VLCcube: A VLC Enabled Hybrid
Network Structure for Data Centers
Lailong Luo, Deke Guo, Jie Wu, Fellow, IEEE, Sujan Rajbhandari, Tao Chen, Xueshan Luo

Abstract—Recent results have made a promising case for offering oversubscribed wired data center networks (DCN) with extreme
costs. Inter-rack wireless networks are drawing intensive attention to augment such wired DCNs with a few wireless links. Inspired by
the promise of easy deployment and plug-and-play, we present VLCcube, a novel inter-rack wireless solution that extends the design
of wireless DCN into three further dimensions: (1) all inter-rack links are wireless; (2) there is no imposition of any infrastructure-level
alteration on wired production data centers; and (3) it should be plug-and-play, without any need of additional mechanical or electronic
control operations. This vision, if realized, will lead to increased flexibility, reduced reconstructing cost, simplified configuration and usage,
and outstanding compatibility with existing wired DCNs. Previous proposals, however, are opposed to the last two design rationales. To
achieve this vision, the proposed VLCcube augments Fat-Tree, a representative DCN in production data centers, by organizing all racks
into a wireless Torus structure via the emerging visible light links. We further present the topology design, hybrid routing, and flow
scheduling schemes for VLCcube. Extensive evaluations indicate that VLCcube outperforms Fat-Tree significantly under the existing
ECMP flow scheduling scheme, irrespective of the undergoing traffic pattern. Moreover, the performance of VLCcube can be significantly
promoted by our congestion-aware flow scheduling scheme. More precisely, compared to ECMP, our flow scheduling scheme makes

VLCcube achieve x1.50 throughput under batched flows, x2.21 and x2.59 throughput under two different kinds of online flows.

Index Terms—data center networks, inter-rack network, visible light communication, throughput, packet loss rate.

1 INTRODUCTION

D ATA centers have emerged as infrastructures for online
applications and infrastructural services. Thousands of
servers and switches are interconnected via a specific data
center network (DCN). DCNs can be roughly divided into
two categories. The first category is wired DCNs, each of
which connects all switches and servers with wired links
via cables, fibers or twisted-pair links. Fat-Tree [1] and VL2
[2] fall into this category. The second one is wireless DCNs,
which employ wireless links to argument a wired DCN or
organize servers and switches as a fully wireless network
structure [3] [4] [5].

Wired DCNs suffer from inherent challenges. First, they
are either overprovisioned with good performance but high
cost, or oversubscribed with low cost but poor performance.
Second, it is extremely costly and complicated when ex-
panding a wired data center. Third, they cause vast cabling
and maintenance cost [6]. Fourth, large-scale wired DCNs
usually adopt multiple-level structures. As a result, two
servers, which across racks, must employ the upper-level
links to communicate with each other, even if they are very
close physically.

To eliminate the non-trivial cost and increase the flexibil-
ity during the expanding process of any wired production

e Lailong Luo, Deke Guo, Xueshan Luo and Tao Chen are with the
Science and Technology Laboratory on Information Systems Engineering,
National University of Defense Technology, Changsha Hunan 410073,
China.

o Jie Wu is with the Department of Computer and Information Science,
College of Science and Technology, Temple University, Philadelpha,
Pennsylvania, USA.

e Sujan Rajbhandari is with the Department of Engineering Science, Uni-
versity of Oxford, Oxford, United Kingdom.

Ceiling mirror T?nsceiver \

[

‘ ™ Server ‘

Fig. 1. An example of wireless DCN, in which the racks are interconnect-
ed with wireless links.

ToR switch

I
g “Rack

I

DCN, several wireless DCNs are proposed at the inter-rack
level. As depicted in Fig.1, the racks are connected with
the introduced wireless links. Typically, the radio frequency
(60GHz) [4] and free-space-optical (FSO) communication
techniques [3] are employed to establish an inter-rack wire-
less network. These proposals can considerably improve
the performance of any existing wired DCNs in terms of
bandwidth and packet latency [7]. Moreover, the wireless
links can be dynamically reconfigured to meet the demand
of the undergoing flows.

Inspired by the promise of easy-deployable and plug-
and-play, we envision a radically different design of inter-
rack wireless network, which should simultaneously con-
cern the following three design rationales: (1) all inter-rack
links are wireless; (2) without imposing any infrastructure-
level alteration on the existing wired production data cen-
ters; and (3) the inter-rack wireless network is plug-and-
play and has no need of additional mechanical or electronic
control operations.

This vision, if realized, will lead to unprecedented ben-
efits for wireless DCNs. Firstly, it ensures high flexibility
and low cabling cost of the network by introducing wireless
links on demand. Secondly, it simplifies the configuration
and usage process of the inter-rack wireless network, due
to bringing no additional mechanical or electronic con-
trol operations. Such simplification makes the inter-rack
wireless network extremely compatible with existing wired
DCNs. Thirdly, it alleviates the burden of managing and
maintaining a data center. Once those wireless links are
established, they will work permanently without additional
control operations.

Existing proposals on the inter-rack wireless network fo-
cus on the flexible reconfiguration of links. Such proposals,
however, do not consider other two essential design ratio-
nales. First of all, they have to update or even reconstruct
the deployment environment of existing production data
centers. For example, prior proposals using 60GHz, as well
as FSO communication, have to decorate the ceiling to be
a huge mirror to achieve over-the-horizon communication
[3] [4]. Besides, to realize flexible reconfiguration, dedicated
optical devices are required, e.g., ceiling mirrors, plano/bi
convex lens [3]. Moreover, they impose frequent and compli-
cated control on wireless devices and peripheral equipment
when configuring a wireless link.

In this paper, we propose VLCcube to achieve the above
three design rationales simultaneously. VLCcube augments
Fat-Tree, a representative production wired DCN, by or-
ganizing all racks into a wireless Torus structure via the
emerging visible light communication (VLC) techniques.
Hence, it is a hybrid network structure of data center by
seamlessly integrating the wired Fat-Tree and wireless Torus
together. Although the 60GHz and FSO communication
techniques are also suitable for VLCcube in theory, we prefer
the VLC since it is becoming a promising choice for the
next-generation wireless technology by offering low cost,
unregulated bandwidth and ubiquitous infrastructures sup-
port. Inherently, VLC links eliminate the peripheral devices
except VLC transceivers and need no additional mechanical
or electronic control. The contributions of this paper are
summarized as follows:

e We design VLCcube, a hybrid DCN structure, which
employs VLC wireless links to interconnect all rack-
s in a Fat-Tree data center as a wireless Torus.
The topology construction strategy is well designed
to ensure high connectivity and low average path
length. As an easy-deployable and plug-and-play
hybrid DCN, VLCcube realizes the three design ra-
tionales at the same time.

o To fully exploiting the topological properties, we
present a hybrid routing scheme for VLCcube to
jointly utilize both wired and wireless links. To fur-
ther improve the network performance, we design a
light-weight method to address the optimized flow
scheduling problem. The method can efficiently de-
rive an outstanding solution for batched as well as
online flows.

o Comprehensive experiments are conducted to mea-
sure the performance of VLCcube. The results indi-
cate that VLCcube outperforms Fat-Tree significantly

2

under the existing ECMP flow scheduling scheme,
irrespective of the used traffic pattern. Compared
to ECMP, our congestion-aware flow scheduling
scheme make VLCcube achieve better performance,
i.e., x1.50 throughput under batched flows, x2.21
and x2.59 throughput under two kinds of online
flow patterns.

The remainder of this paper is organized as follows.
Section 2 summarizes prior designs of data centers. Section
3 proposes the VLC enabled hybrid network structure, VL-
Ccube, for data centers. Section 4 puts forward the hybrid
routing method for VLCcube, and designs the congestion-
aware flow scheduling method. We evaluate the perfor-
mance of VLCcube in Section 5 and discuss the potential
limitations and solutions in Section 6. Finally, we conclude
this paper in Section 7.

2 RELATED WORK

Due to the essential status of DCNs, a huge body of work
has been conducted to improve network performance. The
representative DCNs can be classified into two categories,
i.e., the wired DCNs and the wireless DCN.

2.1 Wired DCNs

Typically, the wired DCNs take advantage of the merit of
excellent topologies, e.g., Torus, Hypercube, Kauzt, Small-
world, etc. We further assort the existing wired topologies
into four fine-grained classes, i.e., switch-centric data cen-
ters, server-centric data centers, modular data centers, and
random data centers.

In switch-centric data centers, routing and intercon-
nection are realized by switches, which form dedicated
structured topology, such as generalized hypercube, Torus,
compound graph, tree and so on. Fat-Tree [1], F10 [8], VL2
[2] belong to this category. With the development of optical
communication, optical packaging technology is introduced
into switch-centric DCNs [9]. These optical links improve
bandwidth greatly, but the associated control strategy be-
comes complex.

Note that switches and routers are expensive, while com-
modity server and mini-switch are cheap; hence, it is cost-
saving to build a DCN just with servers and mini-switches.
In server-centric data centers, routing and interconnection
are realized by servers since servers are competent to cache
and forward flows. Usually, server-centric DCNs are re-
cursively defined and extended level by level. BCube [10],
DCell [11] are all server-centric DCNs, but their network
order are limited by the count of NIC ports at each server.

To ease the development of data centers, module has
replaced racks as the basic building block of large-scale
data centers. These modules integrate the power system,
cool system and thousand servers inside a container. By
further interconnecting a given number of such modules via
a dedicated topology, an efficient, controllable, and elastic
data center can be built. MDCube [12] and uFix [13] are two
representative proposals. They utilize the remaining NICs
at servers to interconnect those modules systematically.

For random DCNs, random links interconnect remote
nodes together, hence, they shorten the network diameter

[14]. Typically, Jellyfish [15] and Scafida [16] are proposed
based on the random regular graph and scale-free network,
respectively. The advantage of random DCN is the charac-
teristic of incremental expansion, which means that we can
add servers one by one other than level by level. Routing
in such random topologies, however, is difficult and time-
consuming.

2.2 Wireless DCNs

Recently, based on the developing wireless communication
techniques, such as 60GHz communication, laser communi-
cation, free-space-communication, etc, wireless technologies
are investigated for DCNs. Therefore, the cabling cost will
be considerably eliminated and the network bandwidth will
be increased.

In literature [17], a remote wireless channel between
any pair of racks can be established by reflecting wireless
signals via a mirror from source to destination. FireFly [3]
goes further, it forecasts the traffic demand and adjusts the
topology dynamically in a short time period. Wireless DCNs
supports unicast transmission well, but fails to accomplish
other transmission models such as broadcast, multicast and
shuffle. But it is true that, as an complementary intercon-
nection method, the wireless links speed up the network
significantly.

Besides, the feasibility of building fully wireless DCNs is
verified [7]. Deployed with two transceivers, each server can
communicate with others independently. Then, the modi-
fied servers are stacked and interconnected as cylindrical
racks. By networking the racks as a specific topology, a wire-
less DCN is established. This proposal also calls for accurate
direction control of the transceivers. Besides, since only two
transceivers are deployed at each server, the expansion of
network order will lead to drastically increase of network
diameter.

Undoubtedly, the totally wireless DCNs are costly to
deploy and loses the merit of wired topologies, e.g., regular-
ity, easy-routing and stability. Thus, aiming to integrate the
superiority of both wireless network and wired network, we
employ the VLC links to connect the existing wired DCN to
be a hybrid one.

3 THE DESIGN oF VLCCUBE

We first discuss the feasibility and interference issue of
interconnecting racks using VLC links, and accordingly
design a novel VLCcube topology. It seamlessly augments
the wired data center Fat-Tree, using a wireless inter-rack
Torus network.

3.1 Feasibility of introducing VLC links into DCNs

For VLC, transmitting data is achieved by intensity modu-
lation of visible spectrum lighting emitting diodes (LEDs)
or laser diodes (LDs). On-Off keying modulation scheme,
where “ones” and “zeros” are represented by the presence
or absence of light, is the simplest form of digital communi-
cation [18] [19]. To employ the VLC links, three vital issues
have to be concerned, including the data rate, transmission
distance, and the accessibility of devices.

3

Data rate. By employing those high switching frequency
LEDs, a single color VLC link can realize considerably high
data rate up to 3 Gbps [20]. Such devices could potentially
deliver data rates in the order of 10 Gbps by using RGB
triplet. Besides, a single laser beam can even achieve 9 Gbps
data rate by employing the 450-nm GaN LDs [21]. Hence,
we believe that the data rate of VLC links is capable of
transmission in data centers.

Transmission distance. The LED based VLC links can
achieve about 10 Gbps data rate within 10 meters, which
is sufficient to interconnect two close racks inside a data
center. We notice that a project named Rojia prolong the
distance of VLC to 1.4 kilometers, but with limited data rate
[22]. Besides, the LD based VLC links can realize fast long-
distance communication (in the order of kilometers) with
high data rate [23], due to its outstanding directionality.
Hence, the LED based VLC links can be employed as the
short links, while the LD based VLC links are competent to
the long distance transmission in DCNs.

Accessibility. The off-the-shelf full-duplex VLC devices,
i.e., transceivers, are developed and released [22] [24]. A
development platform called MOMO [25] has delivered API
and SDK for users to customize their VLC-based applica-
tions. For example, the VLC techniques have seamlessly
integrated into a platform of internet of things. Moreover,
pureLiFi [24] provides the opportunity for customers to
rapidly develop and test VLC applications for cost-effective,
high-speed data communication solutions by using com-
mercial LED infrastructures.

Accordingly, it is reasonable to employ the VLC links to
augment wired DCNs, without incurring additional cabling
cost or modifying the hosting environment of data centers.

3.2 The interference among transceivers

The benefits of VLC links motivate us to employ them to
augment the wired inter-rack networking in data centers.
However, the interference is an essential obstacle when
utilizing VLC links.

Typically, on the top of each rack, a few VLC transceivers
should be setup such that the ToR switches can be organized
as a dedicated wireless topology. Given a rack R, when
multiple neighboring racks send data to it simultaneous-
ly, interference occurs if multiple transceivers on R can
perceive the light from different source racks but fail to
distinguish them.

To evaluate the VLC interference, we conduct simula-
tions using a professional optical software, i.e., TracePro70
[26]. As depicted in Fig.3, we place four receivers with
orthogonal orientations on the top of a rack, which are
denoted as 17, 13, T5 and Ty, respectively. Then, a batch of
visible light is emitted towards 77 from three meters away.
The irradiance map of each receiver can identify how much
light has been detected by other receivers. If 75, T3 and Ty
detect intensive light, it demonstrates that the interferences
to them are prominent.

Fig.2(a) depicts the result observed by T7. It is obvious
that the receiver detects the majority of the emitted light,
and the central part of the receiver captures the most of
them. Due to the scattering, some light deviates from the
central line; hence, the non-central areas can also detect

76 54 3 21 0-1-2-34-5-6-T 0.001 7-6-5-43-2-101 234567
Co—

0.0001;
0.01

2 wo

1e-005
0.001
1e-006
0.0001—]
1e-007
1e-005
1e-008
1¢-006

1e-009

LA AL LLEo —wwaL o 9
Lo b blbbLlo—n wao o2

Gb bbb bio—mw
.

1e-007

1e-010

1¢-008. 7654321 0-1 -2-3-4-5-6-7 765 43

(b) The irradiance of T%.

76 54321 0-123456-7

2-101 234567

—
o
=

The irradiance of T}.
0.001 76 5 43 21 0-1 2-3-4-5-6 -7 0.001

7

0.0001 0.0001

1e-005 1-¢005

S e & w o
N oW s w

1e-006- 1e-006

=

R S ST N
5

1e-007 1e-007

)

1e-008 1e-008:

1€-009- 1e-009

YR

Ls b b
LahbdbL
Lo b kbbbt oo

1e-010 1¢-010

765 4321 0-1 2

(c) The irradiance of T5.

3456 -7 76 54 3

(d) The irradiance of Ty.

210-1-2-3-4-5-6-7

Fig. 2. The irradiance of each receiver in the simulation.

the light. By contrast, as shown in Fig.2(b), Fig.2(c) and
Fig.2(d), the other three receivers can hardly capture the
light since the normalized irradiance is only 0.001 in several
points in such figures. We also note that, Fig.2(c) records
the least irradiance at 73. Consider that 73 is right behind
T and it is difficult for the light to pass by 1} to reach
T5. Consequently, the light towards 7} results in limited
interference to other three receivers. This observation shows
that deploying four transceivers on the top of a rack is
feasible and will bring negligible interference. Accordingly,
we will design the wireless topology of VLCcube, where
each rack owns just four VLC transceivers.

3.3 Topology design of VLCcube

Inside a data center, each server connects to the ToR switch
inside a rack. All racks usually form a hierarchical network
structure by using additional upper level wired links and
network devices, rather than connect with each other direct-
ly using wired links. For this reason, we aim to interconnect
all ToR switches according to a dedicated wireless network
structure. In this paper, we adopt the widely used Fat-Tree
as an example of wired DCN and augment it with wireless
Torus network structure. In this way, we achieve a hybrid
VLCcube, which can seamlessly integrate both wired and
wireless DCNSs.

As depicted in Fig.3, all racks in wired Fat-Tree DCN
are further interconnected via VLC links to form a two-
Dimensional wireless Torus, with m racks in each row and
n racks in each column. On the top of each rack, four
VLC transceivers are deployed towards four orthogonal
directions, such that the interference can be restricted at
the lowest level. Note that, the wired part of VLCcube is
a Fat-Tree topology, and we just connect the ToR switches
via VLC links. Let k denote the number of ports of each
switch, which is usually even. Thus, VLCcube accommo-
dates k pods, each of which has k/2 ToR switches and k/2
aggregation switches. Thus, k2 /2 ToR switches are involved
in the wireless part of VLCcube.

Rack LD Transceiver LED Transceiver

*g| l‘é!\lé! (%]
I e T e T

B . | I
gl .plt pilm _ mile
B g e g
I I I I
ghn__pla__pla gl
YT LT Ly Ly

Top view of the racks

Fig. 3. The inter-rack wireless network of VLCcube. All racks in Fat-Tree
are interconnected as a wireless Torus via VLC links.

Note that, in Fig.3, all of racks in each dimension should
be interconnected as a loop. Thus, two racks at the ends of
each row (column) should be connected directly. To achieve
such long-distance connections, the LD-based VLC links
are employed. By contrast, the short-distance connection
between any pair of adjacent racks is enabled by the LED-
based VLC links. In Fig.3, we only depict the short links,
while the long links are omitted for the easy of presentation.
Note that the LED-based VLC links are not competent to
support long-distance connections, since the signal strength
degrades sharply during the diffusion process.

Another important issue is how to avoid shadowing
in VLCcube. Consider that there exists no barrier between
any pair of adjacent racks. Those LED transceivers used to
offer short wireless links will not suffer from the shadowing
problem. On the contrary, multiple racks lie between the
end racks, which are connected by long links. As shown
in Fig.3, one or two LD transceivers are deployed on the
top of those involved racks. We classify the LD transceivers
into two categories, i.e., the horizontal LD transceivers
connecting the racks to form a loop in each row, and the
vertical LD transceivers connecting the racks to form a loop
in each column. Without loss of generality, we spatially
isolate the LED transceivers, the horizontal LD transceivers,
and the vertical LD transceivers, e.g., 0.1m, 0.3m and 0.5m,
respectively, such that they are deployed in diverse planes.
Through such carefully considerations, the interference and
shadowing problems of VLC links can be well tackled.

In fact, we can design the hybrid VLCcube topologies in
two ways. A straightforward way is to augment the wired
network structures with a wireless 2D Torus directly. By
contrast, a more advisable method can further promote the
topology by jointly consider the wireless 2D Torus and the
wired Fat-Tree.

3.3.1

We notice that, the wireless 2D Torus can be attached to the
existing wired Fat-Tree directly. Without loss of generality,
we assume that, in a k-pod Fat-Tree, there are k rows and
k/2 columns, i.e., m=k, n=Fk/2. In each dimension, every
rack enables wireless links with its neighboring racks. As

Independent topology design of wireless Torus

@ Aggregation switch

Short Links

~~ 7~ Long Links

Fig. 4. An expressive example of VLCcube when k=6. The two dimensional coordinate zy denotes the y-th rack in the z-th pod, z€[0, k—1] and
y€[0, k/2—1]. Note that, the short and long links are launched by LED and LD transceivers, respectively.

a result, the diameter of the 2D Torus is 0.75k, which is
proportional to the number of k.

Moreover, in the resulted wireless 2D Torus, given a rack
in the i-th pod, as shown in Fig. 5, each rack has four
neighbors. However, these neighbors come from at most
three different pods. Thus, at the pod level, the i-th pod
is connected to three other pods, but fails to communicate
with other pods directly. Fig.5 depicts a toy example when
k=6. The wireless 2D Torus is constructed independently
without concern of the placement of racks. As a result, a
6x3 2D Torus is generated. Note that, the diameter of the
resulted Torus is 4. However, the pod level logic graph is
not a completed graph; hence the path from a rack in pod 0
to pod 4 must employ a relay rack in pod 1 or pod 3.

The resultant topology of VLCcube with this design
methodology is shown in Fig.4. On one hand, the ToRs and
switches are interconnected as a Fat-Tree by the wired links.
On the other hand, the racks are also interconnected as a
wireless Torus by the introduced VLC links. To realize these
VLC links, four transceivers are established on the top of
each rack. Note that, the short-distance communication is
achieved by the LED-based VLC links, and the long-distance
communication is realized by the LD-based VLC links. It is
true that the k2 /2 wireless Torus improves the connectivity
of racks and increases the variety of paths. However, the
improvement of performance can be further enhanced if the
arrangement of racks can be optimized.

3.3.2 Joint topology design of wireless Torus and wired Fat-
Tree

To fully utilize the benefits of VLC wireless links, we opti-
mize the topology of VLCcube by integrating the 2D Torus
with Fat-Tree seamlessly. To reach this goal, two important
issues must be well tackled, including the settings of m and
n, and the placement of racks in VLCcube.

Parameter setting. Note that all nodes in each dimension
of a 2D Torus form a loop structure; hence, the network

Rack level logic graph

Pod level logic graph

Fig. 5. The logic graph of VLCcube without considering placement of
racks.

diameter by (m+n)/2. For this reason, VLCcube aims to
minimize the network diameter of the used Torus structure
by inferring reasonable configurations of m and n. Addi-
tionally, the total number of remote VLC links in VLCcube
is m+n, and such a few long links are more difficult to
establish, compared to those short VLC links. This issue fur-
ther motivates VLCcube to minimize m+n for eliminating
unnecessary remote VLC links. If a 2D Torus is designed to
accommodate k2 /2 racks, the parameters m and n should
be bounded by the inequation mx (n—1) < k?/2 < mxn.

Theorem 1. In VLCcube, the optimal setting of m is cal-
culated as [1/k2/2]. The value of n depends on k?/2.
If (m—1)2<k?/2<m x (m—1), n is m—1; in contrast,
when m x (m—1)<k?/2<m?, n is set the same as m, i.e.,

[Vk2/2].

Proof: The best settings of m and n should minimize
the value of m+n. Note that we have m+n > 2x/mxn >
2x4/k?/2. Thus, m+n reaches its minimum value only
when m=n. Considering the inequation m x (n—1)<k?/2 <
mxn, we derive the relationship between m, n and k. O

Placement of racks. As for the placement problem, we
note that, during the design stage, the placement of racks
and cables can be jointly optimized with the respect of
wireless Torus network structure. Indeed, the path length
between any pair of ToRs is either two or four hops in Fat-

Rack level logic graph

Pod level logic graph

Fig. 6. The logic graph of VLCcube in the rack level and pod level.

Tree. Hence, VLCcube aims to shorten those four hops wired
communication as just one hop wireless communication by
reconsidering the location of racks. Given m and n, we
further concern the best placement of racks for supporting
the inter-rack wireless Torus network. Note that, in Fat-Tree,
if two racks fall into the same pod, the path length between
them is 2; otherwise, four hops are required. VLCcube
targets at shortening the four hops of wired path as one hop
wireless path. That is, all VLC links are utilized to connect
those racks across pods, rather than those racks inside a
same pod.

To ease the presentation of the placement strategy, we
first introduce the identifier for each rack, which consists of
two parts. The prefix, ranking from 0 to k, denotes which
pod this rack belongs to. The suffix, ranking from 0 to k/2,
identifies the rack in each pod. For example, the identifier
51 refers to the second rack in the sixth pod.

We further define the pod level logic graph, which
regards a pod in VLCcube as a node. If there exist one or
multiple VLC links between a pair of pods, an edge is added
between them in the logic graph. Fig.6 depicts an example
of the wireless part of VLCcube, with k=6, m=>5 and n=4.
Accordingly, the pod level logic graph is derived. Typically,
we measure the connectivity of the pod level logic graph
by counting the number of links in the graph. In Fig.6, 15
links interconnect 6 pods, thus the connectivity of the pod
level graph is 15. Given the value of k for VLCcube, the
connectivity of its pod level logic graph is no more than
kx(k—1)/2.

With the above definitions and given k, m and n, we
design three steps to construct the 2D wireless Torus, which
may be an incomplete one, as shown in Fig.6.

e Step 1, allocating the prefixes. For each prefix
x€[0, k], we randomly allocate it to k/2 ToR switches
in the ToR level logic graph since each pod contains
at most k/2 ToR switches. The only constraint is
that any rack cannot hold the same prefix as its four
neighbors. If conflicts occur, repeat this step until all
prefixes have been mapped into the graph.

o Step 2, calculating the suffixes. In the ToR level logic
graph, a suffix is introduced to differentiate those
racks in a same pod. Note that the suffix of each rack
ranges from 0 to (k—1)/2.

e Step 3, improving the connectivity of the pod level
logic graph. We repeat the above two steps multiple
rounds, and then pick the solution that leads to the
highest connectivity of the pod level logic graph.

6

However, as stated before, the Fat-Tree is actually in-
stalled as a, w.l.o.g, k?/2 array. Obviously, we need to trans-
form the existing k?/2 array to be a mxn one. Typically,
two steps are needed. First of all, (k—m)xk/2 racks must
be moved such that the racks are placed as a mxn Torus
physically. Then we deploy the placement strategy of racks
logically by rewiring the cables between the aggregation
switches and the racks. Undoubtedly, these adjustments suf-
fer from dedicated time-consumption and labour cost. But
we believe these once-and-for-all augments are worthwhile
to improve the network performance.

Validity of the generation steps. We further prove that
our generation method can result in a correct VLCcube
structure.

Theorem 2. When k>4, the above generation method can
successfully generate a VLCcube such that each pod
appears k/2 times in the ToR level logic graph.

Proof: In step 1, we allocate k pods randomly under
the constraint that each link connects different pods. If each
pod is associated with one color, the proof of Theorem 2
is equivalent to prove that k colors can color the graph
successfully. In fact, the ToR level graph of VLCcube is a 4-
regular graph, whose chromatic number is 4, which means 4
kinds of colors are enough to color the graph. That is, when
k>4, we can always find out a legal placement strategy.
Thus, Theorem 2 is proved. O

Note that, aforementioned generation steps must ensure
that the pod level logic graph is connected. Otherwise,
VLCcube does not work well since those VLC links cannot
reach every pod.

Theorem 3. The pod level logic graph resulting from the
above steps are connected.

Proof: Note that the ToR level logic graph is an incom-
plete 2D Torus, which is a connected graph. That is, a rack
identified as zy can find a path to its destination rack uv. If
we map this path to the pod level logic graph, it is just the
path from pod x to pod u. Thus, Theorem 3 is proved. I

Theorems 2 and 3 ensure the rationality of the generation
steps. Step 3 further ensures the connectivity of the pod
level logic graph by selecting the best one after executing
the first two steps multiple rounds. The behind insight is
that by conducting the processes more rounds, we are more
possible to achieve the better solution [27]. We will evaluate
the performance of such a generation method in Section 5.3.

From the view of topology design, VLCcube integrates
the topological characteristics of both Fat-Tree and 2D
Torus, e.g., scalability, constant degree, multi-path, and
fault-tolerance. Moreover, VLCcube is easy-deployable and
plug-and-play, since only four transceivers are needed to
deploy for each rack, and no further control operations are
required during the usage process after the deployment.
More importantly, VLCcube achieves the inter-rack wireless
network, without any modification to the hosting environ-
ment of a Fat-Tree data center.

4 ROUTING AND CONGESTION AWARE FLOwW
SCHEDULING IN VLCCUBE

For any pair of ToR switches, wired paths, wireless paths
and hybrid paths coexist in VLCcube. The routing algo-
rithms for wired paths and wireless paths can be found in

literatures [1] and [14]. We focus on designing the hybrid
routing between racks. To minimize the network congestion,
we define a congestion-aware flow scheduling model and
design scheduling algorithms for the batched and online
traffic patterns.

4.1 Hybrid routing scheme in VLCcube

In VLCcube, the wireless Torus and the wired Fat-Tree are
tightly integrated. Thus given a pair of racks, we can search
out a path with both wireless and wired links. Specifically,
given the source rack zy and destination rack uv, we first
deduce the path in the pod level logic graph from pod x to
pod u. We then embody each link on the pod level path by
choosing a reasonable wireless link from the ToR level logic
graph. At last, the involved wired links will be added to
the path. This straightforward method, however, incurs high
time-complexity and is impractical. The reason is that, since
the pod level logical graph is not structured, the Dijkstra
algorithm will be employed to calculate the shortest path at
the cost of O(k?) computation-complexity.

As the increase of k, the resultant time-consumption will
not be acceptable for DCNs. Note that the introducing of the
hybrid path in VLCcube is to shorten the length of wired
path, such that the transmission will be accelerated. From
this point of view, some hybrid paths resulting from the
above routing algorithm may not realize such a design goal.
Hence, we prefer to only searching out the hybrid path,
which can shorten the wired path between a pair of racks.
In this way, unnecessary computation will be avoided. The
maximum length of wired paths in VLCcube is 4, and the
VLC links connect all pods directly to shorten these paths
of 4 hops. Given a flow, only if its source or destination rack
is one end of a VLC link between the source pod and the
destination pod, the deduced hybrid path for this flow will
be 3 hops.

Bearing this insight in mind, given a pair of racks zy
and uv, our hybrid routing scheme consists of the following
two steps. Firstly, we judge whether zy (uv) launches a VLC
link towards the pod u (z). If not, the routing scheme will
be stopped; otherwise, move to next step. Secondly, without
loss of generality, we assume that a VLC link connects zy
with uw directly, and then derive the aggregation switch,
which must be added into the hybrid path to relay uw to
uv. Note that the racks and the aggregation switches in a
pod form a complete bipartite graph. Hence, the aggregation
switch can be selected randomly, and a reasonable hybrid
path will be achieved.

For example, the hybrid path from rack 00 to rack 11
consists of only 3 hops in Fig.4, since pod 1 and pod 0 are
connected by a VLC link from rack 11 to rack 01. Therefore,
the 4-hop wired path between 00 and 11 will be shortened
as a 3-hop hybrid path, including one aggregation switch
but no core switch. Then, the routing scheme selects an
aggregation switch from pod 0 to relay the flow from rack
00 to rack 01. The generated hybrid path includes two wired
links in pod 0 and a VLC link from rack 01 to rack 11.

Note that, there are k/2 racks in each pod, and the
routing scheme needs to check whether rack zy (uv) directly
connects with one rack in pod u (z) via a VLC link. Thus
the time complexity of the first step is O(k). Additionally,

7

the second step consumes constant time. Therefore, the time
complexity of this hybrid routing scheme is O(k).

4.2 Problem formulation of flow scheduling

We introduce the VLC links to augment the existing DCNs
in VLCcube. The insight is to organize ToR switches as a
wireless incomplete Torus via VLC links. To utilize both
wired and wireless links efficiently and minimize the delay
in the network, we present a flow scheduling model to
optimize the link congestion rate, under both batched and
online traffic patterns. Consider that there are four available
transceivers on each rack. Thus, any rack can communicate
with its four neighboring racks simultaneously. We first
introduce related definitions and symbols as follows.

Let G=(V, E) denote a data center network, where V/
and E are the node set and link set, respectively. Addi-
tionally, F'={f1, fo, -, fs} denotes ¢ flows injected into
G. For each flow f;=(s;,d;,b;), s;, d;, and b; denote the
source node, destination node and traffic demand, respec-
tively. Typically, ¢ records a scheduling strategy, which is
responsible to derive the routing path for each flow in F'.

Definition 1. Given I’ and ¢, we define the congestion rate
of an arbitrary link e as:

Chle)=t(e)/c(e),)

where t(e) denotes the amount of traffic passing through
link e, and c(e) records the capacity of link e. Note that
any C% (e) falls into a constant interval [0, 1]. Specifically,
if none of flows passes through link e, its congestion rate
is 0. The congestion rate is 1 when link e is fully used.

Definition 2. We define the congestion rate of a path P as
C’?(P):max C’;i(e), where e € P. 2

Accordingly, based on C%(P), we can locate the bot-
tleneck in a given path and decide whether a path is
capable to serve a given flow.

Based on the above fundamental definitions, we consider
the scheduling of both batched flows and online flows, and
then propose the corresponding scheduling algorithms in
the following subsections, respectively.

4.3 Scheduling the batched flows

To handle the scheduling of batched flows properly, in
this section, we first formulate the problem and define the
congestion coefficient that will be employed later. Then, a
greedy algorithm is introduced and the correctness of the
algorithm is given.

4.3.1 Formulation and definitions

Definition 3. (SBF: scheduling batched flows) Given G(V, E)
and a set of flow transmissions F/, the goal of batched
flow scheduling is to find a reasonable flow scheduling
strategy ¢* such that Z= max C’Id;* (e) is minimized.

We accordingly formulate the SBF problem as follows:

Minimize Z

DO

e0_3 el le=4 e2_3

Fig. 7. An example of congestion efficient of link and path.

Sobp=bi+ Y. by Vi 3)
f:f€out(s;) fif€in(s:)

S obp=bi+ > by Vi (4)
f:f€in(d;) f:f€out(d;)

Soobp= > by ViVad{s;d} ()
f:f€in(x) f:f€out(x)

In the above formulation, 7 is an integer in the range
[0,4]. Let out(v) and in(v) denote the set of the outgoing
and incoming flows at node v in VLCcube, respectively.
Eq.3, Eq4 and Eq.5 ensure that each flow just transmits
along one path. The SBF problem is an Integer Linear
Programming (ILP) problem, which is a well-known NP-
hard problem. It cannot be solved in polynomial time. A
naive method is to search all the potential solutions, and
then select the solution with the minimum Z. However, this
naive method is time-consuming as well as inefficient. Thus,
we design a lightweight algorithm to derive a reasonable
solution. For any f;€F, we find out the three kinds of rout-
ing paths in VLCcube and denote them as P(f;). Actually,
P(f;) contains k? /4 wired paths, one hybrid path and one
wireless path. To derive the flow scheduling strategy for F',
we design a greedy heuristic algorithm based on the concept
of congestion coefficient.

Definition 4. Given a set of flows F, each flow f;€F has
a set of candidate routing paths P(f;). The congestion
coefficient of a link e€F, denoted as ., is the total
amount of candidate paths passing through it under all
flows in F.

Definition 5. For any routing path PEP(f;) of any flow f;
in F'. The congestion coefficient of P, denoted as [p, can
be calculated as [p=>_1[., where e € P.

Fig.7 presents the calculation insight of congestion coeffi-
cients. Note that, 4 switches (labeled as 0, 1, 2, 3, respective-
ly), 3 links (including e, 1, and e5), and 6 flows (denoted as
fi, i€[0, 5]) are involved in the figure. Link e(is employed
by a candidate path of three flows (fy, fi and f2); hence,
the congestion coefficient of link eg is 3. Note that link ey, is
involved in the candidate path of 4 flows (f1, f2, f3 and f4).
Accordingly, the congestion coefficient of link e; is derived
as 4. Similarly, a candidate path of fs, f3 and f5 contains
link es; hence the congestion coefficient of link e, is 3. Note
that the candidate path of f5 is ended at switch 3, and the
flow will not be forwarded to other switches in the figure.
Additionally, the maximum congestion coefficient of links in
the path from switch 0 to switch 3 is 4, thus the congestion
coefficient of this path is 4.

Indeed, the congestion coefficient of link e or path P
indicates the probability that multiple flows employ it,
respectively. Hence, [p is an index for our greedy algorithm

Algorithm 1 SBF-solution (Spatch)

Require: Input the model of SBF problem.
1: Initialize Spqtcn as empty;
2: For each f; € F, derive P(f;);
3: Calculate the congestion coefficient of each link in VLC-
cube;
fori < d do
Calculate the congestion coefficient of each path in
P(f:);
Select the path with the least congestion coefficient;
Add the chosen path into Syatcn;
Label the links on the chosen path as used;

o PN

return The solution of SBF problem Spatch;

to decide whether flow f; should select path P. To be
specific, we should select the path with the least congestion
coefficient among all paths in P(f;).

4.3.2 Algorithm and proof

Based on the congestion coefficient, Algorithm 1 shows
the insight of the greedy strategy. For each flow, we first
calculate its k? /442 candidate routing paths (Line 2). Then,
the congestion coefficient of each link in VLCcube is de-
rived (Line 3). For each flow f;, we calculate the conges-
tion coefficient for each of its candidate routing paths and
choose the path with the least congestion coefficient to serve
that flow (Line 4-8). The algorithm takes O(&x (k?+k+4))
time-consumption to derive the candidate routing paths
for all flows in F, and additional O(§x (k?/4+2)) time-
consumption to decide which routing path should be uti-
lized by each flow. Hence, the total computation complexity
can be calculated as O(6x k?).

The congestion coefficient of a link e means there are up
to l. flows may employ the link. The congestion coefficient
of a path P demonstrates that at most [p flows may pass
through at least one link along the path. If no scheduling
strategy is utilized, any path P€P(f;) has the equal prob-
ability to be chosen to transmit f;. Note that our algorithm
selects the path with the least congestion coefficient to
transmit a dedicated flow. If the probability of congestion for
a selected path is proportional to its congestion coefficient,
the correctness of employing the congestion coefficient as
an index in our algorithm can be proved. Unfortunately,
calculating the exact probability of congestion for a path is
rather complicated. Hence, as an alternative, we calculate
the probability that a path or a link transmits more than two
flows, since congestion may occur only if more than 2 flows
share a common link or path.

Theorem 4. In VLCcube, given a flow f;€F, e is an arbitrary
link in the network, the probability that e is utilized by

fiis:
fi ¢Fe

fieFe (6)

. = 0,

o { =2+ 2),

where F, records the set of flows that may employ the

link e, l(f denotes the congestion coefficient of the link

e caused by f; , since more than one candidate routing
paths of f; may cover that link e.

Proof: Note that, if no scheduling strategy is utilized,
any path P€P(f;) has the equal probability to be chosen

to transmit f;. For flow f;, if number of I paths in P(f;)
pass through link e, we have pfi =1/ /(k? /4 +2). Otherwise,
flow f; never utilizes that link, and the probability is 0. Thus,
Theorem 4 is proved. O

Theorem 5. In VLCcube, for any flow f;€F,) counts the
number of flows that pass through a link e, then we have:

pl(n=0) = [(t—=pf) (7)
fi€eF
pi(=1) =Y [lx [-l ®
fi€F fi€F—fs

pl (n>2) = 1-p(n=0)—p(n=1))
Proof: Given a flow set F', such flows are independent

for whether employ a link e or not. Hence, p(n=0) and
p(n=1) can be calculated easily. Thus, Theorem 5 is proved.
O

Theorem 6. Consider a flow f;€F, let n counts the number
of flows that pass through a path PeP(f;), and E(P)
denotes the set of links along the path P. For any P, we

have:
pp=0)= [»pEn=0) (10)
e;€E(P)
F=fi (=
pp(n=1) k2+8 1T »
e;€E(P)
+ > PE T m=nx [e im=0)
es€E(P) e;€E(P)—es
(11)
pp(n > 2)=1-pp(n=0)—pp(n=1) (12)

Proof: For a path P€P(f;), n=0 means none of flows
passes any link in path P. While, n=1 is resulted from two
situations, i.e., only f; occupies the path P, or one link in
path P has been utilized by another flow f;€F —f;. Thus,
pk(n=0) and p£(n=1) can be calculated. O

According to Theorem 4, Theorems 5 and 6 calculate the
probability that none or one flow passes link e and path P.
Note that, if n>2, link e or path P may result in congestion.
This will happen when the completion time of the former
flow blocks the transmission of the latter flow. Theorems 5
and 6 demonstrate that larger /. leads to more opportunities
that more than 2 flows go through link e or path P, and
may cause congestion. Thus the probability that a path P
is blocked is proportional to its congestion coefficient {p.
In this way, the correctness of employing the congestion
coefficient of a path as an index for Algorithm 1 is certified.
Since our greedy algorithm selects the paths with the least
congestion coefficient, the congestion rate in VLCcube will
be decreased significantly.

4.4 Scheduling online flows

As discussed in [28], flows are not always batched in data
centers. In fact, flows are usually uncertain and dynamic.
Typically, ¢° depicts an existing flow scheduling strategy,
Fn denotes the new arriving flows, and Fp contains the
flows that call for retransmission. Accordingly, we update

Algorithm 2 SOF-solution (Soniine)

Require: Input the model of SOF problem.
Initialize Soniine as empty;
Calculate the updated routing requests Fi;
Update the state of network links and devices;
fori < 0; do
Search the three kinds of paths from s; to d;;
Calculate the congestion rate of each path;
Select the path with the least congestion rate, i.e., path;;
Add path; into Soniine;

return The solution of SOF problem Soniine;

—_

the set of flows as F1=Fn+Fp. With I as input, we define
the online flow scheduling problem as follows:

Definition 6. (SOF: scheduling online flows) The SOF
problem is to deduce a new scheduling strategy ¢
such that the increased link congestion rate is min-
imized. Let AZ=7,—Z7;, where lergleagClﬁll (e) and

Zy= max Cfﬂo_ o, (€), the goal of SOF is to minimize AZ.
ec

The SOF problem will be triggered when new flows ap-
pear or some existing flows are required to be retransmitted.
Note that the SOF problem still subjects to an ILP model,
which is similar to the SBF problem. We omit the detailed
presentation of the SOF model due to the page limitation.

The SOF problem targets at minimizing Z;. Thus, it
seems that the same strategy, depicted in Algorithm 1, can
be utilized to solve the SOF problem. Algorithm 1, however,
will be employed frequently due to the dynamic flows,
and hence causes unnecessary computation cost. Instead,
we only take flows in F} into consideration, and propose a
greedy flow scheduling strategy for the SOF problem. For
each flow in F}, the insight of our greedy strategy is to
employ the path that causes the least link congestion rate.

As depicted in Algorithm 2, the greedy strategy dis-
covers those flows that call for path assignment (Line 2).
Typically, it distinguishes the finished flows, the new flows
and the failed flows. The algorithm has to know which
available links and devices the updated flows can employ.
We update the state of the whole network by eliminating
finished flows (in Line 3). For each flow, we search all of
its wireless path, hybrid path and wired paths according to
those algorithms in Section 4.

After deriving the possible candidate routing paths for
a flow f;, we calculate the congestion rate of each path
according to the values of b; and c¢;. We then pick the path
with the least congestion rate as the final routing path for
fi and add it into Sypiine (Line 4-8). When each flow in F}
has been assigned a reasonable path, Algorithm 2 returns
the result. Algorithm 2 just considers those flows that need
to be allocated a routing path. Thus, the algorithm will be
executed §; rounds, while the time consumption is O(k+k?)
in each round, due to derive the candidate paths. Thus, the
computation complexity of Algorithm 2 is O(d; xk?).

Theorem 7. Algorithm 2 outperforms the traditional ECMP
flow scheduling strategy for the online traffic pattern.

Proof: For any flow f;€Fy, if ECMP is employed, the
expectation of congestion rate for f; is

4 .
P13 > Ch(P) (13)
PjeP(fi)
By contrast, the congestion rate of Algorithm 2 for f; is
min{Cp, (P;)} st.P; € P(f;) (14)

Undoubtedly, for an arbitrary flow f;, the congestion rate
under Algorithm 2 is no more than that under ECMP. Thus,
Theorem 7 is proved. O

5 PERFORMANCE EVALUATION

We start with the qualitative comparison between VLCcube
with other proposals. As for the qualitative evaluations, we
first introduce the settings and methodologies. Then, we
compare VLCcube with Fat-Tree, in terms of the topological
properties and network performance. Finally, the proposed
congestion aware scheduling methods are evaluated against
the widely used ECMP. The reported result is the average
value over 100 rounds of evaluations for each metric.

5.1 Qualitative comparison

Before discussing the quantitative evaluations, we first com-
pare VLCcube with several wireless data center topologies
qualitatively.

Table 1 depicts the results. Firstly, FireFly, 3D Beamform-
ing (3D BF) and VLCcube employ the Laser, 60 GHz and VL-
C wireless links to establish another wireless topology over
existing racks, respectively. Secondly, the wireless topologies
of both FireFly and 3D BF are flexible since the wireless
links can be adjusted on demand, according to the traffic
pattern. The wireless topology of VLCcube is always fixed,
so as to maintain a stable wireless and hybrid topologies
over racks. This would avoid the non-trivial cost due to
adjusting wireless links and ease the designing of routing
schemes. Thirdly, both FireFly and 3D BF will introduce
complex infrastructure-level alterations, e.g., redecoration
of the ceilings, establishment of various communication
components.

Fourthly, to realize the designed wireless topology, com-
plicated mechanical or electronic control operations are
required to establish a wireless link in FireFly and 3D BE
On the contrary, VLCcube is plug-and-play and does not
suffer from such extra control operations, when establishing
each VLC link. Moreover, Firefly and 3D BF must accu-
rately predict the traffic pattern before designing a suitable
wireless topology. VLCcube, however, does not need such
kind of traffic prediction. It is time-consuming and costly
to accurately predict the traffic pattern, especially for those
burst and hot-spot traffics.

Therefore, VLCcube offers stable wireless topology, easy
routing mechanism at the cost of slightly releasing the
requirement of topology flexibility. Additionally, VLCcube
meets the three design rationales proposed in this paper and
needs not to accurately predict the traffic pattern.

10

TABLE 1
Qualitative comparison.

Structure ~ Wireless Flexible Alteration P-a-p Predict
Firefly Yes Yes Yes No Yes
3D BF Yes Yes Yes No Yes

VLCcube Yes No No Yes No

S30| T FatTree £ —— Fat-Tree
5 VLCcube s 12 VLCcube
o 2
= 3.0 s
g 10
o
v 28 _g
=] =
5 S 0.8
24 g 06
[4 A A 1 A 4
6 12 18 24 30 36 42 48 54 60
The value of k The value of k
(a) Average path length. (b) Total network bandwidth.

> 1.0 VLCcube, 100 e ireless
3098 VLCcube;, 7, —©— Hybrid f
8 0.96 VLCcube;, 280 Wired
c N [}
§ 0.94 % £Ee0
= \ o
g 0.92 \ |
£0.90 \ 40
B \

\

\

N

\

|
S

N
I
il

\

\

\

\

\

\

\

i\

12 18 24 30
val

(c) Pod level connectivity.

B
Routin
N
S
x}

oSS

6 12 18 24 30 36 42 48 54 60
of k The value of k

(d) Routing complexity.

Fig. 8. Topological properties of VLCcube.

5.2 Setting and methodology of evaluations

We realize the proposed VLCcube and Fat-Tree with Net-
work Simulator (NS3). Given the number of k, we generate
Fat-Tree according to the rules introduced in [1]. As for
VLCcube, we generate it with the steps in Section 3.3. To
reveal the essential impact of introducing VLC links to
DCNs, we assume that the adjustment of racks is permitted.
The bandwidth of each wired link and VLC link is set as 10
Gbps. For both networks, according to the setting in [29]
[30], the link delay is set as 1 ms. With the above basic
setting, we first compare their topological characteristics,
and then evaluate the complexity of routing algorithms for
wired paths, wireless paths and hybrid paths. Moreover, we
compare their network performance.

In our evaluations, we consider three traffic patterns: i)
Trace flows: the flows are generated by a real data-set from
Yahoo!’s data centers [31]; ii) Stride-i flows: a server with
id x sends flow to the destination with id (z+i) mod N,
where N is the total number of servers; and iii) Random
flows: the source and destination of each flow are chosen
randomly. The network throughput and packet loss rate, are
used to measure the performance of DCNs under diverse
traffic patterns.

To prove the effectiveness of our flow scheduling meth-
ods, we first evaluate the network performance of VLC-
cube and Fat-Tree, which both utilize the prior ECMP flow
scheduling method. We further measure the performance
of VLCcube under our flow scheduling algorithm and the
ECMP, respectively. Note that the arrival time of dynamic
flows follows a Poisson distribution in the case of online
flow scheduling.

—B— Fat-Tree
—&— VLCcube

o
=}
G

=

N}
o
o
=

AVANSYA

—*— Fat-Tree
—*— VLCcube

o
o
@

Throughput
=
-

o
o
R

Packet loss rate

[y

=}
od
o
=

=
6 12 18 24 30 36 42 48 54 60
The value of k

0.9
6 12 18 24 30 36 42 48 54 60
The value of k

(a) Throughput under trace flows. (b) Loss rate under trace flows.

Fig. 9. Network performance under trace flows.

5.3 Topological properties of VLCcube

Two topological properties, the average path length (APL)
and the total network bandwidth, are measured for VLC-
cube and Fat-Tree. As shown in Fig.8(a) and Fig.8(b), VLC-
cube has shorter APL and offers higher network bandwidth
than Fat-Tree, due to those VLC wireless links. Note that, the
impact of VLC wireless links on the APL exhibits an obvious
marginal effect. That is, the APL would be significantly
decreased by VLC wireless links for small-scale networks.
In fact, given k, there are k2 VLC links in VLCcube, and the
number of both wired and wireless links is £%/2 + k2. As
the increase of k, VLC links contribute less portion to the
total number of links. Hence, the impact of wireless links
becomes weak.

We conduct the generation progress multiple rounds
to deduce the placement strategy for VLCcube. Then the
connectivity of the pod level logic graph is normalized and
measured as the number of links in a complete graph. In
Fig.8(c), VLCcube;, VLCcubes and VLCcube;y denote the
measured results, under the picked placement strategy with
the highest pod level connectivity after one round, two
rounds, and ten rounds generations. It is clear that the
connectivity reduces along the increase of k, irrespective of
the rounds of generation. Additionally, VLCcube;o always
outperforms other two cases, since the generation algorithm
may derive a better solution from more candidates with
high probability.

We further measure the consumed time, due to calculate
three kinds of routing paths in VLCcube. As depicted in Fig.
8(d) the time-consumption of searching the wireless path
increases from 37 microseconds to 87 microseconds, when k
grows from 6 to 60. The time consumption of hybrid path
routing shows the similar increasing trend and varies from 8
microseconds to 67 microseconds since the time-complexity
is O(k). It is clear that the wired path routing causes the
least time consumption, which remains in a low level, i.e., 39
microseconds, irrespective of the setting of k. In summary,
the time complexity of wired path routing is constant, while
that of other two routing algorithms is proportional to the
value of k. The time-consumption of the wireless and hybrid
paths is only tens of microseconds even k=60, and hence is
acceptable in data centers.

5.4 Network performance

In this section, we evaluate the network performance of
VLCcube and Fat-Tree in terms of network throughput
and packet loss rate in the case of ECMP flow scheduling
method. Under each of the three traffic patterns, we vary

11

-
w
»
o

—>*— Fat-Tree
—*— VLCcube

—HB— Fat-Tree
—&— VLCcube

0
6 8 101214 16 18 20 22 24 26 28 30
Value of k

I
[N}
w
o

Thrm&;hput
-
Packet loss rate (%)
N
o

)
o
g
o

0.9
6 8 1012 14 16 18 20 22 24 26 28 30
Value of k

(a) Throughput when k varies.
12 25

—*— Fat-Tree
—*— VLCcube

W

(b) Loss rate when k varies.

—H— Fat-Tree
—6— VLCcube

N
=1

';'Proughp!gt
o -
= =
o (%]

4

Packet loss rate (%)

0.9

o

4 5 6 7 8 9 10 11 12 4 5 6 7 8 9 10 11 12
Maximum flow size (Mb) Maximum flow size (Mb)

(c) Throughput when flow size varies.(d) Lose rate when flow size varies.

Fig. 10. Network performance under stride flows.

the network scale by adjusting the value of k, and observe
the changing trends of the network throughput and packet
loss rate. To reveal the impact of flow size on the network
performance, the average size of each flow ranges from 5 Mb
to 12 Mb. Note that the size of each flow under the trace-
based traffic pattern is always set according to the trace. In
each test, the network throughput is depicted as the ratio
of the real throughput of between VLCcube and Fat-Tree in
each kind of parameter setting.

5.4.1 Network performance under trace flows

The Yahoo!’s trace records the basic information for each
flow in its 6 distributed data centers, including the IP
addresses of both source and destination servers, the flow
size, the utilized interfaces, etc. We separate those inner data
center flows from those flows across data centers by iden-
tifying the utilized interfaces [31]. We inject k* randomly
chosen flows into the VLCcube and Fat-Tree networks to
evaluate their performance.

Fig.9(a) and Fig.9(b) plot the performance of VLCcube
and Fat-Tree in terms of both throughput and packet loss
rate when k varies from 6 to 60. It is clear that VLCcube
dominates Fat-Tree by offering more throughput (19.97%
more) and causing much less packet loss rate (39.00% less).
The reason is that, those VLC links provide more candidate
paths for each flow.

5.4.2 Network performance under stride-k flows

In this experiment, firstly, we set the maximum flow size
as 5 Mb. We measure the throughput and packet loss rate
under diverse network orders by increasing k from 6 to 30.
Fig.10(a) and Fig.10(b) report the evaluation results, when
2xk? random flows are injected in the networks. With the
increase of k, both Fat-Tree and VLCcube are capable of
accommodating more flows, thus their throughputs increase
rapidly. But VLCcube achieves 8.54% more throughput than
Fat-Tree on average. Additionally, as shown in Fig.10(b), the
packet loss rate of VLCcube is much less than that of Fat-
Tree. We also note that, with the increase of k, both Fat-Tree
and VLCcube result in more packet loss rate. The reason

=
w

—*— Fat-Tree
—*— VLCcube

—H&— Fat-Tree
—&— VLCcube

i
N
-
N
o

©

o

Thrm&;hput
I L

)
o

Packet loss rate (%)

w

3]

0
6 8 10 12 14 16 18 20 22 24 26 28 30
Value of k

0.9
6 8 1012 14 16 18 20 22 24 26 28 30
Value of k

(a) Throughput when k varies. (b) Loss rate when k varies.

1.2

—*— Fat-Tree % —HB— Fat-Tree 1
—¥— VLCcube < —6— VLCcube
20
511 2
& S15
2 4 3
2 210
£1.0 3
[=}
$ 5
0.9 ok
4 5 6 7 8 9 10 11 12 4 5 6 7 8 9 10 11 12

Maximum flow size (Mb) Maximum flow size (Mb)

(c) Throughput when flow size varies.(d) Loss rate when flow size varies

Fig. 11. Network performance under random flows.

is that, the number of injected flows (2xk?) increases faster
than the number of candidate paths for each flow (k2 /4+ 2).
As a result, more flows may be dropped.

To measure the impact of flow size, we vary the aver-
age size of those 2xk? flows from 4 Mb to 12 Mb while
k=20. We can infer from Fig.10(c) and Fig.10(d) that VLC-
cube still considerably outperforms Fat-Tree. More precisely,
VLCcube increases the network throughput up to 14.31%
than Fat-tree even when the maximum flow size is 11 Mb.
Reasonably, when the flow size grows, the packet loss rate
increases dramatically.

5.4.3 Network performance under random flows

In the setting of random traffic pattern, the source and
destination server of each flow are all selected randomly.
We also introduce 2xk? flows into the two data center
networks.

First of all, we fix the maximum flow size as 5 Mb,
and vary the network scale by ranging k£ from 6 to 30.
As shown in Fig.11(a), for both VLCcube and Fat-Tree, the
network throughput increases dramatically. VLCcube still
outperforms Fat-Tree with 10.80% more network through-
put on average. As depicted in Fig.11(b), Fat-Tree always
experiences a high packet drop rate, while VLCcube incurs
much less packet drop rate. To be specific, VLCcube and Fat-
Tree drop 1.01% and 2.92% packets on average, respectively.

We further evaluate the impact of maximum flow size on
the network performance when k=20. As shown in Fig.11(c)
and Fig.11(d), VLCcube and Fat-Tree must transmit more
packet once the flows are scheduled; hence, the throughput
increase reasonably as larger flows are injected in the net-
works. At the same time, the packet loss rate also increases
along with the increase of average flow size. We derive from
such figures that our VLCcube works better than existing
Fat-Tree significantly.

In summary, VLCcube achieves better network perfor-
mance than Fat-Tree under the three kinds of traffic patterns,
when both of them employ the ECMP to schedule flows.

12

3.0

—*— ECMP

W

6 8 1012 14 16 18 20 22 24 26 28 30
Value of k

5~ SBF
—6— ECMP

=
5

Throughput

=
[N}

Packet loss rate (%)

0.9

0)]
6 8 101214 16 18 20 22 24 26 28 30
Value of k

(a) Throughput of batched scheduling(b) Loss rate of batched scheduling.

5.0

(4]
a

ECMP-2 —E5— ECMP-2

—*%— ECMP-4
SOF-2
SOF-4

>
<)
IS
a

g

o
w
a

o
%)
o
7
%
£

Throughput

N

)
N
a

Packet loss rate (%)

Y R

6 8 10 12 14 16 18 20 22 24 6
The value of k

1.0

=
o

8 10 12 14 16 18 20 22 24
The value of k

(c) Throughput of online scheduling. (d) Loss rate of online scheduling.

Fig. 12. The performance of congestion aware scheduling.

5.5

Although the above evaluations demonstrate the benefits
of VLCcube than Fat-Tree, the topological benefits have
not been fully exploited by employing the existing ECMP
flow scheduling method. Thus, we compare our congestion
aware scheduling method with ECMP under different sizes
of VLCcube.

We inject k3 batched random flows into VLCcube, where
k varies from 6 to 24. The network throughput is normalized
as the ratio of the network throughput under the ECMP
method to that under our SBF method. As depicted in
Fig.12(a) and Fig.12(b), ECMP offers less network through-
put and causes the worse packet loss rate. By contrast, our
SBF method contributes x1.50 throughput and causes much
less loss rate (decreasing to 0 when k=12) than ECMP. The
root cause of low loss rate is that our SBF method offers
more candidate paths, and disperses the flows as widely as
the VLCcube can.

Additionally, the VLCcube schedules online flows using
our SOF method. In this case, we vary k£ from 6 to 24
and schedule k* random flows under each configuration
of VLCcube. The arrival time of dynamic flows follows a
Poisson distribution, whose parameter A can be adjusted.

Fig.12(c) and Fig.12(d) plot the evaluation results. Note
that ECMP-z and SOF-z refer the results under the ECMP
and our SOF methods, when A=x. Our SOF method leads
to x2.21 and x2.59 throughput than ECMP, while causes
only x0.746 and x0.619 packet loss, when A= 2 and A=4,
respectively. Note that, both ECMP and SOF methods in
the case of A=4 outperform that in the case of A=2. The
reason is, less flows will simultaneously arrive in a given
time interval as the increase of \; hence, such flows cause
less packet loss.

Consequently, our SBF and SOF flow scheduling meth-
ods can improve the performance of VLCcube and realize
less congestion rate than the widely used ECMP method.

Impact of congestion aware flow scheduling

6 DISCUSSION

In this paper, we augment the existing wired Fat-Tree DCN
by introducing the inter-rack wireless network using VLC

links. To fully understand the designing methodology of
VLCcube, we discuss the following important issues.

Why VLC links? Plenty of endeavors have been con-
ducted towards the designing of wireless data centers. In
this paper, we make the first step to study the feasibility of
introducing VLC into data centers. That is, we establish an-
other inter-rack wireless network for a data center with any
wired DCN. Such VLC links bring extra advantages. Firstly,
compared with the overcrowded RF spectrum, the visible
light spectrum occupies hundreds of terahertz of license free
bandwidth, which are remains untapped. Secondly, VLC
can well reuse the existing lighting infrastructures to realize
high-speed communication. That is, VLC is cost-effective as
well as energy-saving.

The building methods of VLCcube. In this paper, we
point out that VLCcube can be constructed in two different
methods. Indeed, the racks in an existing Fat-Tree data
center have been placed as a fixed array, e.g., k?/2 array.
Hence, a simple method is to remain the arrangement of
racks and interconnect all racks as a wireless Torus. Howev-
er, the resultant hybrid DCN brings limited improvement
of network performance. To fully exploit the benefits of
the introduced VLC links, we prefer to upgrade all racks
from the k?/2 array to a mxmn array, which brings extra
adjustment of racks and links. Consequently, the resultant
VLCcube can replace more four-hop wired paths with one-
hop wireless paths. Additionally, the connectivity among
pods is enhanced by those VLC links. In summary, there
is a trade-off between the extra cost and the promotion of
performance for the second method.

The scalability of VLCcube. It is true that the Fat-
Tree DCN lacks high scalability. The network order of Fat-
Tree is decided by the value of k. If there are already
k2 /2 racks in Fat-Tree, any added rack will result in the
increase of k. As a result, the scalability of our VLCcube
is limited by the employed Fat-Tree strucutre. However,
it is not necessary that the design of VLCcube depends
only on the Fat-Tree like structures. In the future, VLCcube
would consider other scalable wired DCNs, e.g., Jellyfish
[15], FBFLY [32] and HyperX [33]. The networking structure
of Jellyfish is a random regular graph at the level of rack,
while that of FBFLY and HyperX is the generalized hyper-
cube at the level of rack. There are no aggregative or core
switches in these DCNs. When VLC links are introduced
into such wired DCNs, the resultant hybrid topologies can
be expanded easily. On the other hand, we envision the
completely wireless DCNs based on VLC links as our future
work, which can be expanded on demand. In summary, we
make a first step towards designing a hybrid topology by
introducing VLC links into wired DCNs, for example Fat-
Tree. The methodology proposed in this paper can be used
to design other scalable hybrid DCNs if we utilize other
scalable wired DCNss instead of the Fat-Tree.

The complexity of routing methods. As a hybrid topol-
ogy, VLCcube offers wired paths, wireless paths and hybrid
paths for any pair of racks. The wired path as well as the
wireless path can be simply calculated according to the
building rules of Fat-tree and Torus topologies. To speed
up the hybrid routing algorithm, we only derive the 3-
hop hybrid paths in VLCcube. The time-complexity of the
wired routing scheme is constant for the Fat-tree DCN.

13

However, the time-complexity of the wireless and hybrid
routing algorithms is O(k). As the evaluation results indi-
cate, the time-consumption for calculating the wireless path
and the hybrid path for any pair of racks is within tens
of microseconds, which is acceptable for current data center
applications. Moreover, once all routing paths for any pair of
racks have been derived and kept in involved routing tables,
such routing algorithms will seldom be triggered. That is,
this kind of latency only happens during the initialization
or updating process of the network.

Rethinking of flow model and scheduling algorithms.
In VLCcube, due to the existence of multiple paths, it is
important to select a proper path for each flow since those
paths result in diverse completion time. From the global
view, we need to derive a suitable path for every flow,
such that the congestion rate is minimized. After allocating
given path for each flow, more accurate and fine-grained
control mechanisms can be realized by several existing
proposals, e.g., Hedera [34], pFabric [35], L2DCT [36], etc.
Such transport control mechanisms target at optimizing the
flow completion time, using dedicated rules, such as the
shortest remaining processing time first, the deadline first,
and the smallest flow first, etc.

The evaluation methodology. Our evaluations concen-
trate on measuring the impact of introducing VLC wireless
links into the wired Fat-Tree networking structure for data
centers. For fairness, we compare VLCcube with Fat-Tree
when both of them employ the ECMP strategy. Then we
evaluate the impact of the proposed scheduling algorithms
for VLCcube. The comprehensive evaluations do verify the
improvement of our VLCcube over Fat-Tree, in terms of
both topological properties and the network performance.
Besides the evolutions via comprehensive simulations, we
also consider the possibility of small-scale deployment of
VLCcube system. However, existing VLC products are still
incapable of gigabit-level data rate since the high-speed
VLC techniques (at the scale of Gbps) are still at the stage
of test in the laboratory. As a result, it is inappropriate
to compare VLCcube enabled by existing VLC products
with Firefly or Fat-Tree currently. We will keep tracking the
products of the next generation high-speed VLC links and
deploy a prototype of VLCcube system to truly improve the
existing wired data centers.

Future work. The future work is mainly of two folds.
On one hand, we will consider the design and evaluation
of other hybrid DCNs using VLC links, in the settings of
other wired DCNs (e.g., BCube, MDcube, Jellyfish, etc). New
challenges will occur when integrating the VLC wireless
links with other existing wired topologies. On the other
hand, we envision a complete wireless data center based
on VLC links only.

7 CONCLUSION

In this paper, we present VLCcube, an easy-deployable,
and high-performance hybrid DCN architecture. VLCcube
introduces the emerging VLC technique to interconnect
all racks together with a wireless Torus network, so as
to augment the wired Fat-Tree network. The introduced
VLC links can decrease the APL and enhance the network
bandwidth. To exploit the benefits of VLCcube, we further

design dedicated flow scheduling methods for both batched
and online flows. The evaluations indicate that VLCcube
always outperforms Fat-Tree, and our scheduling methods
can significantly promote its performance.

ACKNOWLEDGMENTS

The authors thank all the anonymous reviewers for their
insightful feedback. Besides, this work is supported by

the

National 973 Basic Research Program under grant

No0.2014CB347800, and the National Natural Science Foun-
dation of Outstanding Youth Fund under grant No.
61422214.

REFERENCES

(1]

(2]

(3]

(4]

(5]

6]

(71
(8]

(%]

[10]

[11]

(12]

[13]

[14]

M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commod-
ity data center network architecture,” in Proc. ACM SIGCOMM,
Seattle, WA, USA, 2008.

A. Greenberg,]. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. Maltz, and P. Patel, “VL2: a scalable and flexible data center
network,” in Proc. ACM SIGCOMM, Barcelona, Spain, 2009.

H. Navid, Q. Zafar, G. Himanshu, S. Vyas, R. D. Samir, P. L. Jon, S.
Himanshu, and T. Ashish, “FireFly: A reconfigurable wireless data
center fabric using free-space optics,” in Proc. ACM SIGCOMM,
Helsinki, Finland, 2014.

X. Zhou, Z. Zhang, Y. Zhu, Y. Li, K. Saipriya, V. Amin, B. Y. Zhao
and H. Zheng, “Mirror mirror on the ceiling: flexible wireless links
for data centers,” in Proc. ACM SIGCOMM, Helsinki, Finland,
2012.

W. Zhang, X. Zhou, L. Yang, Z. Zhang, B. Y. Zhao and H. Zheng,
“3D beam forming for wireless data centers,” in Proc. ACM Hot-
nets, Cambridge, MA, USA, 2011.

Y. Cui, H. Wang, X. Cheng, and B. Chen, “Wireless data center
networking,” IEEE Wireless Communication, vol. 18, no. 6, pp. 46—
53, 2011.

J.Y. Shin and D. Kirovski, “On the feasibility of complete wireless
datacenters,” in Proc. ACM ANCS, Austin, Texas, USA, 2012.

V. Liu, D. Halperin, A. Krishnamurthy, and T. Anderson, “F10:
A fault-tolerant engineered network,” in Proc. USENIX NSDI,
Lombard, Illinois, USA, 2013.

K. Chen, A. Singla, A. Singh, K. Ramachandran, and L. Xu, “OSA:
an optical switching architecture for data center networks with
unprecedented flexibility,” IEEE/ACM Transactions on Networking,
vol. 22, no. 2, pp. 498-511, 2014.

C. Guo, G. Lu, D. Li, H. Wu, and X. Zhang, “BCube: a high
performance, server-centric network architecture for modular data
centers,” ACM SIGCOMM Computer Communication Review, vol.
39, no. 4, pp. 63-74, 2009.

C. Guo, H. Wu, K. Tan, L. Shi, Y. Zheng, and S. Lu, “DCell: A
scalable and fault-tolerant network structure for data centers,” in
Proc. ACM SIGCOMM, Seattle, WA, USA, 2008.

H. Wu, G. Lu, D. Li, C. Guo, and Y. Zhang, “MDCube: a high
performance network structure for modular data center intercon-
nection,” In Proc. ACM CoNEXT, Rome, Italy, 2009.

D. Li, M. Xu, H. Zhao, and X. Fu, “Building mega data center
from heterogeneous containers,” In Proc. IEEE ICNP, Vancouver,
BC Canada, 2011.

J. Y. Shin, B. Wong, and E. G. Sirer, “Small-world datacenters,” in
Proc. ACM SOCC, Cascais, Portugal, 2011.

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]
(23]

[24]
[25]
[26]
[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

14

A. Shingla, C. Y. Hong, L. Pooa, and P. B. Godfrey, “Jellyfish:
networking data centers randomly,” in Proc. USENIX NSDI, San
Jose, Canada, 2012.

L. Gyarmati, and T. A. Trinh, “Scafida: A scale-free network
inspired data center architecture”, ACM SIGCOMM Computer
Communication Review, vol. 40, no. 5, pp. 4-12, 2010.

X. Zhou, Z. Zhang, Y. Zhu, Y. Li, and S. Kumar, “Mirror mirror
on the ceiling: flexible wireless links for data centers,” ACM
SIGCOMM Computer Communication Review, vol. 42, no. 4, pp. 443—
454, 2012.

S. Louvros, D. Fuschelberger, N. Sklavosm, M. Hbner, D.
Goehringer, and P. Kitsos, “VLC technology for LTE indoor plan-
ning,” System-Level Design Methodologies for Telecommunication, pp.
21-41, 2014.

D. Tsonev, S. Videv, and H. Hass, “Light Fidelity (Li-Fi): Towards
all-optical networking,” in Proc. SPIE Conference Series, 2013.

D. Tsonev, H. Chun H, S. Rajbhandari,]J. Mckendry, S. Videyv,
E. Gu, M. Haji, S. Mohsin, A. E. Kelly, and G. Faulkner, “A 3-
Gb/s single-LED OFDM-based wireless VLC link using a gallium
nitride LED,” IEEE Photonics Technology Letters, vol. pp, no. 7, pp.
637-640, 2014.

Y. C. Chi, D. H. Hsieh, C. T. Tsal, H. Y. Chen, H. C. Kuo, and G.
R. Lin, “450-nm GaN laser diode enables high-speed visible light
communication with 9-Gbps QAM-OFDM,” Optics Experess, vol.
23, n0.10, 2015.

Ronja, http:/ /ronja.twibright.com/, 2015.

S. Singh and R. Bharti, “163m/10Gbps 4QAM-OFDM visible light
communication,” IJETR, vol. 2, no. 6, pp. 225-228, 2014.

PureLiFi, purelifi.com/lifi-products/li-1st/.

MOMO, axrtek.com/momo/.

TracePro, http://www.lambdares.com/, 2015.

M. Michael, W. R. Andrea, and S. Ramesh, “The power of two
random choices: A survey of techniques and results,” Handbook of
Randomized Computing, pp. 255-312, 2000.

K. Han, Z. Hu, J. Luo, and L. Xiang, “RUSH: RoUting and schedul-
ing for hybrid data center networks,” in Proc. IEEE INFOCOM,
Hongkong, 2015.

M. Alizadeh, A. Greenberg, D. A. Maltz,]J. Padhye, “DCTCP:
Efficient Packet Transport for the Commoditized Data Center,”
Proc. ACM SIGCOMM, New Delhi, India ,2010.

R. Mittal, V. T. Lam, N. Dukkipati, E. Blem, “TIMELY: RTT-
based Congestion Control for the Datacenter,” ACM SIGCOMM
Computer Communication Review, vol. 45, no. 4, pp. 537-550, 2015.
Y. Chen, S. Jain, V. K. Adhikari, Z. Zhang, and K. Xu, “A first look
at inter-data center traffic characteristics via Yahoo! datasets,” in
Proc. IEEE INFOCOM, Shanghai, China, 2011.

D. Abts, M. R. Marty, P. M. Wells, “Energy proportional datacenter
networks,” ACM SIGARCH Computer Architecture News, vol. 38,
no. 3, pp. 338-347, 2010.

J. H. Ahn, N. Binkert, A. Davis, “HyperX: topology, routing,
and packaging of efficient large-scale networks, ” in Proc. IEEE
Conference on High Performance Computing Networking, Storage and
Analysis, Portland, USA, 2009.

M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and
A. Vahdat, “ Hedera: dynamic flow scheduling for data center
networks,” in Proc. USENIX NSDI, San Jose, CA, USA, 2010.

M. Alizadeh, S. Yang, M. Sharif, S. Katti, and N. Mckeown, “pFab-
ric: minimal near-optimal datacenter transport,” ACM SIGCOMM
Computer Communication Review, vol. 43, no. 4, pp. 435-446, 2013.
A. Munir, I. A. Qazi, Z. A. Uzmi, A Mushtaq, and S. N. Ismail,
“Minimizing flow completion times in data centers,” in Proc. IEEE
INFOCOM, Turin, Italy, 2013.

