Expansible and Cost-Effective Network Structures for Data
Centers Using Dual-Port Servers

Deke Guo, Member, IEEE, Tao Chen, Member, IEEE, Dan Li, Member, IEEE, Yunhao Liu, Senior Member, IEEE
Guihai Chen, Senior Member, IEEE

Abstract— A fundamental goal of data-center networking is
to efficiently interconnect a large number of servers with low
equipment cost. Several server-centric network structures for
data centers have been proposed. They, however, are not truly
expansible and suffer low degree of regularity and symmetry.
Inspired that the commodity servers in today’s data centers come
with two built-in NIC ports, we consider how to build expansible
and cost-effective structures without expensive high-end switches
and additional hardware on servers except the two NIC ports. In
this paper, two such network structures called HCN and BCN are
designed, both of which are of server degree 2. We also develop
low-overhead and robust routing mechanisms for HCN and BCN.
Although the server degree is only 2, HCN can be expanded
very easily to encompass hundreds of thousands servers with low
diameter and high bisection width. Additionally, HCN offers high
degree of regularity, scalability and symmetry, which very well
conform to a modular design of data centers. BCN is the largest
known network structure for data centers with server degree 2
and network diameter 7. Furthermore, BCN has many attractive
features, including low diameter, high bisection width, large
number of node-disjoint paths for one-to-one traffic, and good
fault-tolerance ability. Mathematical analysis and comprehensive
simulations show that HCN and BCN possess excellent topology
properties and are viable network structures for data centers.

I. INTRODUCTION

Mega data centers have emerged as infrastructures for build-
ing online applications, such as web search, email and on-line
gaming, as well as infrastructural services, such as GFS [1],
HDFS [2], BigTable [3], and CloudStore [4]. Inside a data center,
large number of servers are interconnected using a specific data
center networking (DCN) [5], [6], [7], [8], [9] structure with
design goals. They include low equipment cost, high network
capacity, support of incremental expansion, and robustness to
link/server/switch failures.

The tree-based structures are increasingly difficult to meet the
design goals of DCN [5], [6], [7], [8]. Consequently, a number
of novel DCN topologies are proposed recently. These topologies
can be roughly divided into two categories. One is switch-centric,
which organizes switches into structures other than tree and puts
interconnection intelligence on switches. Fat-Tree [5], VL2 [10]
fall into this category. The other is server-centric, which puts
interconnection intelligence on servers and uses switches only as
cross-bars. DCell [6], BCube [9], FiConn [7], [8], and MDCube
[11] fall into the second category. Among others, server-centric
topology has the following advantages. First, in current practice,
servers are more programmable than switches, so the deployment
of new DCN topology is more feasible. Second, multiple NIC
ports in servers can be used to improve the end-to-end throughput
as well as fault tolerance.

For DCell and BCube, many nice topological properties and
efficient algorithms have been derived at the following cost. They

use more than 2 ports per server, typically 4, and large number of
switches and links, so as to scale to a large server population. If
they use servers with only 2 ports, the server population is very
limited and cannot be enlarged since they are at most two layers.
When network structures are expanded to one higher level, DCell
as well as BCube add one NIC and link for each existing server,
and BCube is appended large number of additional switches. Note
that although upgrading servers like installing additional NICs is
cheap in terms of the equipment cost, the time and human power
needed to upgrade tens or hundreds of thousands servers are very
expensive.

Hence, a major drawback of these topologies is that they are
not truly expansible. A network is expansible if no changes with
respect to node configuration and link connections are necessary
when it is expanded. This might cause negative influence on
applications running on all existing servers during the process of
topology expansion. The fundamental problem is that, we need
to design an expansible and cost-effective network structure that
works for commodity servers with constant ports and low-end,
multi-port commodity switches. Other potential benefits by solv-
ing the problem are multifaceted. First, we do not use expensive
high-end switches, which are widely used today. Second, the
wiring becomes relatively easy since only constant server ports are
used for interconnection. Third, it offers an easy-to-build test bed
at a university or institution since those data-center infrastructures
may only be afforded by a few cash-rich companies [7], [8].

A. Motivation and Contributions

Without loss of generality, we focus on the interconnecting of
a large number of commodity servers with only two ports since
such servers are readily available in current data centers. It is
challenging to interconnect a large population of such servers in
data centers, because we should also guarantee the low diameter
and high bisection width. FiConn is one of such kind of topolo-
gies, however, suffers low degree of regularity and symmetry,
which are desirable to the modular design of distributed systems,
involving a large number of computing elements. Note that we
also extend our designs to more server ports in Section VL.

In this paper, we first propose a hierarchical irregular compound
network, denoted as HCN, which can be expanded independent
of the server degree by only adding one link to a few number
of servers. Moreover, HCN offers high degree of regularity,
scalability and symmetry, which very well conform to a modular
design of data centers. Inspired by the smaller network order of
HCN than FiConn, we further study the degree/diameter problem
[12], [13], [14] to determine desirable structures for data centers,
which satisfy the aforementioned design goals and accommodate
the largest number of dual-port servers.

Inspired by the smaller network size of HCN than FiConn,
we further study the degree/diameter problem [12], [13] in the

scenario of building a scalable server-centric DCN topology using
dual ports on a server. The degree/diameter problem determines
the largest graphs of given maximum degree and diameter.
Specifically, the degree/diameter problem here is to determine
desirable DCNs which satisfy the aforementioned design goals
and support the largest number of servers under the two con-
straints as follows. First, the basic building block is n servers that
are connected to a n port commodity switch. Second, two basic
building blocks are interconnected by a link between two servers
each in one building block without connecting any two switches
directly. Although many efforts [15], [14] have been given to the
degree/diameter problem, the degree/diameter problem of DCN
is an open problem.

We propose BCN, a class of Bidimensional Compound Net-
works for data centers which inherit the advantages of HCN. BCN
is a level-i irregular compound graph recursively defined in the
first dimension for i>0, and a level one regular compound graph
in the second dimension. In each dimension, a high-level BCN
employs a one lower level BCN as a unit cluster and connects
many such clusters by means of a complete graph. A BCN of
level one in each dimension is the largest known DCN with server
degree 2 and network diameter 7. In this case, the order of DCN
is significantly larger than that of FiConn(n,2) with the same
server degree and network diameter, irrespective of the value of
n. For example, if 48-port switches are used, a BCN of level
one in each dimension offers 787,968 servers, while a level-2
FiConn only supports 361,200 servers. The thirty data centers of
Google supports more than 450,000 servers [16]. Besides these
advantages, BCN has other attractive properties, including low
diameter and cost, high bisection width, high path diversity for
one-to-one traffic, good fault-tolerance ability, and relative shorter
fault tolerant path than FiConn.

The major contributions of this paper are summarized as fol-
lows. First, we propose two novel design methodologies of HCN
and DCN by exploiting the compound graph. They possess good
regularity and expansibility that help reduce the cost of further
expansions, and are especially suitable for large-scale data centers.
Second, a BCN of level one in each dimension offers the largest
known network structure for data centers with server degree 2 and
diameter 7. Third, HCN and BCN use distributed fault-tolerant
routing protocols to handle those representative failures in data
centers.

B. Organization of Paper

The rest of this paper is organized as follows. Section II
introduces the related work. Section III describes the structures
of HCN and BCN. Section IV presents the general and fault-
tolerant routing of HCN and BCN. Section V evaluates the
topology properties and routing protocols in HCN and BCN
through analysis and simulations. Section VI discusses other three
important design issues in HCN and BCN. Finally, section VII
concludes this paper and future work.

II. RELATED WORK
A. Ways of Constructing Large Interconnection Networks

Hierarchical network is a natural way to construct large net-
works, where many small basic networks in the lower level
are interconnected with higher level constructs. In a hierarchical
network, lower level networks support local communication,

while higher level networks support remote communication. Many
schemes have been proposed to construct large networks, includ-
ing overlay, join, product, composition, compound, and complete
bipartite graphs [17]. Among such schemes, The compound graph
is observed to be suitable for large-scale systems due to good
regularity and expansibility [17].

Definition 1: Given two regular graphs G and Gj, a level-1
regular compound graph G(Gy) is obtained by replacing each
node of G by a copy of G| and replacing each link of G by a
link which connects corresponding two copies of Gj.

A level-1 regular compound graph G(Gj) employs Gy as a unit
cluster and connects many such clusters by means of a regular
graph G. In the resultant graph, the topology of G is preserved
and only one link is inserted to connect two copies of Gj. An
additional remote link is associated to each node in a cluster.
For each node in the resultant network, the degree is identical.
A constraint must be satisfied for the two graphs to constitute a
regular compound graph. The node degree of G must be equal
to the number of nodes in Gj. An irregular compound graph is
obtained while the order of G is not necessarily equal to the
node degree of G.

A level-1 regular compound graph can be extended to level-
i (i>2) recursively. For easy of explanation, we consider that
case that the regular G, is a complete graph. A level-2 regular
compound graph G?(G;) employs G(G) as a unit cluster and
connects many such clusters using a complete graph. More
generically, a level-i (i>0) regular graph G'(G;) adopts a level-
(i—1) regular graph G'~!(G}) as a unit cluster and connects many
such clusters by a complete graph. Consequently, the node degree
of a level-i regular compound graph increases by i than the node
degree of G. In addition, G°(G;)=G;.

B. Interconnection Structures for Data Centers

We now discuss representative interconnection structures for
data centers, including the tree-based structure, and four recent
proposals of Fat-Tree [5], DCell [6], FiConn [8], and BCube [9].

For the tree-based structure, servers are connected by commod-
ity switches at the first level. At the second level, the commodity
switches are connected using core switches. At the next higher
level, more expensive and higher-speed switches are employed to
connect the next lower level switches. It is well-known that this
kind of tree structure does not scale well due to many limitations.
For example, a high level switch is the bandwidth bottleneck and
suffers single point of failure for a subtree branch. Although
redundant switches try to address this challenging problem at
the some extent by incurring even higher cost, it does not
fundamentally solve the problem.

Fig.1 illustrates an example of a Fat-Tree structure with n=4
and three levels of switches. At the core level, there are (n/2)?
n-port switches each of which has one port connecting to one of

Core Level

Aggregation
Level

Fig. 1.

Fat-Tree structure with n = 4. It has three levels of switches.

DCelly[0]

DCelly[4] (7 DCell[1]

DCelly[3] DCellg[2]

Fig. 2. DCell; structure with n =4. It is composed of five DCellp’s.

n pods, each containing two level of n/2 switches, i.e., the edge
level and the aggregation level. Each n-port switch at the edge
level uses its half ports to connect n/2 servers and another half
ports to connect the n/2 aggregation level switches in the pod.
Thus, the Fat-Tree structure can support n> /4 servers.

HCN and BCN use only one lowest level of switches by putting
the interconnection intelligence on servers, hence the number of
used switches is much smaller than Fat-Tree. Therefore, HCN
and BCN significantly reduce the cost on switches. In addition,
the number of servers Fat-Tree accommodates is limited by the
number of switch ports, given the three layers of switches [8].
HCN and BCN do not suffer this limitation and can extend to
large number of servers, although each has only two ports.

DCell is a new structure that has many desirable features for
data centers. Any high-level DCell is constituted by connecting
given number of the next lower level Dcells. Dcells at the same
level are fully connected with one another. DCelly is the basic
building block (module) in which n servers are connected to a n
ports commodity switch. DCell; is a level-i regular compound
graph G'(DCelly) constituted recursively for any i>1. Fig.2
illustrate an example of DCell; with n=4.

HCN and BCN are also server-centric structures like DCell,
but they are different in several aspects. First, the server node
degree in a DCelly, is k+ 1, but that of HCN and BCN are always
2. Consequently, the wiring cost is less than that of DCell since
each server uses only two ports. Second, no other hardware cost is
introduced on a server in HCN and BCN since they use existing
backup port on each server for interconnection. If DCell uses
servers with only 2 ports, the server population is very limited
since DCell is at most two layers. Third, when network structures
are expanded to one higher level, DCell adds one NIC and wiring
link for each existing server, while HCN and BCN only append
one wiring link to a constant number of servers. That is, DCell
is not truly expansible while HCN and BCN are.

FiConn shares the similar design principle as HCN and BCN
to interconnect large number of commodity servers with only two
ports, but they are different in several aspects. First, the topology
of FiConn suffers low degree of regularity and symmetry, which
are desirable to the modular design of large scale distributed
systems. Second, FiConn must append one wiring link to more
and more servers when it was expanded to higher level topologies,
but HCN only appends one wiring link to a constant number of
servers during its expansion process. Third, the order of BCN
is significantly larger than that of FiConn(n,2) with the server
degree 2 and network diameter 7, irrespective of the value of n.

Recently, BCube is proposed as a new server-centric inter-
connection structure for shipping-container-sized data centers, as

BCubel

Level-1

BCube0,

Fig. 3. BCube structure with n =4. It is composed of four BCubey’s and
another level of four switches.
shown in Fig.3. A BCubey is simply n servers connecting to an n-
port switch. A BCube; (k < 1) is constructed from n BCube;_’s
and n* n-port switches. Each server in a BCube; has k+ 1 ports.
Servers with multiple NIC ports are connect to multiple layers of
mini-switches, but those switches are not directly connected.
Unlike BCube, HCN and BCN are designed for mega data
centers. The server node degree of HCN and BCN is constantly
2, while BCube must allocate each server more NIC ports. In
addition, given the same number of servers, BCube uses much
more mini-switches and links than HCN and BCN. Actually,
BCube is an emulation of the generalized Hypercube [18].
Although HCN and BCN possess many advantages, they may
not be able to achieve higher aggregate networking capacity
compared to Fat-tree, Dcell, and BCube. In fact, this results from
the lesser number of links and switches, which is a tradeoff for
low cost and easy wiring. However, this issue can be addressed by
the locality-aware mechanism as discussed in Section VI. In our
future work, we will better utilize the link capacity by designing
traffic-aware routing algorithms to balance the usages of different
levels of links.

III. THE BCN NETWORK STRUCTURE

We propose two expansible network structures, i.e., HCN
and BCN, which build scalable and low-cost data centers using
dual port servers. For each structure, we start with the physical
structure, and then propose the construction methodology. Table
I lists the symbols and notations used in the rest of this paper.

A. Hierarchical Irregular Compound Networks

For any given h>0, we denote a level- irregular compound
network as HCN(n,h). HCN is a recursively defined structure. A
high-level HCN(n,h) employs a low level HCN(n,h—1) as a unit
cluster and connects many such clusters by means of a complete
graph. HCN(n,0) is the smallest module (basic construction unit),
which consists of n servers each with dual-ports and a n-port
mini-switch. For each server, its first port is used to connect with
the mini-switch while its second port is employed to interconnect
with another server in different smallest modules for constituting
larger networks. A server is available if its second port has not
been connected.

HCN(n,1) is constructed using n basic modules HCN(n,0). In
HCN(n, 1), there is only one link between any two basic modules
by connecting two available servers that belong to different basic
modules. Consequently, for each HCN(n,0) of HCN(n, 1) all its
servers are associated with a level-1 link except one server which
is reserved for the construction of HCN(n,2). Thus, there are n

TABLE 1
SUMMARY OF MAIN NOTATIONS

Term Definition

o number of master servers in the level-0 BCN

B number of slave servers in the level-0 BCN

n n=a+f is the number of ports of a mini-switch
h level of a BCN in the first dimension

b4 level of the unit BCN in the second dimension
sp=0a'"B number of slave servers in any given BCN (¢, 3,h)
sy=a’B number of slave servers in BCN(o, 3,7)

BCN(a., 3,0) level-0 BCN, i.e., the smallest building block
BCN(a,f3,h) level-h BCN in the first dimension

a compound graph uses BCN(¢t,3,h) as G

and a complete graph as G
a general BCN that always expands in the first

dimension while only expands in the second
dimension when h>y
order of a BCN(a, 8,h) in BCN(e., B,h,y) from
the viewpoint of the second dimension

order of a G(BCN(c,f,7)) in BCN(o.,B3,h,7)
from the viewpoint of the first dimension

G(BCN(o,B,h))
BCN(a., B,h,7)

u

v

available servers in HCN(n, 1) for further expansion at a higher
level. Similarly, HCN(n,2) is formed by n level-1 HCN(n, 1), and
has n available servers for interconnection at a higher level.

In general, HCN(n,i) for i>0 is formed by n HCN(n,i—1),
and has n available servers each in a HCN(n,i—1) for further
expansion of network. According to Definition 1, H(n,i) acts as
G and a complete graph acts as G. Here, G(G;) produces an
irregular compound graph since the number of available servers
in H(n,i) is n while the node degree of G is n—1. To facilitate
the construction of any level-h HCN, we define Definition 2 as
follows.

Definition 2: Each server in HCN(n,h) is assigned a la-
bel xp---x1x9, where 1<x;<n for 0<i<h. Two servers
Xy -+ -x1xo and xh~~-xj+1xj,1x'j]. are connected only if x;7x; 1,
Xj_1=Xj_2=""+=X]1=X0 for some 1<j<h, where 1<xp<a and
x} represents j consecutive x;s. Here, n servers are reserved for
further expansion only if x,=x;_1="---=x¢ for any 1<xo<n.

In any level-h HCN, each server achieves a unique label
produced by Definition 2 and is appended a link to its second
port. Fig.4 plots an example of HCN(4,2) constructed according
to Definition 2. HCN(4,2) consists of four H(4,1)s representing
by the blue area, while H(4,1) has four H(4,0)s representing by
the red area. The second port of four servers labeled 111, 222,
333, and 444 are reserved for further expansion.

In a level-h HCN, each server recursively belongs to level-0,
level-1,level-2,...,level-h HCNs, respectively. Similarly, any lower
level HCN belongs to many higher level HCNs. To characterize
this property, x; indicates the order of a HCN(n,i—1), containing
a server xy, - - - x1xp, among all level-(i—1) HCNs of HCN(n, i) for
1<i<h. We further use xpx,_1 - - - x; (1<i<h) as a prefix to indicate
the HCN(n,i—1) that contains this server in HCN(n,h). We use
server 423 as an example. x;=2 indicates the 2/ HCN(4,0) in
a HCN(4,1) this server is located at. This HCN(4,0) contains
the servers 421, 422, 423, and 444. x,=4 indicates the 4" level-1
HCN in a level-2 HCN that contains this server. Thus, xp;x; =42
indicates the level-0 HCN that contains the server 423 in a level-2
HCN.

We have emphasized two topological advantages, i.e., ex-
pansibility and equal degree, with the consideration of easy
implementation and low cost. HCN owns the two properties, and
can be expanded very easily to any order independent of the
node degree. Moreover, HCN offers high degree of regularity,

Fig. 4. An illustrative example of HCN(n,h), where n=4 and h=2.

scalability and symmetry which very well conform to a modular
design and implementation of data centers. Inspired by the fact
that the order of HCN is less than that of FiConn under the same
configurations, we further study the degree/diameter problem of
DCN on the basis of HCN.

B. BCN Physical Structure

BCN is a multi-level irregular compound graph recursively
defined in the first dimension, and a level one regular compound
graph in the second dimension. In each dimension, a high-level
BCN employs a one low level BCN as a unit cluster and connects
many clusters by means of a complete graph.

Let BCN(a,B,0) denote the basic building block, where
o+P=n. It has n servers and a n-port mini-switch. All servers
are connected to the mini-switch using their first ports, and are
partitioned into two disjoint groups, referred to as the master
and slave servers. Here, servers really do not have master/slave
relationship in functionality. The motivation of this partition is
just to ease the presentation. Let o and 8 be the number of
master servers and slave servers, respectively. As discussed later,
the second port of master servers and slave servers are used
to constitute larger BCNs in the first and second dimensions,
respectively.

1) Hierarchical BCN in the first dimension: For any given
h>0, we use BCN(a, 3,h) to denote a level-h BCN formed by all
master servers in the first dimension. For any h>1, BCN(a., 3, h)
is an irregular compound graph, where G is a complete graph with
o nodes while G, is BCN(a,,h—1) with o available master
servers. It is worth noticing that, for any A>0, BCN(a,f3,h)
still has o available master servers for further expansion, and is
equivalent to HCN(a,h). The only difference is that each mini-
switch also connects 8 slave servers besides o master servers in
BCN(a, B, h).

2) Hierarchical BCN in the second dimension: There are 8
available slave servers in the smallest module BCN(ct,f3,0). In
general, there are s,=a-B available slave servers in any given
BCN(a, B,h) for h>0. We study how to utilize those available
slave servers to expand BCN (o, 8, 4) from the second dimension.

Fig. 5. A G(BCN(4,4,0)) structure. It is composed of slave servers in five
BCN(4,4,0) in the second dimension.

A level-1 regular compound graph G(BCN(a.,,h)) is a natural
way to realize this goal. It uses BCN(¢, ,h) as a unit cluster and
connects s,+1 copies of BCN(ct,3,h) by means of a complete
graph using the second port of all available slave servers. The
resulting G(BCN(a,f3,h)) cannot be further expanded in the
second dimension since it has no available slave servers. It,
however, still can be expanded in the first dimension without
destroying the existing network.

Theorem 1: The total number of slave servers in any given
BCN(a, B, h) is

sp=o"-B. (1)

Proof: We know that any given BCN(, 3,i) is built with «
copies of a lower-level BCN(a, B,i—1) for 1<i. Thus, it is reason-
able that a BCN(ct, B,h) has a" smallest module BCN(«, 3,0). In
addition, each smallest module has 3 slave servers. Consequently,
the total number of slave servers in BCN(«, B,h) is s, = B-a.
Thus proved. |

Fig.5 plots an example of G(BCN(4,4,0)). All four slave
servers connected with a mini-switch in BCN(4,4,0) is the unit
cluster. A complete graph is employed to connect five copies of
BCN(4,4,0). Consequently, only one remote link is associated
with each slave server in a unit cluster. Thus, the degree is two
for each slave server in the resultant network.

3) Bidimensional hierarchical BCN: After separately design-
ing BCN(a,B,h) and G(BCN(a,f,h)), we design a scalable
Bidimensional BCN formed by both master and slave servers. Let
BCN(a, B, h,y) denote a Bidimensional BCN, where & denote the
level of BCN in the first dimension, and Y denotes the level of a
BCN which is selected as the unit cluster in the second dimension.

In this case, BCN(«, f3,0) consisting of o master servers, 8
slave servers and a mini-switch is still the smallest module of
any level Bidimensional BCN.

To increase servers in data centers on-demand, it is required
to expand an initial lower-level BCN(a,B,h) from the first
or second dimension without destroying an existing structure.
A Bidimensional BCN is always BCN(a,f3,h) as h increases
when h<7y. In this scenario, the unit cluster for expansion in
the second dimension has not been formed. When % increases
to y, we achieve BCN(o,f3,7) in the first dimension and then
expand it from the second dimension using the construction
method of G(BCN(e,f,7)) in Section III-B.2. In the resulting
BCN(a,B,v,7), there are a”-B+1 copies of BCN(, f3,7) and o
available master servers in each BCN(a., f3,7). A sequential num-
ber u is employed to identify a BCN(¢t, 3,7) among o?-3+1 ones
in the second dimension, where u ranges from 1 to a”-+1. Fig.5

First dimension (v)

H Foryf
KG(B (?,4,0))

Third
BCN(4,4,1)

Second dimension (u)

Fig. 6. An illustrative example of BCN(4,4,1,0).

plots an example of BCN(4,4,0,0) consisting of five BCN(4,4,0),
where h=r=0. It is worth noticing that a BCN (e, 3,7, 7) cannot
be further expanded in the second dimension since it has no
available slave servers. It, however, still can be expanded in the
first dimension without destroying the existing network by the
following approach.

We further consider the case that & exceeds Y. That is, each
BCN(o,B,y) in BCN(at,B,7,Y) becomes BCN(ct,f,h) in the
first dimension once A exceeds y. There are o~ homogeneous
BCN(a, B,v) inside each BCN(ct, 3,h). Thus, we use a sequential
number v to identify a BCN(ct,f3,7) inside each BCN(a.,,h)
in the first dimension, where v ranges from 1 to «~7. Thus,
the coordinate of each BCN(ct,f3,7) in the resulting structure is
denoted by a pair of v and u.

It is worth noticing that only those BCN(«,f3,y) with v=1
in the resulting structure are connected by a complete graph
in the second dimension, and form the first G(BCN(«, 3,7)).
Consequently, messages between any two servers in different
BCN(a,B,y) with the same value of v except v=1 must be re-
layed by related BCN(¢, 3,7) in the first G(BCN(a, 3,7)). Thus,
the first G(BCN(a, B,7)) becomes a bottleneck of the resulting
structure. To address this issue, all BCN(a, 3,y) with v=i are
also connected by means of a completed graph and produce the
i" G(BCN(w,B,7)), for other values of v besides 1. By now,
we achieve BCN (o, 3,h,7) in which each G(BCN(a, B,7)) is a
regular compound graph mentioned in Section II, where G is a
complete graph with o”-8 nodes and G| is a BCN(a, 3,7) with
o”-B available slave servers.

Fig.6 plots a BCN(4,4,1,0) formed by all master and slave
servers from the first and second dimensions. Note that only
the first and third BCN(4,4,1) are plotted, while other three
BCN(4,4,1) are not shown due to page limitations. We can see
that BCN(4,4,1,0) has five homogeneous BCN(4,4,1) in the
second dimension and four homogeneous G(BCN(4,4,0)) in the
first dimension. In the resulting structure, the degree of each slave
server is two while the degree of each master server is at least
one and at most two.

C. The Construction Methodology of BCN

A higher level BCN network can be built by incrementally
expansion using one lower level BCN as a unit cluster and

connecting many such clusters by means of a complete graph.

1) In the case of h<y: In this case, BCN(a,f3,h) can be
achieved by the construction methodology of HCN(o,h) as
mentioned in Section III-A.

2) In the case of h=7y: As mentioned in Section III-B.2, all
slave servers in BCN(c,f3,7) are utilized for expansion in the
second dimension. Each slave server in BCN(«, 3,7) is identified
by a unique label x=x;---x1x9 where 1<x;<a for 1<i<y and
a+1<xp<n. Besides the unique label, each slave server can be
equivalently identified by a unique id(x) which denotes its order
among all slave servers in BCN (o, 8,7) and ranges from 1 to s,.
For each slave server, the mapping between a unique id and its
label is bijection defined in Theorem 2. Meanwhile, the label can
be derived from its unique id in a reversed way.

Theorem 2: For any slave server x=xy--- XX, its unique id is
given by

Y
id(xy~-~x1x0):Z(xifl)ui*l-ﬁJr(xofa). 2)

Proof: x; denotes the lorder of the BCN(a,3,i—1,y) that
contains the slave server x in a higher level BCN(a, B,i,7y) for
1<i<7. In addition, the total number of slave servers in any
BCN(a,B,i—1,y) is a'~'-B. Thus, there exist ¥/ (x;—1)-a'~!-B
slave servers in other smallest modules before the smallest module
BCN(a, 3,0) that contains the server x. On the other hand, there
are other xp—o slave servers that reside in the same smallest
module with the server x but has a lower x¢ than the server x.
Thus proved. u

As mentioned in Section III-B.2, the resultant BCN network
when h=y is G(BCN(a,f3,7)) consisting of s,+1 copies of a
unit cluster BCN (e, f3,7). In this case, BCN,(c,3,7) denotes
the ' unit cluster in the second dimension. In BCN,(a, ,7),
each server is assigned a unique label x=x;---x1xp and a 3-
tuples [v(x)=1,u,x], where v(x) is defined in Theorem 3. In
BCN, (o, 3,7), all master servers are interconnected according to
the rules in Definition 2 for 1<u<sy+1.

Many different ways can be used to interconnect all slave
servers in sy+1 homogeneous BCN(«,f,y) to constitute a
G(BCN(a,B,y)). For any two slave servers [l,u;x;] and
[1,u4,x4], as mentioned in literatures [19], [20] they are inter-
connected only if

ug = (ug+id(xs)) mod (sy+2)
id(xg) = sy+1—id(x,), 3)

where id(x,) and id(x,) are calculated by Formula 2. In literature
[6], the two slave servers are connected only if

ug > id(xy)
ug = id(x) “)
id(xg) = (ug—1)modsy.

This paper does not focus on designing new interconnection
methods of all slave servers since the above two and other per-
mutation methods are all suitable to constitute G(BCN(a, 3,7)).
For more information about the two methods, we suggest readers
to refer literatures [6], [20].

3) In the case of h>y: After achieving BCN(a.,f,7,7), the
resulting network can be incrementally expanded in the first
dimension without destroying the existing structure. As discussed
in Section III-B.3, BCN(a:, B, h,7y) (h>7) consits of s,+1 copies
of a unit cluster BCN(a,,h) in the second dimension. Each

Algorithm 1 Construction of BCN(«, 3,h,7)
Require: 1>y
1: Connects all servers that have the same u and the common length-
h prefix of their labels to the same min-switch using their first
ports. {Construction of all smallest modules BCN(c,3,0)}
2: for u=1 to a?-f+1 do {Interconnect master servers that hold
the same u to form a”-B+1 copies of BCN(o,3,h)}
3: Any master server [v(x),u,x=xj---x1Xp] is interconnected
with a master server [v(x'),u,x'=x, - ~xj+1xj_1x§] using their
second ports if xj;éxj_ll, Xj_1=---=x1=xq for some 1<j<h,

where 1<xp<o and aj- represents j consecutive a;s.

4: for v=1 to =7 do {Connect slave servers that hold the same
v to form the V" G(BCN(a,B,7)) in BCN(a, B,h,7)}

5: Interconnect any two slave servers [v(x),uy,x=x, - x1xg] and
[v(y),uy,y=yp---y1y0] using their second ports only if (1)
v(x)=v(y); (2) [ux,xy---x1x0] and [uy,yy---y1yo] satisfy the
constraints in Formula 3.

server in BCN,(«, B,h), the u' unit cluster of BCN (e, B,h,7y), is
assigned a unique label x=x;, - - - x1xp for 1<u<s,+1. In addition,
BCN,(a,B,h) has o"~Y BCN(a,fB,y) in the first dimension.
Recall that a sequential number v is employed to rank those
BCN(a,B,y) in BCN,(a, B,h).

In BCN,(ca,,h), each server x=x;---x1xo is assigned a 3-
tuples [v(x),u,x], where v(x) is defined in Theorem 3. A pair of
u and v(x) is sufficient to identify the unit cluster BCN (e, 3,7)
that contains the server x in BCN(«, 3,h,y). For a slave server
x, we further assign a unique id(xy---x1xp) to indicates the order
of x among all slave servers in the same BCN(ct, f3,7).

Theorem 3: For any server labeled x=xy,---x1xo for h>7, the
rank of the module BCN(a,p,y) in BCN(a,B,h) this server
resides in is given by

1, if h=y
Xyi1, if h=y+1 5)
Yy (= 1)o7V x>y
Proof: Recall that any BCN(a, 3,i) is constructed with
copies of BCN(a, f3,i—1) for 1<i. Therefore, the total number
of BCN(w,B,7) in BCN(a, B3,i) for i>y is o~ 7. In addition, x;
indicates the BCN (., 3,i—1) in the next higher level BCN(¢, B, i)
this server is located at for 1<i. Thus, there are (xi—l)-a"ﬂ’*l
BCN(a,B,y) in other x;—1 previous BCN(a,f,i—1) inside
BCN(a, B,i) for y+2<i<h. In addition, xy4; indicates the se-
quence of the BCN(a, 3,7) in BCN(a.,B,v+1) the server x re-
sides in. Therefore, the rank of the BCN(a, f3,7) in BCN(a., B, h)
this server resides in is given by Formula 5. Thus proved.]

v(ix) =

After assigning a 3-tuples to all master and slave servers,
we propose a general procedure to constitute a BCN(a, 3,h,7)
(h>17), as shown in Algorithm 1. The entire produce includes three
parts. The first part groups all servers into the smallest modules
BCN(a,B,0) for further expansion. The second part constructs
sy+1 homogeneous BCN(a, 3,h) by connecting the second port
of those master servers which have the same u and satisfy the
constraints mentioned in Definition 2. Furthermore, the third part
connects the second port of those slave servers that have the same
v and satisfy the constraints defined by Formula 3. Consequently,
the construction produce results in BCN(«a, 3,h,y) consisting of
o~ homogeneous G(BCN(a, 3, 7)). Note that it is not necessary
that the connection rule of all slave servers must be Formula 3.
It also can be that defined by Formula 4.

Algorithm 2 FdimRouting(src,dst)

Algorithm 3 BdimRouting(src,dst)

Require: src and dst are two servers in BCN(a, B,h) (h<?).
The labels of the two servers are retrieved from the inputs, and
are src=spsp_1---5180 and dst=d,d;_ ---dydp, respectively.

: pref < CommPrefix(src,dst)

: Let m denote the length of pref

if m==h then

Return (src,dst) {The servers connect to the same switch. }

. (dst1,srcl)<GetlIntraLink(pref,sp_m,dp_m)

head<—FdimRouting(src,dst1)

: tail<—FdimRouting(srcl,dst)

: Return head + (dst1,srcl) +tail

GetIntraLlnk(pref,s,d)

1: Let m denote the length of pref

2: dstlpref+s+d"" {d"~™ represents h—m consecutive d}
3: srcl<—pref+d+s"—" {s"~™ represents h—m consecutive s}
4: Return (dst1,srcl)

IV. ROUTING FOR ONE-TO-ONE TRAFFIC IN BCN

One-to-one traffic is the basic traffic model and good one-
to-one support also results in good several-to-one and all-to-one
support [9]. In this section, we start with single-path routing for
one-to-one traffic in BCN without failures of switches, servers,
and links. We then study the parallel multi-paths for one-to-one
traffic in BCN. Finally, we propose fault-tolerant routing schemes
to address those representative failures by employing the benefits
of multi-paths between any servers.

A. Single-path for One-to-One Traffic in BCN without Failures

1) In the case of h<y: For any BCN(a,B,h) (1<h) in the
first dimension, we propose an efficient routing scheme, denoted
as FdimRouting, to find a single-path between any pair of servers
in a distributed manner. Let src and dst denote the source
and destination servers in the same BCN(a,f3,h) but different
BCN(a,3,h—1). The source and destination can be of master
server or slave server. The routing scheme first determines the
link (dst1,srcl) that interconnects the two BCN(a, 3,h—1) that
src and dst are located at. It then derives two sub-paths from
src to dstl and from srcl to dst. The path from src to dst
is the combination of the two sub-paths and (dst1,srcl). Each
of the two sub-paths can be obtained by invoking Algorithm 2
recursively.

In Algorithm 2, the labels of a pair of servers are retrieved
from the two inputs which can be of 1-tuple or 3-tuples. A 3-
tuples indicates that this BCN(a,,h) is a component of the
entire BCN(a, 3,h,y) when h>y. The CommPrefix calculates
the common prefix of src and dst and the GetIntraLink identifies
the link that connects the two sub-BCNs in BCN(a, 3, h). Notice
that the two ends of the link can be directly derived from the
indices of the two sub-BCNs according to Definition 2. Thus, the
time complexity of GetlIntraLink is O(1).

From FdimRouting, we obtain the following theorem. Note
that the length of the path between two servers connecting to
the same switch is one. This assumption was widely used in the
designs of server-centric architectures for data centers, such as
DCell, FiConn, BCube, and MDCube [11].

Theorem 4: The longest shortest path length among all the
server pairs of BCN(a,,h) is at most 2"+!—1 for h>0.

Proof: For any servers src and dst in BCN (o, 3,h) but in
different BCN(a, 3,h—1), let D;, denote the length of the single
path resulted from Algorithm 2. The entire path consists of two

Require: src and dst are denoted as [v(sy, -~ 5150), Us, Sp - 5150] and

[V(dh .. -dld()), ug,dp - ~d1d()} in BCN((LﬁJlZ% ')/)
1: if uy==u, then {In the same BCN(«, 3,h)}
2: Return FdimRouting(src,dst)
3: ve < v(sp---5150) {vc can also be v(dj,---didy)}
4: (dstl,srcl)<GetlnterLink(ug,uq,v.)
5: head<FdimRouting(src,dst1) {Find a path from src to dst1 in

the u’" BCN (e, B,h) of BCN(at, B,h,7)}
. tail«FdimRouting(srcl,dst) {Find a path from srcl to dst in
the u!l' BCN(at, 8,h) of BCN(at,B,h,7)}
7: Return head + (dst1,srcl) + tail
GetInterLink(s,d,v)
1: Infer two slave servers [s,x=xj---x1xo] and [d,y=yp---y1Y0]
from the s and d'" BCN(a,B,h) in BCN(a,3,h,7) such that
(1) v(x)=v(y)=v; () [s,xy---x1x0] and [d,yy---x1x0] satisfy the
constraints defined by Formula 3.
2: Return ([s,x],[d,y])

=)}

sub-paths in two different BCN(a, 3,h—1) and one link connects
the two lower BCNs. It is reasonable to infer that Dy=2-Dj,_{ + 1
for h>0 and Dp=1. We can derive that Dj, = Y 2'. Thus proved.

|

The time complexity of Algorithm 2 is O(2") for deriving the
entire path, and can be reduced to O(h) for deriving only the next
hop since we only need to calculate one sub-path that contains
that next hop.

2) In the case of h>7y: Consider the routing scheme in any
BCN(a, B,h,y) consisting of o?-B+1 copies of BCN(a, 3,h) for
h>7. The FdimRouting scheme can discover a path only if the
two servers are located at the same BCN (o, 3,7). In other cases,
Algorithm 2 alone cannot guarantee to find a path between any
pair of servers. To handle this issue, we propose BdimRouting
scheme for the cases that 7>7.

For any pair of servers src and dst in BCN(e, 8,h,7) (h>7),
Algorithm 3 invokes Algorithm 2 to discover the path between
the two servers only if they are in the same BCN(a,f3,h).
Otherwise, it first identifies the link (dst1,src1) that interconnects
the v(src)™ BCN(a,B,7y) of BCN, (a,B,h) and BCN,,(c,B,h).
Note that the link that connects the v(dst)™ instead of the
v(src)™ BCN(a,B,y) of BCN, (a,f,h) and BCN,,(a,B,h) is
an alternative link. Algorithm 3 then derives a sub-path from src
to dst1 that are in the v(src)” BCN(a, 8, y) inside BCN,,, (., B, h)
and another sub-path from srcl to dst that are in BCN,,(c, B,h)
by invoking Algorithm 2. Consequently, the path from src to dst
is the combination of the two sub-paths and (dst1,srcl).

From BdimRouting, we obtain the following theorem.

Theorem 5: The longest shortest path length among all the
server pairs of BCN(,B,h,y) (h>7) is at most 2/+1427+1 1

Proof: In Algorithm 3, the entire routing path from src to
dst might contain an inter-link between dst1 and srcl, a first sub-
path from src to dst1 and a second sub-path from srcl to dst. The
length of the first sub-path is 27! —1 since the two end servers are
in the same BCN(a., 8,7). Theorems 4 shows that the maximum
path length of the second sub-path is 2+ —1. Consequently, the
length of the entire path from src to dst is at most 21427+ 1,
Thus proved. |

It is worthy noticing that GetInterLink can directly derive
the end servers of the link only based on the three inputs
and the constraints in Formula 3. Thus, the time complicity of
GetInterLink is O(1). The time complexity of Algorithm 3 is
0(2K) for deriving the entire path, and can be reduced to O(k)

for deriving only the next hop.

B. Multi-paths for One-to-One Traffic

Two parallel paths between a source server src and a destination
server dst exist if the intermediate servers on one path do not
appear on the other. We will show how to generate parallel paths
between two servers.

Lemma 1: There are a—1 parallel paths between any src and
dst in a BCN(a, 3,h) but not in the same BCN(a, 3,0).

We show the correctness of Lemma 1 by constructing such
a—1 paths. The construction procedure is based on the single-
path routing, FdimRouting, in the case of h<y. We assume
that BCN(a, 3,i) is the lowest level BCN that contains the two
servers src and dst. FdimRouting determines the link (dsz1,srcl)
that interconnects the two BCN(a,f3,i—1) each contains one of
the two servers, and then built the first path passing that link.
There are o one lower level BCN(a, 8,i—1) in the BCN(e, 3,1)
containing the dst. The first path does not pass other intermediate
BCN(o,B,i), while each of other a—2 parallel paths must
traverse one intermediate BCN(c, 3,i—1).

Let xj, - - x1x0 and yy, - - - y1yo denote the labels of srcl and dst1,
respectively. Now we construct the other ot—2 parallel paths from
src to dst. First, a server labeled z=z,---z1z¢ is identified as a
candidate server of srcl only if z;_; is different from x;_; and
vi—1 while other parts of its label is the same as that of the label
of srcl. It is clear that there exist @—2 candidate servers of srcl.
Second, we find a parallel path from src to dst by building a
sub-path from the source src to an intermediate server z and a
sub-path from z to the destination dst. The two sub-paths can
be produced by FdimRouting. So far, all the ¢—1 parallel paths
between any two servers are constructed. Note that each path is
built in a fully distributed manner only based on the labels of the
source and destination without any overhead of control messages.

We use Fig.4 as an example to show the three paral-
lel paths between any two servers. The first path from 111
to 144 is 111—114—141—144, which is built by Algorithm
2. Other two paths are 111—+113—131—134—143—144 and
111-+112—121—124—142—144. We can see that the three
paths are node-disjointed and hence parallel.

As for BCN(a, B,7,y) with a¥B+1 copies of BCN(«a, B,7),
if src and dst reside in the same BCN(«,f3,7), there are a—1
parallel paths between src and dst according to Lemma 1.
Otherwise, we assume A and B denote the BCN (., 3,7) in which
src and dst reside, respectively. In this case, there exist o?f
parallel path between A and B since BCN(a,f,7,7) connects
o’B+1 copies of BCN(e,f3,y) by means of a complete graph.
In addition, Lemma 1 shows that there are only a—1 parallel
paths between any two servers in BCN(a, B,7), such as A and B.
Accordingly, it is easy to infer that Lemma 2 holds.

Lemma 2: There are a—1 parallel paths between any two
servers in a BCN(«a, 3,7,7) but not in the same BCN(«, f3,0).

In the case of h>y, BCN(a,B,y) is the unit cluster
of BCN(a,B,h,y). Assume src and dst are labelled as
[V(Sh .- ~S1S0),us7sh . ~S1SQ] and [V(dh . ~d1do),ud,dh o -dld()], and
reside in two unit clusters with labels <v(s;---s10),us> and
<v(dy---didp),uys>, respectively. According to Lemmas 1 and
2, there are «a—1 parallel paths between src and dst if
us=ugy or v(sp---s150)=v(dy---didp). In other cases, we select
a BCN(o,B,y) with label <v(s;---s150),us> as a relay clus-
ter. As aforementioned, there are o?f parallel paths between

the unit clusters <v(sp---s180),us> and <v(sp---s180),Ug>,
while only o—1 parallel paths between <v(sy---s180),ug> and
<v(dy---d1dp),us>. In addition, Lemma 1 shows that there are
only o — 1 parallel paths between any two servers in the same
unit cluster. Accordingly, @ — 1 parallel paths exist between src
and dst. Actually, the number of parallel paths between src and
dst is also a—1 for another relay cluster <v(dj,---didp),us>. The
two groups of parallel paths only intersect inside the unit clusters
<v(sp---s150),us> and <v(dy,---didp),ug>. So far, it is easy to
derive Theorem 6.

Theorem 6: No matter whether h<7y, there are a—1 parallel
paths between any two servers in a BCN(a, B, 4, Y) but not in the
same BCN(c, 3,0).

Although BCN has the capability of multi-paths for one-to-one
traffic, the existing routing schemes including FdimRouting and
BdimRouting only exploit one path. To enhance the transmission
reliability for one-to-one traffic, we adapt the routing path when
the transmission meets a failure of a link, a server, and a switch.
It is worth noticing that those parallel paths between any pair
of servers pass through the common switch which connects
the destination server in the last step. This does not hurt the
fault-tolerant capacity of those parallel paths except the switch
connecting the destination fails. In this rare case, at most one
useable path exists between two servers.

C. Fault-tolerant Routing in BCN

We first give the definition of a failed link that can summarize
three representative failures in data centers.

Definition 3: A link (srcl,dst1) is called failed only if the head
srcl does not fail, however, cannot communicate with the tail dsz1
no matter whether they are connected to the same switch or not.
The failures of dst1, link, and the switch that connects srcl and
dst1 can result in a failed link.

We then improve the FdimRouting and BdimRouting using
two fault-tolerant routing techniques, i.e., the local-reroute and
remote-reroute. The local-reroute adjusts a routing path that
consists of local links on the basis of FdimRouting. On the
contrary, the remote-reroute modifies those remote links in a path
derived by BdimRouting. All links that interconnect master servers
using the second port are called the local links, while those links
that interconnect slave servers using the second port are called
the remote links.

1) Local-reroute: Given any two servers src and dst in
BCN(a,B,h,y) (h<y), we can calculate a path from src to dst
using FdimRouting. Consider any failed link (srcl,dst1) in this
path, where srcl and dst1 are labeled xj---x1xo and yj---y1yo,
respectively. The FdimRouting does not take failed links into
account. We introduce local-reroute to bypass failed links by
making local decisions.

The basic idea of local-reroute is that srcl immediately iden-
tifies all usable candidate servers of dst1 and then selects one
such server as an intermediate destination, denoted as relay. The
server srcl first routes packets to relay along a path derived by
FdimRouting and then to the final destination dsty along a path
from relay to dsty. If any link in the first sub-path from srcl to
relay fails, the packets are routed towards dsfy along a new relay
of the tail of the failed link, and then all existing relay servers
in turn. On the other hand, the local-reroute handles any failed
link in the second sub-path from relay to dsty in the same way.
Actually, any sub-path from a current server to the newest relay

server, between any two adjacent relay servers, or from the oldest
relay server to dsty might meet failed links. In these cases, the
local-reroute handles those failed links in the same way.

A precondition of the local-reroute is that srcl can identify
a relay server for dst1 by only local decisions. Let m denote
the length of the longest common prefix of srcl and dst1. Let
Xp - Xp—m+1 denote the longest common prefix of srcl and dst1
for m>1. If m# h, the two servers dst1 and srcl are not connected
with the same switch, and then the label zj,---z1z9 of the relay
server can be given by

L Zh—mA1 = Yo Yh—mA1
Zh—m € {{1727 t 70}_{thm7yh7m}} (6)
Zh—m—1"""2120 = Yh—m—1"""Y1)0-

Otherwise, we first derive the server dst2 which connects with
the server dst1 using their second ports. The failure of the link
(srcl,dstl) is equivalent to the failure of the link (dsrl,dsr2)
unless dst1 is the destination. Thus, we can derive a relay server
of the server dst2 using Formula 6, i.e., the relay server of the
server dst1.

In Formula 6, the notation Z—m indicates that the two servers
srcl and dstl are in the same BCN(a,f,h—m) but in two
different BCN (¢, B,h—m—1). There exist & BCN(a, ,h—m—1)
subnets inside this BCN(a, B,h—m). When src1 finds the failure
of dst1, it chooses one relay server from all BCN(a,3,h—m—1)
subnets in this BCN(o,,h—m) except the two subnets that
contain srcl or dstl. If srcl selects a relay server for dst1 from
the BCN(a,3,h—m—1) that contains srcl, the packets will be
routed back to dst1 that fails to route those packets.

In Fig4, 111—-114—141—144—411—414—441—444 is the
path from 111 to 444 derived by Algorithm 2. Once the link
144—411 and/or server 411 fails, server 144 immediately finds
server 211 or 311 as a relay server, and calculates a path from it
to the relay server. If the relay server is 211, the path derived by
Algorithm 2 is 144—142—124—122—122—211. After receiv-
ing packets towards 444, the derived path by Algorithm 2 from
211 to 444 is 211—-214—241—244—422—424—442—444 1t is
worthy noticing that if any link in the sub-path from 144 to 221
fails, the head of that link must bypass this failed link and reaches
221 in the same way. If the link 122—211 fails, the server 311
will replace 211 as the relay server of 411. If there is a failed
link in the sub-path from 211 to 444, the local-reroute is used to
address the failed link in the same way.

It is worthy noticing that the failed link (141, 144) will be found
if the server 144 in the path from 111 to 444 fails. The failure of
link (141,144) is equivalent to the failure of the link (144,411).
Hence, the servers 211 and 311 are the relay servers derived by
the aforementioned rules and Formula 6. All the servers with
identifier starting with 1 from left to right cannot be the relay
server since the path from the relay server to the destination will
pass the failed link again.

2) Remote-reroute: For any two servers src and dst in
BCN(a,B,h,y) (h>7), their 3-tuples arelvy,us,sy---s150] and
[Va,uq,dy - - dido], respectively. The local-reroute can handle any
failed link in the path from src to dst if they are in the
same BCN(a,f,h) in this BCN(«, B,h,y), ie., us=uy. Other-
wise, a pair of servers dstl and srcl are derived according
to GetlnterLink operation in Algorithm 3, and are denoted
as [ug,vs,x=x;---x1x0] and [ug,vs,y=yp---y1Yo], respectively. In

other words, dstl and srcl are in the v\ BCN(«,f,y) in-
side BCN, (ct,B,h) and BCN,, (o, B, k), respectively. The link
(dstl,srcl) is the only one that interconnects the two v
BCN(o,B,7) in the two BCN(a, 3,h).

If the packets from src to dst meets failed links in the two
sub-paths from src to dst1 and from srcl to dst, the local-reroute
can address those failed links. The local-reroute, however, cannot
handle the failures of dst1, srcl, and the links between them.
In these cases, the packets cannot be forwarded from the u’sh
BCN(a, B,h) to the u'l' BCN(at,,h) inside this BCN(at, B, h,y)
through the desired link (dst1,srcl). We propose the remote-
reroute to address this issue.

The basic idea of remote-reroute is to transfer the packets
to another slave server dst2 that is connected with the same
switch together with dst1 if at least one such slaver server and its
associated links are usable. The label of dst2 is xj, - - -x1x6 where
x;, can be any integer ranging from o+1 to n except xo. Assume
that the other end of the link that is incident from dst2 using
its second port is a slave server src2 in another BCN,,(ct,,h)
inside the entire network. The packets are then forwarded to the
slave server src2, and are routed to the destination dst along a
path derived by Algorithm 3. If a link in the path from src2 to
dst fails, the local-reroute, remote-reroute and Algorithm 3 can
handle the failed links.

V. EVALUATION

In this section, we analyze several basic topology properties
of BCN, including the network order, network diameter, server
degree, connectivity, and path diversity. Then we conduct simu-
lations to evaluate the distributions of path length, average path
length, and the robustness of routing algorithms.

A. Large Network Order

Lemma 3: The total number of servers in BCN(a,B,h) is
a-(a+PB), including o' master and o”-B slave servers.

Proof: As mentioned in Section III, any given level BCN
consists of o one lower BCNs. There are &’ level-0 BCN in
BCN(a, B,h), where a level-0 BCN consists of o master servers
and f slave servers. Thus proved.]

Lemma 4: The number of servers in G(BCN(«,f,h))
is a'(a+B)-(a"-B+1), including - (a-B+1) and
a-B-(a"-B+41) master and slave servers, respectively.

Proof: As mentioned in Section II, there are o"-B+1 copies
of BCN(a,B,h) in G(BCN(a, 3,h)). In addition, the number of
servers in one BCN(o, 3,h) has been proved by Lemma 3. Thus
proved. |

Theorem 7: The number of servers in BCN(ot,3,h,7) is

al-(a+B), if h<y .
oV (a7 -(a+B)- (- B+1)), if h>y 7
Proof: Lemmas 3 has proved this issue when h<r. In
addition, BCN(a, 3,7,7) is just G(BCN(e,f,7)). Thus, there
are o7-(a+pP)-(a?-B+1) servers in BCN(ct,f3,7,7). In addtion,
BCN(a, B,h,7y) contains =Y BCN(a,8,7,y) when h>Yy. Thus
proved. |
Theorem 8: For any given n=0+f3, the optimal o that max-
imizes the total number of servers in BCN(a,f,7,7) is given
by
o (2yn)/(2-y+1). (8)

Number of servers
=
1S

Numer of servers
= N w E 14, (=2} ~ ©

N oS o

=
=2

5 10 154 20 25 30 35 10 20 30, 40 50

(@) n=32 (b) n=48

Fig. 7.

Proof: The total
denoted as

The network order of BCN(a, 3,1,1) vs. o ranging from 0 to n.

number of servers in BCN(«, f3,7,7) is

fla) = o (a+B)(a’p+1)

Thus, we have

of(a)

oo n-a" N (y+2y-nal - 2y+ Da’)

Q

n-a" 2y o — 2y+1)a?th).

Clearly the derivative is 0 when o~ (2-y-n)/(2-v+1). At
the same time, the second derivative is less than 0. Thus, o ~
(2-y-n)/(2-y+1) maximizes the total number of servers in
BCN(a,B,v,7)- Thus proved. [|

Fig.7 plots the number of servers in BCN(a,f,1,1) when
n=32 or 48. The network order goes up and then goes down
after it reaches the peak point as o increases in the both cases.
The largest network order of BCN (o, 8,1,1) is 787,968 for n=48
and 155904 for n=32, and can be achieved only if ¢=32 and 21,
respectively. This matches well with Theorem 8.

Fig.8(a) depicts the changing trend of the ratio of network order
of BCN(e, 3,1,1) to that of FiConn(n,2) as the number of ports
in each mini-switch increases, where o is assigned the optimal
value o = (2-y-n)/(2-y+1). The results show that the number of
servers of BCN is significantly larger than that of FiConn(n,2)
with the same server degree 2 and network diameter 7, irrespective
the value of n.

Formula 7 indicates that the network order of a BCN grows
double-exponentially when /4 increases from y—1 to Y, while
grows exponentially with / in other cases. On the contrary, the
network order of FiConn always grows double-exponentially with
its level. Consequently, it is not easy to incrementally deploy
FiConn because a level-k FiConn requires a large number of level-
(k—1) FiConns. In the case of BCN, incremental deployment
is relative easy since a higher level BCN requires only « one
lower level BCN except h=7. On the other hand, the incomplete
BCN can relieve the restriction on the network order for realizing
incremental deployment by exploiting the topological properties
of BCN in both dimensions.

B. Low Diameter and Server Degree

According to Theorems 4 and 5, we obtain that the diam-
eters of BCN(«,B,h) and BCN(a,B,h,y) (h<y) are 2'+!1—1
and 27T142/1 1, respectively. In practice, h and y are small
integers. Therefore, BCN is a low-diameter network.

After measuring the network order and diameter of BCN, we
study the node degree distribution in BCN(«, f3,h,7). If h<y,

NG
b

NG
N

25

Ratio of network size
- N
@ o

Ratio of bisection width

g
)

=
o~

20 40 60 80
n

100 120 140 Y20 a0 &0 80100 120 140

(a) The ratio of network order. (b) The ratio of bisection width.

Fig. 8. The ratio of network order and bisection width of BCN(a, 3,1,1) to
that of FiConn(n,2), where the diameter of the two networks is the same 7.

the node degree of master servers are 2 except the o available
master servers for further expansion. The o master servers and all
slave servers are of degree 1. Otherwise, there are o-(a’-B+1)
available master servers that are of degree 1. Other master servers
and all slave servers are of degree 2.

A BCN of level one in each dimension offers more than
1000,000 servers if 56-port switches are used, while the server
degree and network diameter are only 2 and 7, respectively. This
demonstrates the low diameter and server degree of BCN.

C. Connectivity and Path Diversity

The edge connectivity of a single server is one or two in
BCN(o,B,h,y). Consider the fact that BCN(a, B,h,7y) is con-
stituted by a given number of low level subnets in the first
dimension. We further evaluate the connectivity of BCN at the
level of different subnets in Theorem 9.

Theorem 9: In any BCN(a,,h,y), the smallest number of
remote links or servers that can be deleted to disconnect one
BCN(a, B,i) from the entire network is

{ a—1, if h<y ©)
a—1+a'-B, if h>y.

Proof: If h<y, consider any subnet BCN (o, 3,i) for 0<i<h
in BCN(ot,B,h,7). If it contains one available master server for
further expansion, only &t—1 remote links are used to interconnect
with other homogeneous subnets. It is clear that the current subnet
is disconnected if the corresponding at—1 remote links or servers
are removed.

If h>7, besides the ov—1 remote links that connect its master
servers the subnet BCN(«, 3,i) has o-B additional remote links
that connect its slave servers. Thus, it can be disconnected only
if the corresponding a—1+a'-B remote links or servers are
removed. Thus proved. |

Theorem 10: Bisection width: The minimum number of re-
mote links that need to be removed to split a BCN (¢, 8,4, y) into
two parts of about the same size is given by

a?/4, if h<yand « is an even integer
(a>—1)/4, if h<yand e is an odd integer
ol (Oty-B+42)<(x7-B it h>7.
Proof: It is worth noticing that the bisection width of
a compound graph G(Gj) is the maximal one between the
bisection widths of G and G; [17]. For 1<h<y, BCN(e,f3,h,7)
is compound graph, where G is a complete graph with o nodes
and G; is a BCN(a,B,h—1,y). We can see that the bisection
width of G is &?/4 if o is an even number and (a*>—1)/4 if o
is an odd number. The bisection width of BCN(ot,,h—1,7) can

(10)

I=n—e

-8-BCN(6,10,1,1)
-©-FiConn(16,2)

o
~
~ o

e
o

5.4

e

Average path length
I

Average length of shortest path

o
15

-©-FiConn(n,2)
-A-BCN routing, h=r=1

)/Q/Q/E/E/Q/Q/B/E/‘]
-B-BCN shortest path, h=r=1

12 14 16 0.05 01 0.
n Server failure ratio

3l

8 10 0.2

(a) The average length of shortest path and(b) The average length of routing path BCN
routing path vs. the value of n and FiConn vs. the server failure ratio.

Fig. 9. The path length of BCN and FiConn under different configurations

be induced in this way and is the same as that of G. Thus, the
bisection width of BCN(a, 8,h,7) for 1<h<y is proved.

BCN(a,B,h,y) for h>y is a compound graph, where G is a
complete graph with a?-B+1 nodes and G is a BCN(a, f3,h).
We can see that the bisection width of G is (a’-f+2)-o¥-/4
andc that of Gy is @?/4 if « is an even number and (a>—1)/4 if
o is an odd number, which is less than that of G. Moreover, Gy
has a7 copies of BCN(a,3,7), and there is one link between
the i BCN(o,B,7v,) of two copies of G; for 1<i<a"=". Thus,
there are "~ links between any two copies of Gy, and hence the
bisection width of BCN(a,B,h,y) is a"7-(a?-B +2)-a?-B/4.
Thus proved.]

For any FiConn(n,k), the bisection width is at least Ny /(4 %2F),
where Ng=2¢"2x (n/4)?" denote the number of servers in the
network [7]. We then evaluate the bisection width of FiConn(n, 2)
and BCN(o,f3,1,1) under the same server degree, switch de-
gree, and network diameter. In this setting, the network size of
BCN(o,B,1,1) outperforms that of FiConn(n,2). Fig.8(b) shows
that BCN(a,3,1,1) significantly outperforms FiConn(n,2) in
term of bisection width. Larger bisection width implies higher
network capacity and more resilient against failure.

As proved in Lemma 2, there are ot—1 node-disjoint paths
between any two servers in a BCN(«, 3,7,7), where the optimal
o is 2-y-n/(2-y+1). Thus, the path diversity between any two
servers is about [2n/3]—1. With these disjoint paths, transmission
rate can be accelerated and transmission reliability can be en-
hanced. Table II summarizes the network order and path diversity
of BCN(a, 3,1,1) under different value of n. This demonstrates
the advantage that BCN (o, 8, 1, 1) has high path diversity for one-
to-one traffic. Note that there is a tradeoff to maximize the order
or path diversity of BCN. Actually, the largest path diversity is
obtained only if o=n.

D. Evaluation of Path Length

We run simulations on BCN(e,f,1,1) and FiConn(n,2) in
which n€{8,10,12,14,16} and « is assigned its optimal value.
The ratio of network order of BCN to that of FiConn varies
between 1.4545 and 1.849. For the all to all traffic, Fig.9(a) shows
the average length of the shortest path of FiConn, the shortest path
of BCN, and the routing path of BCN. For any BCN, the routing

path length is a little bit larger than the shortest path length since
TABLE II

NETWORK ORDER AND PATH DIVERSITY OF BCN(c,f3,1,1)

n 8 16 24 32 40 48
Network order 640 9856 49536 155904 380160 787968
Path diversity 5 10 15 21 26 31

IBCN Routing IFiConn(16,2)

0.6/ EM@Shortest path 0.6/HMBCN(6,10,1,1)

0.5] 0.5
S
T 0.4 0.4
[:4 o

03 €03

0.2 0.2

0.1 0.1]

0 1 2 3 4 5 6 7 00 2 4 6 8
Path length Shortest path length

(a) The distribution of shortest path and rout-(b) The shortest path length distribution in
ing path in BCN(6,10,1,1). BCN(6,10,1,1) and FiConn(16,2)

Fig. 10. The path length distribution under all to all traffic.

the current routing protocols do not entirely realize the shortest
path routing. FdimRouting can be further improved by exploiting
those potential shortest paths due to links in the second dimension.
Although the network order of BCN is a lot larger than that of
FiConn, the average shortest path length is a little bit larger than
that of BCN.

Then we evaluate the fault-tolerance ability of the topology
and routing algorithm of BCN(6,10,1,1) and FiConn(16,2). The
network sizes of BCN(6,10,1,1) and FiConn(16,2) are 5856 and
5327, respectively. As shown in Fig.9(b), the average routing path
length of BCN and FiConn increase with the server failure ratio.
The average routing path length of BCN is a lot shorter than that
of FiConn under the same server failure ratio although FiConn
outperforms BCN in term of the average shortest path length
when the server failure ratio is zero. These results demonstrate
that the topology and routing algorithms of BCN possess better
fault-tolerant ability. It is worthy noticing that BCN(6,10,1,1) in
Fig.9(b) supports less servers than BCN(11,5,1,1) in Fig.9(a).

We then run simulations on BCN(«, 3,1,1) and FiConn(n,2) in
which n=16 while « is not its optimal value but 6. The network
sizes of BCN(6,10,1,1) and FiConn(16,2) are 5856 and 5327,
respectively. The simulation results shown in Fig.10 conform
the theoretical results about the network diameter of BCN and
FiConn. Fig.10(a) further indicates that the routing algorithm
of BCN fails to discover some shortest paths and causes some
additional long routing paths. Fig.10(b) indicates that BCN and
FiConn face the similar but not same distribution of the shortest
paths even they have the same server degree 2, same network
diameter 7, and similar network order.

VI. DISCUSSION
A. Extension to More Server Ports

Although we assume that all servers are equipped with two
built-in NIC ports, the design methodologies of HCN and BCN
can be easily extended to involve any constant number, denoted
as m, of server ports. In fact, servers with four embedded NIC
ports have been available, due to the rapid innovation on server
hardware. Given any server with m ports, it can contribute m—1
ports for future higher-level interconnection after reserving one
port for connecting with a mini-switch. Consider that a set of
m—1 servers each of which holds two ports and connects with
the same mini-switch using its first port. It is clear that the set of
m—1 servers can totally contribute m—1 ports for future higher-
level interconnection. Intuitively, a server with m ports can be
treated as a set of m—1 servers each with two ports. In this way,
we can extend HCN and BCN to embrace any constant number

of server ports. In fact, there can be many other specific ways for
interconnecting servers with constant degree of more than 2, and
we leave the investigation as our future work.

B. Locality-Aware Task Placement

Although the proposed network structures possess many advan-
tages, such as excellent topological properties, easy wiring, and
low cost, they may not be able to achieve satisfactory end-to-
end throughput when all the nodes are transmitting or receiving
packets simultaneously. This results from the lesser number of
links and switches used by HCN and BCN. Fortunately, this issue
can be addressed by some techniques at the application layer, due
to the observation as follows.

As observed in [8], a server is likely to communicate with a
small subset of other servers when conducting typical applications
in common data centers, such as group communication, VM mi-
gration, and file chunk replication. Additionally, data centers with
hierarchical network structures, for example HCN and FiConn,
hold an inherent benefit. That is, lower level networks support
local communications, while higher level networks are designed
to realize remote communications.

Therefore, a locality-aware approach can be used to placing
those tasks onto servers in HCN. That is, those tasks with inten-
sive data exchange can be placed onto servers, in a HCN(n,0),
which connect to the same switch. If those tasks need some more
servers, they may reserve a one higher lever structure HCN(n, 1),
and so on. There is only a few even one server hop between those
servers. As proved in Section V-A, HCN is usually sufficient to
contain hundreds of servers, where the number of server hops is
at most three. Similarly, we can use a locality-aware mechanism
when placing tasks onto data-center servers in BCN. Therefore,
the locality-aware mechanism can largely save network bandwidth
by avoiding unnecessary remote data communications.

C. Impact of Server Routing

In HCN as well as BCN, since servers that connect to other
modules at a different level have to forward packets, they will
need to devote some processing resources for this aspect. Al-
though we can use software based packet forwarding schemes
for HCN and BCN, they usually incur non-trivial CPU overhead.
Lu et. al implemented a hardware based configurable packet for-
warding engine using NetFPGA, CAFE [21], as a good candidate
for supporting DCN designs. Inspired by the fact that CAFE can
be easily configured and it can forward packets at line-rate, we
can easily re-configure CAFE to forward self-defined packets for
HCN or BCN without any hardware re-designing.

VII. CONCLUSION

In this paper, we propose HCN and BCN, two novel server-
interconnection network structures that utilize hierarchical com-
pound graphs to interconnect servers with two-ports only and low-
cost commodity switches. They own two topological advantages,
i.e., the expansibility and equal degree. Moreover, HCN offers
high degree of regularity, scalability and symmetry which very
well conform to a modular design of data centers. BCN of level
one in each dimension is the largest known DCN with server
degree 2 and diameter 7. It is highly scalable to support hundreds
of thousands of servers with low diameter, low cost, high bisection

width, high path diversity for one-to-one traffic, and good fault-
tolerance ability. Analysis and simulations show that HCN and
BCN are viable structures for data centers.

Following the work in this paper, we plan to study several
issues in the future. The first issue is to study the incomplete
HCN and BCN networks so as to incrementally deploy HCN and
BCN, which is important for building mega data centers. Second,
we will further design traffic-aware routing protocols to balance
the usages of different levels of links and enlarge the network
capacity. The third issue is to accelerate the typical traffic patterns
significantly by exploiting the good topological features, such as
large number of node-disjoint paths between any two servers.

REFERENCES

[1] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file system,”
in Proc. SOSP, Bolton Landing, NY, USA, 2003, pp. 29-43.

[2] D. Borthakur. The hadoop distributed file system: Architecture and
design. [Online]. Available: http://hadoop.apache.org

[3] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Bur-
rows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A distributed
storage system for structured data,” ACM Transactions on Comput
Systems, vol. 26, no. 2, 2008.

[4] CloudStore. Higher performance scalable storage. [Online]. Available:
http://kosmosfs.sourceforge.net/

[5] M. A. Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” in Proc. SIGCOMM, Seattle, Washington,
USA, 2008.

[6] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu, “Dcell: A
scalable and fault-tolerant network structure for data centers,” in Proc.
SIGCOMM, Seattle, Washington, USA, 2008.

[7]1 D.Li, C. Guo, H. Wu, Y. Zhang, and S. Lu, “Ficonn: Using backup port
for server interconnection in data centers,” in Proc. IEEE INFOCOM,
Brazil, 2009.

[8] D. Li, C. Guo, H. Wu, K. Tan, Y. Zhang, S. Lu, and J. Wu,
“Scalable and cost-effective interconnection of data-center servers us-
ing dual server ports,” IEEE/ACM Transactions on Networking, vol.
doi:10.1109/TNET.2010.2053718, 2010.

[9] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, and
S. Lu, “Bcube: A high performance, server-centric network architecture
for modular data centers,” in Proc. SIGCOMM, Barcelona, Spain, 2009.

[10] A. Greenberg, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. A. Maltz, and
P. P. and, “VL2: A scalable and flexible data center network,” in Proc.
SIGCOMM, Barcelona, Spain, 2009.

[11] H. Wu, G. Lu, D. Li, C. Guo, and Y. Zhang, “Mdcube: A high
performance network structure for modular data center interconnection,”
in Proc. CONEXT, Rome, Italy, 2009.

[12] M. Miller and J. Siran, “Moore graphs and beyond: A survey of the
degree/diameter problem,” Electronic Journal of Combinatorics, vol. 61,
pp. 1-63, Dec. 2005.

[13] N. Alon, S. Hoory, and N. Linial, “The Moore bound for irregular
graphs,” Graphs and Combinatorics, vol. 18, no. 1, pp. 53-57, 2002.

[14] M. Imase and M. Itoh, “A design for directed graphs with minimum
diameter,” IEEE Trans. Computers, vol. 32, no. 8, pp. 782-784, Aug.
1983.

[15] R. M. Damerell, “On Moore graphs,” in Proc. Cambridge Philosophical
Society, 1973, pp. 227-236.

[16] T. Holf. (2007, Jul.) Google architecture.
http://highscalability.com/google-architecture

[17] D. P. Agrawal, C. Chen, and J. R. Burke, “Hybrid graph-based networks
for multiprocessing,” Telecommunication system, vol. 10, pp. 107-134,
1998.

[18] L. N. Bhuyan and D. P. Agrawal, “Generalized hypercube and hyperbus
structures for a computer network,” IEEE Transactions on Computers,
vol. 33, no. 4, pp. 323-333, 1984.

[19] P.T. Breznay and M. A. Lopez, “Tightly connected hierarchical intercon-
nection networks for parallel processors,” in Proc. IEEE ICPP, vol. 1,
1993, pp. 307-310.

[20] ——, “A class of static and dynamic hierarchical interconnection net-
works,” in Proc. IEEE ICPP, vol. 1, 1994, pp. 59-62.

[21] G. Lu, Y. Shi, C. Guo, and Y. Zhang, “Cafe: A configurable packet
forwarding engine for data,” in Proc. PRESTO, Barcelona, Spain, 2009.

[Online]. Available:

