants mentioned in this
paper keep four slots per candidate bucket. We introduce two
innovative methods called Inversed Vertical Cuckoo Filters
(IVCF) and Differentiated Vertical Cuckoo Filters (DVCF) to
make a proper trade-off between load factor and false positive
rate. As k-VCF is different from VCF and CF structurally,
IVCF and DVCF are not applied to k-VCF.

A. The Inversed Vertical Cuckoo Filters

IVCF changes the bitmask forms in VCF and realizes the
trade-off among false positive rate, load factor, and throughput
of insertion, lookup, and deletion. As long as the two bitmasks
satisfy bm1 = ¬bm2, such as 0101010 and 1010101, they can
be implemented in VCF. When all bits in bm1 are 0 or 1,
VCF will be degraded as CF and only provide two candidate
buckets, as mentioned in Section III-A.

Assume that VCF use f -bits fingerprints, and there are l
(0 < l < f) 0s and f − l 1s in bm1. We can formulate the
probability P that VCF will provide 4 candidate buckets as
follows.

P = 1− 2l + 2f−l − 1

2f
≈ 1− 2l−f − 2−l, (8)

where l is the number of 0s in bm1.
From the above equation, as long as the value of |2l − f |

decreases while f remains unchanged, the value of P will
increase. A larger f will also cause a higher P with the same
|2l − f |. For example, when f = 8, the probability P will
approximate to 7

8 when l = 4, while P decreases rapidly to 1
2

when l = 7. In addition, suppose that VCF increases the length
of fingerprint to 16 bits and 2l− f remains 0, i.e. f = 16 and
l = 8, then P ≈ 0.9922. With such a probability, VCF can
provide 4 candidate buckets for most items.

The failure to provide four candidate buckets may lower
the overall load factor for item insertion and lower the false
positive rate for membership testing. In other words, larger P
causes a higher load factor and also a higher false positive
rate, and vice versa. Therefore, we can implement a proper
trade-off between load factor and false positive rate by altering
the P by adjusting the bitmasks. We name this method the
Inversed Vertical Cuckoo Filters, meaning to convert VCF
to CF through a lower P . As the length of fingerprint f is
unchanged in IVCF, we can only change the number of 0-bits
in bm1, i.e., l, to achieve the performance trade-off. However,
IVCF cannot arbitrarily look for trade-offs because IVCF can
only set the bitmasks into a few fixed forms, causing P to be
discrete, such as P ≈ {0, 0.49, 0.73, 0.84, 0.87} when f = 8.

It is proved that different bitmask forms will lead to an
unequal probability of scaling the number of candidate buck-
ets. IVCF takes advantage of this property to achieve a flexible
trade-off. Besides, the failure to increase the number of buckets

Algorithm 4: Insert (x) in DVCF
1 define bm1, bm2 and the threshold ∆t;
2 f=fingerprint(x);
3 if f ∈ [T/2−∆t, T/2 + ∆t] then
4 i1 = hash(x), i2 = i1 ⊕ hash(f) ∧ bm1, i3 = i1 ⊕

hash(f) ∧ bm2, i4 = i1 ⊕ hash(f);
5 if Bucket[i](i = i1,2,3 or 4) has an empty slot then
6 add f to that bucket;
7 return Done;

8 else
9 i1 = hash(x), i2 = i1 ⊕ hash(f);

10 if Bucket[i1] or Bucket[i2] has an empty slot then
11 add f to that bucket;
12 return Done;

13 Bi = randomly pick one from any Bucket[i];
14 for s=0; s<MaxNumKicks; s+ + do
15 randomly select a slot e from Bucket[Bi];
16 swap f and the fingerprint stored in slot e;
17 if f ∈ [T/2−∆t, T/2 + ∆t] then
18 Bm = Bi ⊕ hash(f) ∧ bm1, Bn = Bi ⊕ hash(f)

∧ bm2, Bj = Bi ⊕ hash(f);
19 if Bucket[z] (z = Bm, Bn or Bj) has an empty

slot then
20 add f to Bucket[z];
21 return Done;

22 Bi = randomly pick Bm, Bn or Bj ;

23 else
24 Bj = Bi ⊕ hash(f);
25 if Bucket[Bj] has an empty slot then
26 add f to Bucket[Bj];
27 return Done;

28 Bi = Bj ;

29 return Failure

does not affect the insertion, lookup, and deletion operations.
Consequently, Algorithm 1, Algorithm 2 and Algorithm 3 in
Section III-B are also appropriate for IVCF.

B. The Differentiated Vertical Cuckoo Filters

To solve the problem that IVCF cannot arbitrarily seek
trade-offs, we present DVCF, which uses the same bitmasks
as standard VCF. At first, DVCF divides the value range of
hash(ηx) in Equ. 3 into two parts by setting a threshold ∆t.
The first interval In1 is [T/2−∆t, T/2+∆t], and the second
interval In2 is [0, T/2−∆t]∪[T/2+∆t, T]. Thereafter, DVCF
differentiates the fingerprints lie in these two intervals and
provides different number of candidate buckets to them.

As shown in Algorithm 4, to insert an item x, DVCF will
first calculate the fingerprint and then determine which interval
this fingerprint belongs to. If it belongs to the first interval,
i.e., In1, then DVCF will obtain its four candidate buckets by

Equ. 3; otherwise, DVCF will derive out two candidate buckets
by Equ. 1. During each relocation, the judgment about the
victim’s location is necessary before reinserting this victim.

The insertion method in Algorithm 4 provides 4 candidate
buckets for all the coming items which belong to In1 since
Bi, Bj = Bm or Bn in Equ. 4 is not satisfied. In other words,
DVCF is the combination of VCF and CF by implementing
the intervals. Therefore, assume DVCF uses f -bit fingerprints,
the proportion p of items with four candidate buckets can be
calculated as follows.

p =
2∆t

T
=

2∆t

2f
(9)

Algorithm 5: Lookup (x) in DVCF
1 f=fingerprint(x);
2 if f ∈ [T −∆t, T + ∆t] then
3 i1 = hash(x);
4 i2 = i1 ⊕ hash(f) ∧ bm1;
5 i3 = i1 ⊕ hash(f) ∧ bm2;
6 i4 = i1 ⊕ hash(f);
7 if Bucket[i1] or Bucket[i2] or Bucket[i3] or Bucket[i4]

has f then
8 return True;

9 else
10 i1 = hash(x);
11 i2 = i1 ⊕ hash(f);
12 if Bucket[i1] or Bucket[i2] has f then
13 return True;

14 return False

Algorithm 6: Delete (x) in DVCF
1 f=fingerprint(x);
2 if f ∈ [T −∆t, T + ∆t] then
3 i1 = hash(x);
4 i2 = i1 ⊕ hash(f) ∧ bm1;
5 i3 = i1 ⊕ hash(f) ∧ bm2;
6 i4 = i1 ⊕ hash(f);
7 if Bucket[i1] or Bucket[i2] or Bucket[i3] or Bucket[i4]

has f then
8 remove a copy of f from that bucket;
9 return True;

10 else
11 i1 = hash(x);
12 i2 = i1 ⊕ hash(f);
13 if Bucket[i1] or Bucket[i2] has f then
14 remove a copy of f from that bucket;
15 return True;

16 return False

Table II
THE NOTATIONS USED FOR OUR ANALYSIS.

Notation Explanatory

f the length of fingerprint in bits
α the load factor (0 ≤ α ≤ 1)
b the number of slots per bucket
m the number of buckets
n the size of filter
d the number of candidate buckets
ξ the false positive rate
r the probability of providing 4 candidate buckets
C the average bits per item
β the rate of increase in load factor

Indeed, the p in Equ. 9 is the same as the P in Equ. 8.
The lookup and deletion operations of DVCF are also similar
to VCF, but with one more step of judgment, as shown in
Algorithm 5 and Algorithm 6 respectively. In conclusion,
DVCF achieves the trade-off between load factor and false
positive by adjusting the threshold, i.e., ∆t, at the cost of one
more step of judgment.

V. PERFORMANCE ANALYSIS

We present the analysis results on VCF in terms of the load
factor, false positive rate, space and time cost in this section.
The notations used for our analysis are shown in Table II.

A. Load Factor

We define the load factor as α = n/bm, i.e., the ratio
between the number of stored fingerprints and the filter’s ca-
pacity. In reality, there is no theoretical result of the α that fits
the four-slot table design [14]. Therefore, we use experiments
to test the maximum load factor for the standard CF and
VCF with the same parameter settings. The experiments show
that a VCF with million items can realize around 98% loads
when each bucket holds four fingerprints with 7 bits. VCF
can achieve almost 100% of the load factor when f = 18,
as shown in Fig. 4. If the hash table stores relatively short
fingerprints, the chance of insertion failures will increase due
to hash collisions, reducing the table occupancy ratio. Hence
a larger f leads to a higher load factor.

B. False Positive Rate and Space Cost

In our designs, the false positive rate of VCF depends on
three factors: 1) the length of fingerprint f ; 2) the probability

Figure 4. The load factor achieved with different fingerprint length in tables
with 220 slots.

of successfully providing four candidate buckets, denoted as
r (r = P or p, given in Equ. 8 and Equ. 9, respectively); 3)
the number of slots b in each bucket (usually set to 4).

When looking up a non-existent item x in a slot, the proba-
bility of mismatch (i.e., false positive error), is at most 1/2f .
The lookup algorithm must probe all slots in its candidate
buckets, and the number of these slots is related to both α and
d. Hence, the expected number of fingerprint comparisons is
(2r+2)bα. Therefore, the upper bound of the total probability
of false positive rate can be calculated as:

ξ = 1− (1− 1

2f
)(2r+2)bα ≈ 2(r + 1)bα

2f
(10)

In Equ. 10, ξ is proportional to the average bucket size
2(r+1)b. We use β = (α−α′)/α′ to represent the growth rate
of load factor, where α′ is the load factor of CF. We conclude
that the false positive rate of VCF increases (β + 1)(r + 1)-
fold compared to CF (where r = 0). Furthermore, the minimal
fingerprint size for a given target false positive ξ is:

f ≥ dlog2(2(r + 1)bα/ξ)e (11)

Similar to ξ, f depends on the average bucket size 2(r+1)b.
For a given set of items, the average space cost C is:

C = dlog2(2(r + 1)bα/ξ)e/α (12)

Unlike the standard CF, VCF can not only improve α by
increasing b but also adjust α and ξ by dynamically changing
the value of r. Because VCF improves the load factor such that
it can store more items with the same filter size compared to
standard CF, VCF is more space-saving than CF. For example,
when setting b = 4 and f = 10, the α of CF is 0.95. So the
bits per item for CF is 3.08 + 1.05 log2(1/ξ0), where ξ0 is
the false positive rate of CF. Given r = 1/2, the load factor
for VCF is α = 98%. Therefore, the bits per item for VCF is
2.98 + 1.02 log2(1/ξ0), which is smaller than CF.

C. Time Cost

The time cost for each lookup or deletion is constant in
both CF and VCF, as either of them only needs about 2(r +
1) memory accesses. However, the value of r in CF is 0,
which means VCF needs more time to look up or delete with
additional 2r memory accesses.

Wang et al. [14] use the average traversed number of buckets
to reflect the time cost for each insertion of CF indirectly.
Notice that the searching process follows the Bernoulli dis-
tribution with a successful rate 1 − α(2r+1)b in the insertion
algorithm. Therefore, the probability that all the (2r + 1)b
slots in the candidate buckets for an evicted fingerprint are full
is α(2r+1)b. The reason is that all fingerprints are uniformly
distributed among the buckets. Let π be the number of evicted
fingerprints, and E(πα) be the expectation of π under the load
factor α, then E(πα) can be estimated by:

E(πα) = (1− α(2r+1)b) + α(2r+1)b(E(πα) + 1) (13)

We have E(πα) = 1/(1 − α(2r+1)b), then the average
insertion cost E for serial insertions from load factor 0 to
α can be derived from the following formula:

E =

∫ α

0

E(πx)dx =

∫ α

0

1/(1− x(2r+1)b)dx (14)

In order to better analyze the experimental results, we
further improve Equ. 14 as Equ. 15, where λ means the
number of slots in the filter, while λ0 demotes the number of
inserted items when the filter reaches the theoretical maximum
space utilization. For example, let r = 0, b = 4, α = 0.95 and
λ0/λ = 0.98, then we have E0 = 11.3, which means the
standard CF needs to kick out almost 11.3 fingerprints for
each inserted item in our experiments. While with r ≈ 1,
b = 4, α = 0.995 and λ0/λ ≈ 1, we have E0 = 1.22
for VCF. The experimental results show that the VCF can
significantly reduce the number of eviction operations to
effectively decrease the time cost for insertion compared to
the standard CF.

E0 =
λ0
λ
E + 500(1− λ0

λ
) (15)

As mentioned in Section III-C, the endless loops during item
insertion will drastically impact space utilization and waste
time. Besides, due to the potential endless loops in insertion,
the filter suffers from its performance reliability problems.
However, VCF dramatically reduces the probability of endless
loops as the number of candidate buckets increases. In this
way, VCF can significantly improve space utilization, save
time cost, and make the insertion performance more robust.

VI. EVALUATION

This section empirically compares the performance of IVCF,
DVCF with the standard CF and DCF. To demonstrate the
effectiveness and efficiency of VCF, we test all filters on
a real-world dataset. We describe our experimental settings
and present the results of extensive simulations from sev-
eral orthogonal metrics: load factor, time consumption, false
positives, and the impact of parameters, i.e., the number of
candidate buckets k and the type of hash functions. The code
for Vertical Cuckoo Filter is opensource1.

A. Experimental Settings

Datasets. We use the real-world dataset Higgs2 as the input
of the filters. There are in total 28 kinematic features obtained
through particle detectors. We merge the third and fourth
features and then perform the data pre-processing through de-
duplication to build the dataset used in our experiments.

Metrics. For item insertion, we use load factor and time-
consumption to test the insertion throughput. We also indi-
rectly test the insertion time consumption through the average
number of fingerprint evictions. For item query, we compare
the lookup throughput via the average response time. After
querying all items that have never been stored, the ratio

1https://github.com/fptjy/vertical-cuckoo-filter
2https://archive.ics.uci.edu/ml/datasets/HIGGS

(a) α of IVCF. (b) α of DVCF.

CF

(c) Comparison of IVCF and DVCF in α.

Figure 5. The load factor for item insertion of IVCFs and DVCFs, with respect to the filter size.

between the number of TRUE returned by the filters and this
dataset’s size is recorded as their false positive rate. Besides,
we design several comprehensive experiments to explore the
impact of the parameter k in k−VCFs. Furthermore, we run
the filters with diverse hash functions to quantify their impacts.

Experiment setup. For all experiments, let MAX = 500
and f = 14. We vary the value of r from a small value to
nearly 1 in IVCFs and DVCFs. The hash function used in
our experiments is FNV hash3. All experiments are conducted
in a machine with an Intel Core i7 processor and 16GB
DRAM. We run each experiment one thousand times and then
report the average value. To understand how the IVCF and
DVCF achieve the trade-off between different performances,
we utilize seven IVCFs and eight DVCFs with different values
of r. To be specific, let IVCFi represent the IVCF that contains
i 1s in its first bitmask, and DVCFj denote the DVCF that
satisfies 2∆t = j × 0.125 × 214, where i and j are positive
integers. Note that r can be derived from Equ. 8 and Equ. 9.

Baselines. To better illustrate the advancements of vertical
hashing, we conducted experiments on CF, DCF ,and the
variants of VCF simultaneously with the same experimental
settings. As baselines, CF can be regarded as a kind of IVCFs
or DVCFs when r = 0. Besides, we fix d in DCF as 4.

B. Numerical Results

In this subsection, we present numerical results of filters,
for item insertion (load factor and time consumption), lookup
(average response time and false positive rate), and more
(different k in k-VCFs and hash functions) in Table III. These
results verify that all performance metrics of VCF are related
to r, yielding a trade-off among space, speed and accuracy.

Table III
THE RESULTS OF LF (LOAD FACTOR), IT (AVERAGE INSERT TIME), QT

(AVERAGE MIXED QUERY TIME) AND FPR (FALSE POSITIVE RATE).

LF(%) IT(us) QT(us) FPR(×10−3)

CF 98.16 15.86 18.10 0.485
DCF 99.94 32.80 53.77 0.967

VCF1-VCF 99.64-99.95 13.40-8.95 19.42-19.62 0.739-0.974
DVCF1-8 98.90-99.85 14.72-10.21 18.20-19.88 0.547-0.974

3http://www.isthe.com/chongo/tech/comp/fnv/index.html

1) Load Factor: We evaluate the load factor α for IVCF
and DVCF with the same filter size n (assume that n = 2θ, and
the parameter θ is varied from 10 to 23). In the experiments,
we first select n items randomly from the real-world dataset
and feed them to an empty filter with n slots. A small portion
of items fail to be stored as the number of eviction fingerprints
reached the predefined threshold. We also calculate the total
average value of α under different filter sizes to compare the
performance of VCFs using two different trade-off methods.
Fig. 5 shows the load factor achieved as we vary two param-
eters: 1) the probability of providing 4 candidate buckets, i.e.,
r; 2) the filter size n.

Fig. 5 records the improvement of load factor α with
increment of r. When r = 0.9844, the table occupancy ratio of
CF is only 98.2%, while the load factors of IVCF and DVCF
can reach near 100% and 99.85%, respectively. Compared with
CF, IVCFi (i=1,2,. . . ,6) in Fig. 5(a) and DVCFi (i=1,2,. . . ,8)
in Fig. 5(b), can improve space utilization significantly. Fur-
thermore, the load factor of DVCF degrades when the filter
size decreases, while IVCF has no such problem. We also
calculate all load factor values of a filter with different r.
As shown in Fig. 5(c), the α of IVCF and DVCF, increase
consistently when r grows. Besides, with the same r, the load
factor of IVCF is slightly higher than that of DVCF. The
experiment result of IVCF is a set of discrete points because
IVCF cannot continuously adjust two bitmasks. Since r has
no impact on DCF, DCF has a constant load factor as VCF.

2) Time Consumption: Lookup time consumption. In the
lookup experiments, we fix the number of both slots in
filters and dataset size as 220. Fig. 6 shows the average time
consumption for each lookup in the following two cases: 1)
100% of existing items; 2) 50% - 50% mix of existing and

CF

(a) Lookups for existing items.

CF

(b) Lookups for mixed items.

Figure 6. The time consumption of item lookup with different r.

(a) Insert time of IVCF. (b) Insert time of DVCF.

CF

(c) Comparison of IVCF and DVCF.

Figure 7. The time consumption of item insertion for IVCFs and DVCFs, with respect to the filter size.

CF

Figure 8. The average number of eviction for item insertion of IVCFs and
DVCFs when the filter size is fixed as 220.

alien items. Results show that the lookup time overhead of
IVCFs is constant 0.06× and 0.08× more than the standard
CF for positive and mixed lookups, respectively. The reason
is that, for any given item, no matter whether the number of
its candidate buckets increases successfully or fails, its lookup
needs to operate on all four buckets (which may be duplicates).

The lookup time of DVCFs has a significant positive re-
lationship with the value of r, which ranges from 0.125 to
0.9844. In general, the lookup performance of both IVCF and
DVCF is slightly inferior to CF, and a major inefficiency is
resulted from the number of candidate buckets. IVCF outper-
forms DVCF when r > 0.8 because DVCF needs an additional
judgment before each lookup. Furthermore, comparing Fig.
6(a) and Fig. 6(b), those negative lookups consume more
time as they need to access more candidate buckets. All
VCFs perform better than DCF in lookup since indexing the
candidate buckets in DCF is more complicated.

Insertion time consumption. To better analyze the results
in Fig. 7, we use E0 to represent the average times of evicted
operations. Fig. 8 shows that E0 of VCFs drops sharply as
r increases. This phenomenon means that the VCF algorithm
can significantly reduce the kick-out and reinsertion operations
when r grows. For example, the E0 of VCF is about 1.27
while this value of CF achieves 12.8, and these numbers are
close to analysis results in Section V-C. The E0 of DVCF is
slightly larger than that of IVCF, reaching almost 2.0 when
r is larger than 0.7. This result shows that the cuckoo hash
collision caused by IVCF is less than DVCF.

Fig. 7 further illustrates the insertion performance by quan-
tifying the insertion time. VCF can nearly cut the insertion
time by half, compared to CF. The reason is that VCF reduces

CF

Figure 9. The false positive rate with respect to the r, when the filter size
is set as 220.

unnecessary fingerprint reallocation and hash computation by
indexing more candidate buckets for each item. In Fig. 7(c),
for each item insertion, IVCF takes about 10% less time
than DVCF when r > 0.8. Although DCF also reduces the
evictions, it consumes twice as much time as VCF due to its
complex indexing algorithm.

3) False Positives: We construct a new dataset D, which is
composed of 220 items that are also randomly chosen from our
experimental dataset. Note that the items in D are not inserted
into the filters. So the ratio of the positive query results, i.e.,
ξ′ represents the false positive rate of the filter.

Fig. 9 shows the linear relationship between ξ′ and r. The
false positive rate of IVCF and DVCF are similar. Both of them
increase with the growth of r. The reason is that VCFs need
to check more candidate buckets than CF, which increases the
probability of fingerprint collisions.

4) Impact of Parameters in VCF: We conduct extensive
experiments to quantify the impact of parameters in VCFs.
We first compare the total insertion time consumed by these
filters with different hash functions: FNV hash, MurmurHash4,
and DJBHash5. Setting r of IVCF and DVCF to the maximum,
the experimental results are summarized in Table IV.

Table IV shows that our VCF methods outperform the stan-
dard CF in terms of insertion time even when different hash
functions are employed. Compared with CF, the insertion time
is reduced by half when using the FNV hash and DJBHash.
However, this advantage is somehow degraded when using

4http://blog.teamleadnet.com/2012/08/murmurhash3-ultra-fast-hash-
algorithm.html

5http://www.cse.yorku.ca/ oz/hash.html

Table IV
TIME OVERHEAD OF VCFS WITH DIFFERENT HASH FUNCTIONS.

CF IVCF DVCF

FNV hash 44.6s 26.7s 26.1s
MurmurHash 67.7s 48.2s 48.5s

DJBHash 38.2s 20.1s 19.6s

Table V
THE COMPARISON OF k-VCFS.

k 2 4 5 6 7 8 9 10

α (%) 88.7 94.0 95.1 95.7 96.3 96.7 96.9 96.8
time (s) 17.7 18.7 20.4 23.0 20.4 22.4 24.0 22.0

MurmurHash. This phenomenon implies that different hash
functions lead to diverse performance for VCFs.

We also compare the load factor and the total insertion
time consumed by k-VCFs with different k. Specifically, we
first fix the fingerprint length as 16 bits, set the reallocations
threshold as 0, and vary k from 2 to 10. Table V shows the
experimental results of space utilization and total insertion
time consumption of k−VCFs. Even without reallocations, the
load factor of k−VCF achieves nearly 97% when k ≥ 9. The
result also shows that a larger k can help k−VCF to achieve
a higher load factor at the cost of longer time consumption.

VII. CONCLUSION

This paper reports VCF, a novel variant of Cuckoo Filter,
targeting insertion-intensive scenarios such as online applica-
tions. VCF provides more candidate buckets to each item by
utilizing vertical hashing. The Vertical Cuckoo Filter improves
the standard Cuckoo filter in three ways: 1) higher load
factors and less space overhead; 2) better insertion perfor-
mance; 3) more flexible trade-off strategies to fit the dynamic
requirement. Besides, VCF provides a methodology using one
hash function for many sketches rather than independent hash
functions. With the accurate representation and constant-time
lookup/insertion features inherited from CF, VCF improves
insertion throughput for frequent insertion and deletion.

VIII. ACKNOWLEDGEMENT

The authors thank all the anonymous reviewers for their
insightful feedback. Besides, this work was supported in part
by the National Key Research and Development Program of
China under grant 2018YFB1800203, in part by the National
Natural Science Foundation of China under Grants 62002378
and 61772544, and in part by the Research Funding of NUDT
under Grant ZK20-30.

REFERENCES

[1] S. Tarkoma, C. E. Rothenberg, and E. Lagerspetz, “Theory and practice
of bloom filters for distributed systems,” IEEE Commun. Surv. Tutorials,
vol. 14, no. 1, pp. 131–155, 2012.

[2] X. Wang, Y. Liu, Z. Yang, K. Lu, and J. Luo, “Robust component-based
localizationin sparse networks,” IEEE Trans. Parallel Distributed Syst.,
vol. 25, no. 5, pp. 1317–1327, 2014.

[3] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, 1970.

[4] L. Fan, P. Cao, J. M. Almeida, and A. Z. Broder, “Summary cache:
A scalable wide-area web cache sharing protocol,” in Proc. of ACM
SIGCOMM, August 31 - September 4, 1998, Vancouver, B.C., Canada,
G. Neufeld, G. S. Delp, J. Smith, and M. Steenstrup, Eds., pp. 254–265.

[5] F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh, and G. Varghese,
“An improved construction for counting bloom filters,” in Proc. of ESA,
September 11-13, 2006, Zurich, Switzerland, vol. 4168, pp. 684–695.

[6] M. A. Bender, M. Farach-Colton, R. Johnson, R. Kraner, B. C. Kusz-
maul, D. Medjedovic, P. Montes, P. Shetty, R. P. Spillane, and E. Zadok,
“Don’t thrash: How to cache your hash on flash,” Proc. VLDB Endow.,
vol. 5, no. 11, pp. 1627–1637, 2012.

[7] G. Einziger and R. Friedman, “Tinyset - an access efficient self adjusting
bloom filter construction,” IEEE/ACM Trans. Netw., vol. 25, no. 4, pp.
2295–2307, 2017.

[8] N. Hua, H. C. Zhao, B. Lin, and J. J. Xu, “Rank-indexed hashing: A
compact construction of bloom filters and variants,” in Proc. of ICNP,
Orlando, Florida, USA, October 19-22, 2008, pp. 73–82.

[9] B. Fan, D. G. Andersen, M. Kaminsky, and M. Mitzenmacher, “Cuckoo
filter: Practically better than bloom,” in Proc. of ACM, CoNEXT
2014, Sydney, Australia, December 2-5, 2014, A. Seneviratne, C. Diot,
J. Kurose, A. Chaintreau, and L. Rizzo, Eds., pp. 75–88.

[10] M. Mitzenmacher, S. Pontarelli, and P. Reviriego, “Adaptive cuckoo
filters,” in Proc. of ALENEX, New Orleans, LA, USA, January 7-8, 2018,
R. Pagh and S. Venkatasubramanian, Eds., pp. 36–47.

[11] L. Luo, D. Guo, O. Rottenstreich, R. T. B. Ma, X. Luo, and B. Ren, “The
consistent cuckoo filter,” in Proc. of IEEE INFOCOM, Paris, France,
April 29 - May 2, 2019, pp. 712–720.

[12] H. Chen, L. Liao, H. Jin, and J. Wu, “The dynamic cuckoo filter,” in
Proc. of IEEE, ICNP, Toronto, ON, Canada, October 10-13, 2017, pp.
1–10.

[13] D. Eppstein, “Cuckoo filter: Simplification and analysis,” in Proc. of
SWAT, June 22-24, 2016, Reykjavik, Iceland, ser. LIPIcs, R. Pagh, Ed.,
vol. 53, pp. 8:1–8:12.

[14] M. Wang, M. Zhou, S. Shi, and C. Qian, “Vacuum filters: More space-
efficient and faster replacement for bloom and cuckoo filters,” VLDB
Endow., vol. 13, no. 2, pp. 197–210, 2019.

[15] A. D. Breslow and N. Jayasena, “Morton filters: fast, compressed sparse
cuckoo filters,” VLDB J., vol. 29, no. 2-3, pp. 731–754, 2020.

[16] F. Wang, H. Chen, L. Liao, F. Zhang, and H. Jin, “The power of better
choice: Reducing relocations in cuckoo filter,” in Proc. of IEEE ICDCS,
Dallas, TX, USA, July 7-10, 2019, pp. 358–367.

[17] Z. Xie, W. Ding, H. Wang, Y. Xiao, and Z. Liu, “D-ary cuckoo filter:
A space efficient data structure for set membership lookup,” in Proc. of
IEEE, ICPADS, Shenzhen, China, December 15-17, 2017, pp. 190–197.

[18] B. K. Debnath, S. Sengupta, J. Li, D. J. Lilja, and D. H. Du,
“Bloomflash: Bloom filter on flash-based storage,” in Proc. of ICDCS ,
Minneapolis, Minnesota, USA, June 20-24, 2011, pp. 635–644.

[19] L. Luo, D. Guo, R. T. B. Ma, O. Rottenstreich, and X. Luo, “Optimizing
bloom filter: Challenges, solutions, and comparisons,” IEEE Commun.
Surv. Tutorials, vol. 21, no. 2, pp. 1912–1949, 2019.

[20] A. Z. Broder and M. Mitzenmacher, “Using multiple hash functions to
improve IP lookups,” in Proc. of IEEE INFOCOM, Alaska, USA, April
22-26, 2001, pp. 1454–1463.

[21] Y. Lu, B. Prabhakar, and F. Bonomi, “Perfect hashing for network appli-
cations,” in Proc. of IEEE ISIT, The Westin Seattle, Seattle, Washington,
USA, July 9-14, 2006, pp. 2774–2778.

[22] B. Fan, D. G. Andersen, and M. Kaminsky, “Memc3: Compact and
concurrent memcache with dumber caching and smarter hashing,” in
Proc. of USENIX NSDI, Lombard, IL, USA, April 2-5, 2013, N. Feamster
and J. C. Mogul, Eds., pp. 371–384.

[23] G. Cormode and S. Muthukrishnan, “An improved data stream summary:
the count-min sketch and its applications,” J. Algorithms, vol. 55, no. 1,
pp. 58–75, 2005.

[24] A. Shrivastava, A. C. König, and M. Bilenko, “Time adaptive sketches
(ada-sketches) for summarizing data streams,” in Proc. of SIGMOD, San
Francisco, CA, USA, June 26 - July 01, 2016, F. Özcan, G. Koutrika,
and S. Madden, Eds., pp. 1417–1432.

[25] P. Zuo, Y. Hua, and J. Wu, “Level hashing: A high-performance
and flexible-resizing persistent hashing index structure,” ACM Trans.
Storage, vol. 15, no. 2, pp. 13:1–13:30, 2019.

[26] Y. Sun, Y. Hua, Z. Chen, and Y. Guo, “Mitigating asymmetric read and
write costs in cuckoo hashing for storage systems,” in Proc. of USENIX
ATC, Renton, WA, USA, July 10-12, 2019, D. Malkhi and D. Tsafrir,
Eds., pp. 329–344.

