
Discovering Bursting Patterns over
Streaming Graphs

Abstract. A streaming graph is a constantly growing sequence of direct-
ed edges, which provides a promising way to detect valuable information
in real time. A bursting pattern in a streaming graph represents some
interaction behavior which is characterized by a sudden increase in terms
of arrival rate followed by a sudden decrease. Mining bursting pattern is
essential to early warning of abnormal or notable event. While Bursting
pattern discovery enjoys many interesting real-life applications, existing
research on frequent pattern mining fails to consider the bursting features
in graphs, and hence, may not suffice to provide a satisfactory solution.
In this paper, we are the first to address the continuous bursting pattern
discovering problem over the streaming graph. We present an auxiliary
data structure called BPD for detecting the burst patterns in real time
with a limited memory usage. BPD first converts each subgraph into
a sequence, and then map it into corresponding tracks based on hash
functions to count its frequency in a fixed time window for finding the
bursting pattern. Extensive experiments also confirm that our approach
generate high-quality results compared to baseline method.

1 Introduction

A streaming graph G is an unbounded sequence of items that arrive at a high
speed, and each item indicates an edge between two nodes. Together these items
form a large dynamic graph. Typical examples of streaming graphs include social
media streams and computer network traffic data. Streaming graph analysis is
gaining importance in various fields due to the natural dynamicity in many
real graph applications. Various types of queries over streaming graphs have
been investigated, such as subgraph match [1–3], frequent pattern mining [4, 5],
and triangle counting [6]. However, discovering bursting patterns in real-world
streaming graphs remains an unsolved problem.

A Burst pattern is a subgraph that is characterized by a sudden increase in
terms of arrival rate followed by a sudden decrease. The arrival rate of a subgraph
refers to the number of matching results via isomorphism [7] in a fixed time
window. Bursting pattern often indicates the happening of abnormal or notable
events. We next use an example of monitoring the happening of financial fraud
to illustrate its basic idea.

Example 1. Fig 1 shows a credit trading pattern P (see Fig 1(1)) with three
edges mined from a transaction network at timestamp t9 and its corresponding
matching results during different time intervals (see Fig 1(2)). Specially, we can
see that pattern P only has 1 and 0 matching result during time intervals [1, 4)
and [7, 9], respectively. However, it has 10 matches over a short period, i.e., time
interval [5, 7), which is a burst of P . Note that, subgraph pattern P represents
a credit-card-fraud behavior, which states a criminal tries to illegally cash out
money by conducting a phony deal together with a merchant and a middleman.
So identifying bursting patterns could be useful for monitoring potential events

2

u1

u3

u2

People

1 3 5 7 9

timestamps

N
u

m
b

er
 o

f
m

at
ch

es

2

10

(2) The distribution of matching results

Burst

u4

People

BankPeople

credit pay

payment
transfer

(1) Subgraph pattern P

Fig. 1: Association rules in temporal graphs

in real time. What’s more, we can also find the criminals for this financial fraud
based on P through subgraph matching calculations.

Specifically, given a streaming graph G and an integer k, continuous bursting
pattern discovering problem is to find the k-edge subgraph patterns that consist
of a sudden increase and a sudden decrease in terms of arrival rate in the graph.

Challenges. In practice, the large scale and high dynamicity of streaming
graph make it both memory and time consuming to discovering bursting patterns
accurately. It is a natural choice to resort to efficiently compute approximations
with limited memory. In the literature, there are solutions to solve another relat-
ed problem: frequent subgraph pattern mining problem in a streaming graph [4,
5]. The main idea is to maintain a uniform sample of subgraphs via reservoir
sampling [8], which in turn allows to ensure the uniformity of the sample when
an edge insertion occurs and then estimate the frequency of different patterns
in the streaming graph.

This process can be extended to support continuous bursting pattern discov-
ering: estimate the frequency of each k-edge pattern P at each time window
based on the sampling and then verify whether the frequency of P is character-
ized by a sudden increase in terms of arrival rate followed by a sudden decrease.
Since the estimation accuracy depends on the sample size, the algorithm needs
to maintain a large number of k-edge subgraphs for mining the bursting patterns
accurately, which is memory consuming. What’s more, the algorithm needs to
conduct expensive subgraph matching calculations for these subgraphs to esti-
mate the frequency of each subgraph pattern after all updates have occurred at
current timestamp, which is time consuming. In this light, advanced techniques
are desiderated to discovery bursting patterns efficiently.

Our solution. Based on the above discussion, existing frequent subgraph pat-
tern mining approach over the streaming graph is not suitable for mining burst-
ing patterns. Our paper aims for a new way to solve the problem. Our main idea
is as follows: instead of using the sampling techniques to maintain the k-edge
subgraphs, we propose to design an auxiliary data structure called BPD to accu-
rately detect burst patterns in real time. We use d buckets, each k-edge subgraph
will be mapped into one cell of the buckets by hash functions h1(·), · · · , hd(·)
to count the frequency directly. In this way, we can avoid storing any k-edge
subgraph in the mining process.

Contributions. In this paper, we make the following contributions: 1) We are
the first to propose the problem of continuous discovering the bursting patterns
over real streaming graph. 2) We propose the BPD for counting the frequency
of each k-edge subgraph pattern with accuracy and efficiency guarantee under
limited memory. 3) We design a new graph invariant that map each subgraph

Bursting Pattern Mining 3

to its sequence space representation in the BPD for deriving high efficiency. 4)
We propose an edge sampling strategy to speed up the subgraph pattern mining
process. 5) Extensive experiments confirm that our method outperforms the
baseline solution in terms of efficiency, memory size and estimation accuracy.

2 Preliminaries

A streaming graphG is a constantly time evolving sequence of items {e1, e2, e3, · · · ,
en}, where each item ei = (vi1 , vi2 , t(ei)) indicates a directed edge from vertices
vi1 to vi2 arriving at time t(ei) and the subscripts of the vertices are vertex IDs.
This sequence continuously arrives from data sources like routers or monitors
with high speed. It should be noted that the throughput of the streaming graph
keeps varying. There may be multiple (or none) edges arriving at each time point.
For simplicity of presentation, we only consider vertex labelled graphs and ignore
edge labels, although handling the more general case is not more complicated.
A streaming graph G is given in Fig. 2. The timestamp of each edge is shown
above it.

e1

v1

v2

e2

v3

v4

e3

v1

v3

v2

v3

v3

v5

e4 e5

v4

v5

e6

t=1 t=2 t=3 t=4 t=5 t=6

v4

v6

e7

t=7

v4

v7

e8

t=7

v5

v7

e9

t=8

v5

v8

e10

t=9

v6

v8

e11

t=10

W1
W3W2

Fig. 2: Streaming Graph

Definition 1 (Snapshot graph). A snapshot graph at timestamp t, denoted
as Gt, is a graph induced by all the edges in G that have been observed up to and
including time t.

A subgraph Sk = (VS , ES) is referred to as a k-edge subgraph if it is induced
by k edges in Gt. For any t ≥ 0, at time t+ 1 we receive an edge insertion e and
add it into Gt to obtain Gt+1. For each newly inserted edge ei in Gt+1, we use
the notation Ek(e) to denote the set of k-edge subgraphs that contain e in Gt+1.

Definition 2 (Subgraph isomorphism). Two subgraphs S′k and S′′k are iso-
morphic if there exists a bijection f : V ′S → V ′′S such that 1) ∀v ∈ VS, L(v) =
L(f(v)), and 2) ∀(vi, vj) ∈ ES, (f(vi), f(vj)) ∈ ES.

Let C be a set of k-edge subgraphs that have isomorphism relation. We call
the generic graph P = (VP , EP , L) that is isomorphic to all the members of C
the k-edge pattern of C, where VP is a set of vertices in P , EP is a set of directed
edges with size k, L is a function that assigns a label for each vertex in VP . Note
that, P can be obtained by deleting the IDs (resp. timestamps) of the vertices
(resp. edges) of any k-edge subgraph in C.

Given a newly inserted edge e in Gt and a k-edge subgraph pattern P , we use
η(e, P) to denote the number of k-edge subgraphs in Ek(e) that are isomorphic
to P . In this way, the frequency of P at timestamp t, denoted by fre(t, P), can
be represented as the the sum of η(e, P) for each edge e with t(e) = t in Gt.

4

Table 1: Notations

Notations Description

G / Gt The temporal graph / The snapshot graph of G at time t

Sk / P A k-edge subgraph / A k-edge subgraph pattern

Ek(e) The k-edge subgraphs that contain each newly inserted edge e

fre(t / W,P) The frequency of P at time t/in window W

W / σ / B / L Window size / Burst ration / Burst threshold / Burst width

FT(P) The frequencies set of P at recent (L+ 2) · W timestamps

S / M The set of sampled subgraphs / The size of S

Burst Detection. Burst, is a particular pattern of the changing behavior in
terms of the arrival rate of a k-edge subgraph pattern in a streaming graph, and
the pattern consists of a sudden increase and a sudden decrease. Given a k-edge
pattern P , to obtain the arrival rate of P , we need to calculate the frequency
of P in a fixed window. In specific, we divide the streaming graph into time-
based fixed-width windows, i.e., W1, · · · ,Wn, from current timestamp t, each of
which has size W. The frequency of P in window Wm, denoted by fre(Wm, P),
is the sum of fre(tl, P) for each timestamp tl ∈ Wm. A sudden increase means
in two adjacent windows, the frequency of P in the second window is no less
than σ times of that in the first window. Similarly, a sudden decrease is that
the frequency of P in the second window is no more than 1

σ of that in the first
window. We do not consider infrequent bursty patterns as bursts, for they are not
useful in most applications, so the frequency of a burst pattern should exceed
a burst threshold B. In practice, a burst occurs over a short period of time.
Therefore, we set a limitation L for the width of a burst, namely, the number of
windows that the burst lasts. The formal definition of a burst is as follows.

Definition 3 (Burst pattern). Given a snapshot graph Gt and a k-edge sub-
graph pattern P . P is a bursting pattern if there exists four windows Wi, Wi+1,
Wj, Wj+1 from t such that 1) fre(Wi+1, P) ≥ σ · fre(Wi, P) ∧ fre(Wj+1, P) ≤
1
σ · fre(Wj , P) ∧ j > i; 2) fre(Wm, P) ≥ B, ∀m ∈ {i+ 1, · · · , j} ∧ j − i ≤ L.

Problem Statement. Given a streaming graph G, and parameters W, B and
L, bursting patterns discovery computes the set of k-edge subgraph patterns
that consists of a sudden increase and a sudden decrease in terms of arrival rate
at each timestamp.

Frequently used variables are summarized in Table 1.

3 The Baseline Solution

In the literature, the state-of-the-art algorithm proposed in [4] resorts to the
sampling framework, aiming to estimate the frequency of a k-edge pattern by
maintaining a uniform sample when an edge update occurs. To obtain a reason-
able baseline, in this section, we extend the algorithm proposed in [4], and design
an sample-and-verify algorithm to compute the bursting patterns by estimating
the frequency of a k-edge pattern P in each window from current timestamp
t. According to Definition 3, we need at most L + 2 windows from t to verify

Bursting Pattern Mining 5

Algorithm 1: findBP
Input : Gt is the snapshot graph at time t; Et is the set of edge insertions at time t;

k,W,B,L, σ,M, are the parameters.
Output : The set of bursting patterns.

1 PatternSet← initializeFre(PatternSet);
2 BurstSet← ∅, PatternSet← estFrequency(Et, Gt,M, PatternSet);
3 if t− (L+ 2) · W ≥ 0 then
4 foreach (P, FT(P)) in the PatternSet do
5 if BurstCheck(FT(P)) = true then BurstSet← BurstSet ∪ {P};
6 return BurstSet;

Function estFrequency(Et, Gt,M)
1 Nt ← 0, b← 0, S ← ∅;
2 foreach edge insertion e in Et do
3 Ek(e)← findSubgraph(e,Gt);
4 foreach subgraph Sk in Ek(e) do
5 Nt ← Nt + 1;
6 ReservoirSampling(S,M,Nt, Sk);

7 calculate the k-edge patterns from S;
8 if t− (L+ 2) · W < 0 then b← t;
9 else b← (L+ 2) · W;

10 foreach k-edge pattern Pi do

11 if P is in the PatternSet then f̂re(t, P)← freS (t,P)
M ·Nt ;

12 if P is not in the PatternSet then add b− 1 zeros to FT(P), insert

(P, f̂re(t, P), FT(P)) into the PatternSet ;

13 foreach k-edge pattern P in the PatternSet do

14 add f̂re(t, Pi) to FT(P);

15 return PatternSet;

whether P is a bursting pattern. As a result, we need to maintain fre(tl, P)
where tl ∈ (t− (L+ 2) · W, t] to estimate the frequency of P in each window.

The Sample-and-verify Algorithm. We briefly introduce the sample-and-
verify algorithm (Algorithm 1). We use a set PatternSet to store the generated
k-edge patterns and their frequencies at recent (L+2) ·W timestamps from time

t. Each item in the PatternSet is a triple (P, f̂re(t, P),FT(P)), where P is a

k-edge pattern, f̂ re(t, P) is an estimation of fre(t, P) and FT(P) is a queue with
limited size (L+ 2) · W that is used to store the frequencies set of Pi. Initially,
it calls initializeFre to initialize the PatternSet (Line 1). That is, initializeFre

sets f̂ re(t, P) ← 0 for each pattern P in the PatternSet. Then, it updates the
PatternSet by calling estFrequency (Line 2). After that, if t− (L+ 2) · W ≥ 0,
for each pattern Pi in the PatternSet, it estimates the frequency of P at each
time window based on FT(Pi) to verify whether P satisfies the bursting feature
(Line 3–5). Finally, it returns all bursting patterns at timestamp t (Line 6).

Function estFrequency. estFrequency maintains a uniform sample S of fixed size
M of k-edge subgraphs based on the standard reservoir sampling. Let Nt be the
number of k-edge subgraphs at time t that is initialized as 0 (Line 1). Whenever
an edge insertion e occurs at timestamp t, estFrequency first calls findSubgraph
(Omitted) to calculates Ek(e) (Line 3). In detail, findSubgraph explores a candi-
date subgraph space in a tree shape in Gt, each node representing a candidate
subgraph, where a child node is grown with one-edge extension from its parent
node. The intention is to find all possible subgraphs with size k grown from e.

6

To avoid duplicate enumeration of a subgraph, findSubgraph checks whether two
subgraphs are composed of the same edges in Gt at each level in the tree space.

Then, for each k-edge subgraph Sk in Ek(e), estFrequency sets Nt+1← Nt and
checks whether |S| < M ; if so, estFrequency adds Sk into the sample S directly.
Otherwise, if |S| = M , estFrequency removes a randomly selected subgraph in
S and inserts the new one Sk with probability M/Nt (Lines 2–6). After dealing
with all edge insertions, estFrequency partitions the set of subgraphs in S into Tk
equivalence classes based on subgraph isomorphism, denoted by C1, · · · , CTk

, and
calculate the k-edge subgraph pattern P of each equivalence class Ci (i ∈ [1, Tk])
(Line 7). The frequency of P in S at timestamp t, denoted by freS(t, P), is
the number of subgraphs in corresponding equivalence class. As proofed in [4],

| fre
S(t,P)
|S| − fre(t,P)

Nt
| ≤ ε

2 holds with probability at least 1 − δ if we set M =

log(1/δ) · (4 + ε)/ε2 where 0 < ε, δ < 1 are user defined constants. We denote

f̂ re(t, P) = freS(t,P)
M · Nt as an (ε, δ)-approximation to fre(t, P). After that,

estFrequency updates the PatternSet. Let b be the number of elements in each
FT(·) at timestamp t (Lines 8–9). There are two possible cases: (1) if P is in

the PatternSet, estFrequency sets f̂ re(t, P) ← freS(t,P)
M ·Nt (Line 11); (2) if P

is not in the PatternSet, estFrequency adds b − 1 zeros to FT(P) and inserts

(P, f̂re(t, P),FT(P)) into the PatternSet (Line 12). Finally, estFrequency adds

f̂ re(t, P) to FT(P) for each pattern P in the PatternSet (Lines 13–14).

Complexity analysis. There are four main steps in algorithm findBP. (1)
In the k-edge subgraphs enumeration process, given an edge insertion e in Gt,
let n be the number of vertices of the subgraph extended from e with radius

k. findSubgraph takes O(2n
2

) to find the k-edge subgraphs that contain e. (2)
For each k-edge subgraph, estFrequency takes O(1) to add each new produced
subgraph into the reservoir. (3) Let ε and be the average unit time to verify
whether two k-edge subgraphs are isomorphic. estFrequency takes O((M3−M)·ε)
to partition the subgraphs in S into Tk equivalence classes. (4) Let D be the
number of patterns in the PatternSet. estFrequency takes O(Tk ·D · ε) to update
the Patternset and takes O(1) to verify whether a pattern is a bursting pattern.

4 A New Approach

In this section, we first analyze the drawbacks of the baseline solution, and then
introduce our proposed approximate data structure called BPD to significantly
reduce the memory and computational cost in quest of bursting patterns.

4.1 Problem Analysis

Why costly? Algorithm findBP is not scalable enough to handle large streaming
graphs with high speed due to the following three drawbacks:
•Drawback 1: Large Memory Cost. Recall that findBP needs to maintain log(1/δ)·

(4 + ε)/ε2 k-edge subgraphs if the throughput of the streaming graph is huge at
time t. As a result, if we use the parameters setting in [4], i.e., δ = 0.1, ε = 0.01,
there are more than 104 k-edge subgraphs to store at time t, which consumes a
large amount of memory.

Bursting Pattern Mining 7

P1, fre(t, P1), FT(P1)

P2, fre(t, P2), FT(P2)

Sk
1 Sk

2 Sk
3

d buckets

l cells

h1 h3

hash collision

P3, fre(t, P3), FT(P3)

P4, fre(t, P4), FT(P4)

P5, fre(t, P5), FT(P5)

h1

h2

h1

h2

Fig. 3: Data Structure of BPD

•Drawback 2: Repeated Subgraph Matching. To update the PatternSet at each
timestamp, estFrequency first partitions the set of subgraphs in sample S and
calculates the k-edge subgraph patterns based on subgraph isomorphism. Then,
estFrequency needs to re-execute subgraph isomorphism calculation for each pat-
tern to check whether it exists in the PatternSet, which can be detrimental.

Our Idea. We devise a new algorithm for bursting pattern discovery, which can
overcome the drawbacks introduced above. In the new algorithm, we propose an
approximate data structure called BPD to calculate the frequency of a pattern
at each timestamp. Specially, for each new produced k-edge subgraph, we use a
hash function to map it into a fixed position in the BPD. In this way, we can
count the frequency of the pattern directly without storing any subgraphs, and
thus avoiding the repeated subgraph isomorphism calculation in the sample.

BPD Structure (Fig. 3). BPD consists of d buckets, each of which consists
of l cells. Let Hi[j] be the jth cell in the i bucket. Each cell has three fields:
a k-edge pattern Pi, fre(t, Pi) and the frequencies set FT(Pi) (See Algorith-
m 1). The d buckets are associated with d pairwise independent hash functions
h1(·), · · · , hd(·), respectively. It is worth noting that the number of arrays deter-
mines the maximum number of bursts we can detect simultaneously. Therefore,
we recommend using enough arrays to achieve higher accuracy. Each k-edge sub-
graph will be mapped to a fixed cell. Note that, if two subgraphs S′k and S′′k are
isomorphic, they will be mapped to the same cell and thus we can count the
frequency of corresponding pattern directly.

4.2 The Progressive Algorithm Framework

The new algorithm findBP+ is shown in Algorithm 2, which follows the same
framework of Algorithm 1 with different frequency estimation process. It first
calls initializeFre to initialize the auxiliary data structure BPD (Line 1). Then it
calls the new procedure updateBPD to estimate the frequnencies set FT(P) for
each pattern P in the BPD, which is described as follows (Line 2).

Function updateBPD. Initially, updateBPD calculates the constant b and the
subgraphs set Ek(e) for each edge insertion e ∈ Et (Lines 1–5). Recall that b is
the number of the elements in each FT(·) at timestamp t. Then, for each new
produced k-edge subgraph Sk, updateBPD hashes Sk into d mapping buckets
according to two cases:

8

Algorithm 2: findBP+

Input : Gt is the snapshot graph at time t; Et is the set of edge insertions at time t;
k,W,B,L, σ are the parameters.

Output : The set of bursting patterns.
1 BurstSet← ∅, BPD← initializeFre(BPD);
2 BPD← updateBPD(Et, Gt,BPD);
3 if t− (L+ 2) · W ≥ 0 then
4 foreach cell Hi[j] in the BPD do
5 if Hi[j] 6= ∅ and BurstCheck(FT(P)) = true then BurstSet← BurstSet ∪ {P};
6 return BurstSet;

Function updateBPD(Et, Gt,BPD)
1 b← 0;
2 if t− (L+ 2) · W < 0 then b← t;
3 else b← (L+ 2) · W;
4 foreach edge insertion e in Et do
5 Ek(e)← findSubgraph(e,Gt);
6 foreach subgraph Sk in Ek(e) do
7 foreach i ∈ [1, d] do
8 if Sk is isomorphic to Hi(hi(Sk)) then fre(t, P)← fre(t, P) + 1, break;
9 if Hi(hi(Sk)) is empty then

10 calculate the pattern P of Sk, add b− 1 zeros to FT(P);
11 insert (P, 1, FT(P)) into Hi(hi(Sk));

12 foreach cell Hi(hi(Sk)) in BPD do
13 if Hi(hi(Sk)) is not empty then add fre(t, P) into FT(P);

14 return BPD;

Case 1 : Sk is isomorphic to the pattern P in a cell. updateBPD just increment
the frequency of P at time t by 1 (Lines 7–8).
Case 2 : Sk is not isomorphic to the pattern in any cell, and at least one of

the cells is empty. updateBPD first calculates the pattern of Sk by deleting its
vertex IDs and edge timestamps, and adds b − 1 zeros to FT(P) (Lines 9–10).
Then updateBPD inserts (P, 1,FT(P)) into one of the empty cells (Line 11).

updateBPD next adds fre(t, P) into FT(P) for each nonempty bucket in the
BPD and returns the updated BPD (Lines 12–14).

Example 2. Fig. 3 shows an runnning example of the hash process. In this
example, subgraph S1

k is hashed into cell H1(h1(S1
k)) directly since S1

k is iso-
morphic to P1. When considering subgraph S2

k, we first hash it into H1(h1(S2
k)).

Since S2
k is not isomorphic to P2, we then hash it into H2(h2(S2

k)). Note that,
we cannot detect the pattern of subgraph S3

k, since S3
k is not isomorphic to the

pattern in any cell, and none of the cell is empty.

Algorithm analysis. Compared to Algorithm 1, Algorithm 2 needs not to
store the sampled k-edge subgraphs since it uses the hash functions to map each
k-edge subgraph into the fixed cell in the BPD. This significantly reduces the
memory consumption and avoids the repeated subgraph matching calculations.
Note that, users can tune the parameter d to make a trade off between accuracy
and speed depending on the application requirements. As shown in our experi-
ments, the recall rate increases as d becomes larger. However, a larger value of
d will slow down its efficiency because we have to check d− 1 more buckets for
each new produced k-edge subgraph. In other words, increasing d means higher
accuracy but will lower speed.

Bursting Pattern Mining 9

t1

A

v1

Bv2 B v3

C

t2

t3

t4

3
2A

v1

3Bv2 2B v3

1C

3

4

5

(2A, 2B) (2A, 3B) (3B, 2B) (3B, 1C)

Fig. 4: Sequence representation of a 4-edge subgraph

4.3 Mapping Subgraphs to Sequences

To realize the algorithm framework findBP+ in Algorithm 2, we still need to solve
the following issue: how to map a k-edge subgraph to sequence in the hashing
process.

Let m: Sk → Seqk be a a function to map graph Sk to its sequence space
representation Seqk. The goal in this conversion procedure is to map the sub-
graph into a string representation such that: if k-edge subgraph S′k is isomorphic
to subgraph S′′k , then m(S′k) = m(S′′k). This condition can be satisfies by using
graph invariants.

Definition 4 (Graph invariant). A graph invariant is a function m, such
that m(S′k) = m(S′′k), whenever S′k and S′′k are isomorphic graphs.

There are several possible graph invariants [9, 10], but most of them impose a
lexicographic order among the subgraphs, which is clearly as complex as graph
isomorphism, and thus expensive to compute. In this paper, we generate a degree
sequence as our graph invariant that can achieve a higher efficiency. Specially,
we map a subgraph Sk to a sequence in the following manner. First, we push the
degree and lable of a vertex into together as its new label. Let l(v) denote the new
label of vertex v. Extending the same procedure, for each edge e = (vi, vj , t(e)),
we label l(e) = (l(vi), l(vj)). Now, we consiser the edge order of a subgaph.
We assign each single-edge pattern a weight in the streaming graph, which is
equal to the order of the occurrence of the pattern. Then, each edge can also be
assigned a weight accoring to corresponding single-edge pattern. Let w(e) denote
the weight of edge e. Specifically, if w(ei) < w(ej), then ei < ej . Else, if w(ei) =
w(ej), ei < ej if l(ei) < l(ej), i.e., the vertex degrees of ei is lexicographically
smaller (ties are broken arbitrarily). Finally, the mapping m(Sk) of a subgraph
Sk containing edges {e1, · · · , en} where ei < ei+1, is “l(e1)l(e2) · · · l(en).”

Example 3. Fig. 4 shows the sequence representation of a 4-edge subgraph.
We can see that the lable of vertex v1 is changed from A to 2A since we add the
degree of v1 into its label. What’s more, we can also find that edge (v1, v2, t1) <
(v1, v3, t2) since (2A, 2B) is lexicographically smaller than (2A, 3B).

4.4 Optimization: Edge Sampling

In Algorithm 2, we still need to call expensive procedure findSubgraph to find
all k-edge subgraphs for each newly inserted edge e to calculate the frequency
of each pattern, which is too time consuming. Therefore, we propose a sam-
pling algorithm: For each edge isertion e, we randomly sample it and compute
match(e, P) with fixed probability p. Here, match(e, P) denotes the number of
subgraphs in Ek(e) that match the pattern P in the BPD. Then, we require

an unbiased estimator f̃ re(t, P) of fre(t, P) by adding up match(e, P) for each

10

sampled edge e, i.e., f̃ re(t, P) = 1
p

∑
e∈Êt

match(e, P), where Êt is the set of

sampled edges. Next, we analyze the estimate f̃ re(t, P) theoretically.

Theorem 1. f̃ re(t, P) is an unbiased estimator for fre(t, P) at time t, i.e., the

expected value E[f̃ re(t, P)] of f̃ re(t, P) is fre(t, P).

Proof. We consider the edge insertions in Et are indexed by [1,m] and use an
indicator I(i) to denote whether the i-th edge ei is sampled. Here, I(i) = 1 if

ei ∈ Êt and 0 otherwise. Then, we have

f̃ re(t, P) =
1

p

∑
e∈Êt

match(e, P) =
1

p

m∑
i=1

I(i)×match(ei, P). (1)

Next, based on Eq.(3) and the fact that E[I(i)] = p, we have

E[f̃ re(t, P)] =
1

p

m∑
i=1

E[I(i)]×match(ei, P) = fre(t, P). (2)

and conclude the proof.

Theorem 2. The variance V al[f̃ re(t, P)] of f̃ re(t, P) returned by the sampling
method is at most 1−p

p × fre
2(t, P).

Proof. According to Eq.(1) we have

V al[f̃ re(t, P)] =

m∑
i,j=1

match(ei, P)

p
× match(ej , P)

p
× Cov(I(i), I(j)). (3)

Since the indicators I(i) and I(j) are independent if i 6= j, we have Cov(I(i), I(j)) =
0 for any i 6= j. In addition, Cov(I(i), I(i)) =Val[I(i)] = p − p2. Based on the
above results, we have

V al[f̃ re(t, P)] =

m∑
i=1

match2(ei, P)

p2
× (p− p2) =

1− p
p

m∑
i=1

match2(ei, P)

≤ 1− p
p
× (

m∑
i=1

match(ei, P))2 =
1− p
p
× fre2(t, P),

(4)

and conclude the proof.

Theorem 3. Pr[|f̃ re(t, P)− fre(t, P)| < α× fre(t, P)] > 1−β for parameters
0 < α, β < 1.

Proof. By applying the two-sided Chernoff bounds, we have Pr[|f̃ re(t, P)−
fre(t, P)| ≥ α × fre(t, P)] ≤ V al[f̃re(t,P)]

α2×fre2(t,P) . By substituting V al[f̃ re(t, P)] with
1−p
p2 ×fre

2(t, P), then we have Pr[|f̃ re(t, P)−fre(t, P)| < α×fre(t, P)] > 1−β,

when p = 1
1+βα2 .

Bursting Pattern Mining 11

Algorithm analysis. Using the edge sampling can efficiently improve the
speed of Algorithm 2 since we need not calculate the k-edge subgraphs for each
edge insertion. However, edge sampling strategy will lower accuracy of Algorith-
m 2 since we only get an unbiased estimator for fre(t, P). Therefore, users can
tune the edge sampling probability p to make a trade off between accuracy and
speed. In our experiments, we find that findBP+-S is much faster than findBP+

and still has a higher accuracy than findBP for p = 0.1 with limited memory.

5 Experiments

In this section, we report and analyze experimental results. All the algorithms
were implemented in C++, run on a PC with an Intel i7 3.50GHz CPU and
32GB memory. In all experiments, we use BOB Hash 1 to implement the hash
functions. Every quantitative test was repeated for 5 times, and the average is
reported.

Datasets. We use three real-life datasets:
•Enron 2 is an email communication network of 86K entities (e.g., ranks of

employees), 297K edges (e.g., email), with timestamps corresponding to commu-
nication data.
•Citation 3 is a citation network of 4.3M entities (e.g., papers, authors, pub-

lication venues), 21.7M edges (e.g., citation, published at), and 273 labels (e.g.,
key-words, research domain), with timestamps corresponding to publication date.
•Panama 4 contains in total 839K offshore entities (e.g., companies, countries,

jurisdiction), 3.6M relationships (e.g., establish, close) and 433 labels covering
offshore entities and financial activities including 12K active days.

Algorithms. We implement and compare three algorithms:
•findBP: Our baseline method for mining bursting patterns;
•findBP+: Our advanced algorithm that uses the auxiliary data structure BPD;
•findBP+-S: findBP+ equipped with the proposed edge sampling optimization.

Metrics. We use the following four metrics:
•Recall Rate (RR): The ratio of the number of correctly reported to the num-

ber of true instances.
•Precision Rate (PR): The ratio of the number of correctly reported to the

number of reported instances.
•F1 Score: 2×RR×PR

RR+PR . It is calculated from the precision and recall of the test,
and it is also a measure of a test’s accuracy.
•Throughput: Kilo insertions handled per second (KIPS).

Parameter settings. We measure the effects of some key parameters, namely,
the number of hash functions d, the number of cells in a bucket l, the burst
threshold B, and the ratio between two adjoin windows for sudden increase or
sudden decrease detection σ.

In specific, we vary d from 2 to 8 with a default 6 and very l from 4 to 32 with
a default 16. B could be set by domain scientists based on domain knowledge

1 http://burtleburtle.net/bob/hash/evahash.html
2 http://konect.uni-koblenz.de/networks/
3 https://aminer.org/citation
4 https://offshoreleaks.icij.org/pages/database

12

findBP findBP
+

findBP
+
-S

0.8

0.85

0.9

0.95

1

Enron Panama Citation

F
1

S
co

re

(1) F1 Score

60

120

180

240

300

Enron Panama Citation

K
IP

S

(2) KIPS

0.6

0.7

0.8

0.9

1

180 220 260 300

F
1

S
co

re

Memory (MB)

(3) F1 Score (Panama)

60

120

180

240

300

180 220 260 300

K
IP

S

Memory (MB)

(4) KIPS (Panama)

Fig. 5: Experimental Results - I

and is selected from 20 to 160 with a default 80. σ is selected from 2 to 8 with a
default 4. In addition, we fix the subgraph size k = 4 and fix the edge sampling
probability p = 0.1 (refer to the Optimization). Without otherwise specified,
when varying a certain parameter, the values of the other parameters are set to
their default values.

5.1 Experiments on Different Datasets

In this section, we evaluate findBP+’s performance with F1 score and KIPS
on three real-life datasets using bounded-size memory. To construct the ground
truth dataset, we identify the total bursting patterns using algorithm findBP
by replacing the subgraphs reservoir with all k-edge subgraphs at each time t.
Note that, we need to store the entire streaming graph to work. Therefore, we
reserve space for storing all edges in each dataset. Each edge has 2 vertex IDs, 2
vertex labels and one timestamp, each of which occupies 8 bytes. As the edges
are organized as a linked list, an additional pointer is needed by each edge.
Therefore 48 bytes are needed for each edge in the streaming graph. To this end,
we fix the total memory size of Enron, Panama and Citation to 40MB, 220MB
and 1GB, respectively.

Fig. 5(1)–(2) show the F1 score and KIPS of findBP+ and its competitors
on three datastes with default parameters. Similar results can also be observed
under the other parameter settings. From Fig. 5(1), we can see that the F1
score of findBP+ is much higher than all other competitors and the F1 score
of findBP+-S is also higher than findBP. For example, on Enron, the F1 score
achieves 100% for findBP+, and is smaller than 90% for the baseline findBP.
From Fig. 5(2), we find that the insertion throughput of findBP+-S is always
higher than that of other algorithms and the throughput of findBP+ is also
higher than findBP. In specific, findBP+-S outperforms findBP+ by up to 5 times
on Citation and findBP+ outperforms findBP by up to 3 times on Panama. The
performance of findBP+ in three datasets are only slightly different, and the
trends are very similar. The results show the robustness of findBP+, so in the
following experiments, we only use Panama dataset.

Analysis. The experiment results show that findBP+ and its optimized version
greatly outperform the baseline solution. The main reason is that findBP needs to
store enough subgraphs to guarantee the accuracy, which will cause low perfor-
mance when the memory is limited and also cause redundant subgraph matching
calculations. In contrast, first, findBP+ does not store any subgraph, which is
less affected by the memory. Second, findBP+ uses the proposed auxiliary data
structure BPD to count the frequency of each pattern in the BPD exactly, which

Bursting Pattern Mining 13

can avoid redundant calculations. What’s more, findBP+-S can further improve
the efficiency since it needs not call expensive procedure findSubgraph for each
edge insertion and can also achieve an unbiased estimator for fre(t, P).

5.2 Experiments on Varying Memory

In this section, we evaluate the accuracy and speed of findBP+ and it competitors
with varying memory size on Panama. We vary the memory size from 180MB
to 300MB. The curves of F1 score and KIPS for all the algorithms are shown in
Fig. 5(3)–(4), respectively. From Fig. 5(3), we can see the increase of memory
size can increase the F1 score of findBP and has little effect on that of findBP+

and findBP+-S. We also find that findBP begins to have F1 score larger than 90%
only when the memory is larger than 260MB. On the other hand, findBP+ and
findBP+-S get same accuracy with only 180MB. In other words, our algorithms
achieve competitive performance with much less space. From Fig. 5(4), we can
see that the increase of memory size can decrease the throughput of findBP and
has little effect on that of findBP+ and findBP+-S. What’s more, findBP+-S is
much faster than other algorithms. For example, The throughput of findBP+-S
is 3 times (resp. 9 times) higher than that of findBP+ (resp. findBP) when the
memory size is 220MB.

Analysis. When the memory size is small, findBP achieves lower accuracy
since it has no enough space to store the sampled subgraphs for estimating
the frequency of each pattern exactly. However, the throughput of findBP is
higher because we need less time to partition the set of subgraphs in S into
Tk equivalence classes. For findBP+ and findBP+-S, they use the auxiliary data
structure BPD without storing any sampled k-edge subgraph. Since the BPD only
stores the k-edge patterns and their frequency sets, we can store it into memory
directly. As a result, findBP+ and findBP+-S is less affected by the memory size,
which indicates that our algorithms works well with very limited memory.

5.3 Experiments on Varying Parameters

In this section, we evaluate the RR, PR and KIPS of findBP+ and findBP+-S
with varying parameters on Panama using bounded-size memory, i.e., 220MB.
Note that, when varying a parameter, we keep other parameters as default. The
results on the other datasets are consistent.

Effects of d (Fig. 6(1)–(3)). In this experiment, we vary d from 2 to 8.
Especially, we observe that the increase of d can increase the recall rate and
decrease the of throughput of findBP+ and findBP+-S. The reason could be that
for a larger d, potential bursting patterns has more opportunities to be stored
into the BPD and the recall rate of findBP+ and findBP+-S will be increase.
However, the throughput of findBP+ and findBP+-S will be decrease since they
have to check d − 1 more buckets for each edge insertion. Therefore, users can
adjust d to strike a good trade off between accuracy and speed. Furthermore,
the precision rate of findBP+ is 100% since it can count the frequency of each
pattern in the BPD exactly.

Effect of l (Fig. 6(4)–(6)). The experimental results show that the increase
of l can increase the recall rate and decrease the of throughput of findBP+

14

findBP
+

findBP
+
-S

0.6

0.7

0.8

0.9

1

2 4 6 8

R
R

(1) Vary d

0.6

0.7

0.8

0.9

1

2 4 6 8

P
R

(2) Vary d

60

120

180

240

300

360

2 4 6 8

K
IP

S

(3) Vary d

0.6

0.7

0.8

0.9

1

4 8 16 32

R
R

(4) Vary l

0.6

0.7

0.8

0.9

1

4 8 16 32

P
R

(5) Vary l

60

120

180

240

300

360

4 8 16 32

K
IP

S

(6) Vary l

0.6

0.7

0.8

0.9

1

20 40 80 160

R
R

(7) Vary B

0.6

0.7

0.8

0.9

1

20 40 80 160

P
R

(8) Vary B

60

120

180

240

300

360

20 40 80 160

K
IP

S

(9) Vary B

0.6

0.7

0.8

0.9

1

2 4 6 8

R
R

(10) Vary σ

0.6

0.7

0.8

0.9

1

2 4 6 8

P
R

(11) Vary σ

60

120

180

240

300

360

2 4 6 8

K
IP

S

(12) Vary σ

Fig. 6: Experimental Results - II

and findBP+-S. This is because when l increases, there are more tracks in the
BPD and we can detect more patterns simultaneously. However, resulting in
more subgraph matching calculations since we need to count the frequency of
the pattern in each track of the BPD at each timestamp. The precision rate of
findBP+ and findBP+-S is insensitive to l since l does not affect the frequency of
the k-edge patterns in the BPD.

Effect of B (Fig. 6(7)–(9)). Our experimental results show that the increase
of B can increase the recall rate of findBP+ and findBP+-S. This is because for
a smaller B, the ground truth could be very large and we can only detect fixed
number of patterns in the BPD. Therefore, resulting in a lower recall rate. We
also find that the increase of B can increase the precision rate of findBP+-S
since more false positives can be filtered safely due to burstness constraint. The
throughput of findBP+ and findBP+-S is insensitive to B since B does not affect
the number of the k-edge patterns in the BPD.

Effect of σ (Fig. 6(10)–(12)). Our experimental results show that our algo-
rithms perform well even when the ratio is very high. As the ratio σ varies, the
RR, PR and KIPS of findBP+ and findBP+-S are stable, which indicates that
the performances of findBP+ and findBP+-S are insensitive to σ.

6 Related Work

Frequent subgraph pattern mining in dynamic graphs. Our work is
related to the studies on frequent subgraph pattern mining. Aslay et al. [4] stud-
ied the frequent pattern mining problem in a streaming scenario and proposed
a sampling-based method to find the latest frequent pattern when edge updates

Bursting Pattern Mining 15

occur on the graph. Ray et al. [11] considered the frequent pattern mining prob-
lem in a single graph with continuous updates. Their approach, however, is a
heuristic applicable only to incremental streams and comes without any provable
guarantee. Abdelhamid et al. [12] proposed an exact algorithm for frequent pat-
tern mining which borrows from the literature on incremental pattern mining.
The algorithm keeps track of “fringe” subgraph patterns, which have frequency
close to the frequency threshold. Borgwardt et al. [13] looked at the problem
of finding dynamic patterns in graphs, i.e., patters over a graph time series,
where persistence in time is the key property that makes the pattern interesting.
Dynamic graph patterns capture the time-series nature of the evolving graph,
while in our streaming scenario, only the frequency variation of the pattern over
a continuous time window is of interest. Note that above mentioned frequent sub-
graph patterns are not bursting patterns since they only consider the frequency
of subgraph pattern but do not consider the character of frequency changes.

Bursting subgraph mining in temporal networks. There is a number of
studies for mining dense bursting subgraphs in temporal networks [14–16]. Qin
et al. [14] defined a bursting subgraph as a dense subgraph such that each vertex
in the subgraph satisfies the degree constraint in a period of time. Chu et al. [15]
defined a bursting subgraph as a dense subgraph that accumulates its density
at the fastest speed during a time interval. Rozenshtein et al. [17] studied the
problem of mining dense subgraphs at different time intervals and they define
the subgraph that is densest in multiple time interval as bursting subgraph [16].
Compared to them, our work adopts a different definition of burstiness and
considers a subgraph pattern that is characterized by a sudden increase in terms
of arrival rate followed by a sudden decrease. Since dense subgraph mining and
frequent subgraph pattern mining are two different fundamental graph-mining
problems, these methods cannot handle the bursting pattern mining problem.

7 Conclusion

In this work, we tackle the novel problem of discovering bursting patterns con-
tinuously in a streaming graph. We propose an auxiliary data structure called
BPD for counting the frequency of a pattern without storing any sampled sub-
graph, which is fast, memory efficient, and accurate. We further design a new
graph invariant that map each subgraph to its sequence space and explore an
optimization strategies by using edge sampling to speed up the pattern mining
process. Experimental results show that our algorithms can achieve high accu-
racy with fairly limited memory usage in real-time bursting pattern detection.

As this is the first work on mining bursting patterns in a streaming graph,
a couple of issues need further study. We are to apply our approach to time-
based sliding window model and design corresponding algorithm for handling
edge deletions as the window slides.

References

1. S. Choudhury, L. B. Holder, G. C. Jr., K. Agarwal, and J. Feo, “A selectivity based
approach to continuous pattern detection in streaming graphs,” in Proceedings of

16

the 18th International Conference on Extending Database Technology, EDBT 2015,
Brussels, Belgium, March 23-27, 2015.

2. Y. Li, L. Zou, M. T. Özsu, and D. Zhao, “Time constrained continuous subgraph
search over streaming graphs,” in 35th IEEE International Conference on Data
Engineering, ICDE 2019, Macao, China, April 8-11, 2019, pp. 1082–1093.

3. S. Min, S. G. Park, K. Park, D. Giammarresi, G. F. Italiano, and W. Han, “Sym-
metric continuous subgraph matching with bidirectional dynamic programming,”
Proc. VLDB Endow., vol. 14, no. 8, pp. 1298–1310, 2021.

4. Ç. Aslay, M. A. U. Nasir, G. D. F. Morales, and A. Gionis, “Mining frequent
patterns in evolving graphs,” in Proceedings of the 27th ACM International Con-
ference on Information and Knowledge Management, CIKM 2018, Torino, Italy,
October 22-26, 2018, pp. 923–932.

5. M. A. U. Nasir, Ç. Aslay, G. D. F. Morales, and M. Riondato, “Tiptap: Approx-
imate mining of frequent k -subgraph patterns in evolving graphs,” ACM Trans.
Knowl. Discov. Data, vol. 15, no. 3, pp. 48:1–48:35, 2021.

6. X. Gou and L. Zou, “Sliding window-based approximate triangle counting over
streaming graphs with duplicate edges,” in SIGMOD ’21: International Conference
on Management of Data, Virtual Event, China, June 20-25, 2021, pp. 645–657,
2021.

7. J. Kim, H. Shin, W. Han, S. Hong, and H. Chafi, “Taming subgraph isomorphism
for RDF query processing,” Proc. VLDB Endow., vol. 8, no. 11, pp. 1238–1249,
2015.

8. J. S. Vitter, “Random sampling with a reservoir,” ACM Trans. Math. Softw.,
vol. 11, no. 1, pp. 37–57, 1985.

9. M. Kuramochi and G. Karypis, “Frequent subgraph discovery,” in Proceedings
of the 2001 IEEE International Conference on Data Mining, 29 November - 2
December 2001, San Jose, California, USA, pp. 313–320.

10. X. Yan and J. Han, “gspan: Graph-based substructure pattern mining,” in Proceed-
ings of the 2002 IEEE International Conference on Data Mining, 9-12 December
2002, Maebashi City, Japan, pp. 721–724, 2002.

11. A. Ray, L. Holder, and S. Choudhury, “Frequent subgraph discovery in large at-
tributed streaming graphs,” in Proceedings of the 3rd International Workshop on
Big Data, Streams and Heterogeneous Source Mining: Algorithms, Systems, Pro-
gramming Models and Applications, BigMine 2014, New York City, USA, August
24, 2014, vol. 36, pp. 166–181.

12. E. Abdelhamid, M. Canim, M. Sadoghi, B. Bhattacharjee, Y. Chang, and P. Kalnis,
“Incremental frequent subgraph mining on large evolving graphs,” IEEE Trans.
Knowl. Data Eng., vol. 29, no. 12, pp. 2710–2723, 2017.

13. K. M. Borgwardt, H. Kriegel, and P. Wackersreuther, “Pattern mining in frequent
dynamic subgraphs,” in Proceedings of the 6th IEEE International Conference on
Data Mining, 18-22 December 2006, Hong Kong, China, pp. 818–822.

14. H. Qin, R. Li, G. Wang, L. Qin, Y. Yuan, and Z. Zhang, “Mining bursting com-
munities in temporal graphs,” CoRR, 2019.

15. L. Chu, Y. Zhang, Y. Yang, L. Wang, and J. Pei, “Online density bursting subgraph
detection from temporal graphs,” Proc. VLDB Endow., vol. 12, no. 13, pp. 2353–
2365, 2019.

16. P. Rozenshtein, N. Tatti, and A. Gionis, “Finding dynamic dense subgraphs,” ACM
Trans. Knowl. Discov. Data, vol. 11, no. 3, pp. 27:1–27:30, 2017.

17. P. Rozenshtein, F. Bonchi, A. Gionis, M. Sozio, and N. Tatti, “Finding events in
temporal networks: segmentation meets densest subgraph discovery,” Knowl. Inf.
Syst., vol. 62, no. 4, pp. 1611–1639, 2020.

