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Abstract

A fundamental goal of datacenter networking is to efficiently interconnect a large number of servers in a cost-effective way. Inspired
by the commodity servers in today’s data centers that come with dual-port, we consider how to design low-cost, robust, and
symmetrical network structures for containerized data centers with dual-port servers and low-end switches. In this paper, we
propose a family of such network structure called a DCube, including H-DCube and M-DCube. The DCube consists of one or
multiple interconnected sub-networks, each of which is a compound graph made by interconnecting a certain number of basic
building blocks by means of a hypercube-like graph. More precisely, the H-DCube and M-DCube utilize the hypercube and
1-möbius cube, respectively, while the M-DCube achieves a considerably higher aggregate bottleneck throughput compared to
H-DCube. Mathematical analysis and simulation results show that the DCube exhibits a graceful performance degradation as the
server or switch failure rate increases. Moreover, the DCube significantly reduces the required wires and switches compared to the
BCube and fat-tree. In addition, the DCube achieves a higher speedup than the BCube does for the one-to-several traffic patterns.
The proposed methodologies in this paper can apply to the compound graph of the basic building block and other hypercube-like
graphs, such as Twisted cube, Flip MCube, and fastcube.
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1. Introduction

As one of the fundamental infrastructures for cloud comput-
ing, data centers have recently been studied extensively because
of their support of many online applications and infrastructural
services [1]. Inside a data center, a large number of servers are
interconnected by network devices using a specific networking
structure, which is becoming an important area of research.

A number of novel networking structures for large-scale
data centers have been proposed recently [2]. These structures
can be roughly divided into two categories. One is switch-
centric, which organizes switches into structures other than tree
and puts the interconnection intelligence on switches. Fat-Tree
[3], VL2 [4], PortLand [5], Dragonfly [6], and PERCS [7] fall
into this category. The other category is server-centric, which
utilizes the rapid growth of the server hardware and multiple
NIC ports to put the interconnection and routing intelligence on
the servers also. DCell [8], FiConn [9], BCube [10], and BCN
[11] fall into the second category. In this setting, the routing
capability at each server can be implemented by software-based
systems [12], FPGA-based systems [13], and ServerSwitch [14].

The containerized data center takes on a different method of
building modern mega data centers [15, 16]. In a containerized
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data center, a few thousand servers, usually 1k∼4k, along with
switches, are packed into a standard 20-feet or 40-feet shipping
container. The container environment has several advantages:
easy wiring, low cooling cost, high power density, etc. [17].
Containerized data centers can be interconnected by an inter-
container networking structure, such as uFix [17] and MDCube
[18], so as to scale a data center from thousands of servers to
millions.

In this paper, we study a simple technical problem: can we
build a low-cost, fault-tolerant, and symmetrical network struc-
ture for containerized data centers, using commodity servers
each only with dual-port and low-end commodity switches?
The potential benefits of solving such problem are multifaceted.
Firstly, we do not use expensive, high-end switches which are
widely used today. Thus, it costs less to build a network struc-
ture for containerized datacenters. Secondly, the wiring has a
relatively low-cost and low-complexity since each server does
not need to have any additional hardware installed except for
two NIC ports. Lastly, it can offer an easy-to-build and easy-
to-afford testbed at a university or institution [9]. Besides such
benefits, most standard, off-the-shelf servers already have two
high-speed ports, one primary port and one backup port. Hence,
there is no need to physically upgrade the servers when using
new servers or reusing servers in existing data centers.

In this paper, we propose a family of low-cost and robust
network structures called DCube(n,k) for containerized data
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centers with dual-port servers and low-end n-port switches. DCube(n,k)
consists of one or k>1 interconnected sub-networks, each of
which is a compound graph made by interconnecting a certain
number of basic building blocks by means of a hypercube-like
graph. In each subnetwork, the basic building block is just
n/k servers connected to a switch. More precisely, we first
design H-DCube which uses the hypercube graph, and we fur-
ther enhance the aggregated bottleneck throughput significantly
by proposing M-DCube which adopts the möbius cube. Note
that the möbius cube has a diameter approximately half that of
the hypercube and its expected distance is approximately two-
thirds the hypercube’s expected distance.

H-DCube and M-DCube offer high degrees of regularity
and symmetry, which are desirable properties of data center
networks. These benefits are obtained at the cost of only two
links being associated with each server, regardless of the net-
work size. In addition, DCube provides higher bandwidth for
the one-to-one traffic and greatly improves the ability of fault
tolerance. Mathematical analysis and simulation results show
that the DCube has a higher aggregate bottleneck throughput
than DCell as the server or switch failure rate increases. More-
over, the DCube significantly reduces the number of required
wires and switches compared to BCube and fat-tree; hence, the
construction cost, energy consumption, and cabling complexity
are largely reduced. Additionally, the DCube achieves a higher
speedup compared to BCube does for one-to-several traffic pat-
tern by constructing more edge-disjoint complete graphs.

DCube, however, cannot achieve the same aggregate bot-
tleneck throughput as BCube, which employs more ports for
each server and switches for routing. In fact, the lower ABT
(aggregate bottleneck throughput) of Dcube is the tradeoff of a
significantly less number of links and switches. Such an issue
can be addressed by other techniques at the application layer,
such as the locality-aware task placement.

The rest of this paper is organized as follows. Section 2
describes the compound group and related work. Section 3
presents the structures and constructions of the H-DCube and
M-DCube. Section 4 proposes dedicated routing schemes for
the one-to-one and one-to-several traffic patterns. Section 5
evaluates the properties of the network structures proposed in
this paper. Section 7 concludes this paper.

2. Preliminaries

2.1. Compound graph

A compound graph is suitable for constructing large inter-
connection networks due to its good regularity and expansibil-
ity, where many smaller networks at the lowest level are in-
terconnected to constitute a larger network [19]. Consequently,
lower level networks support local communication while higher
level networks support remote communication.

Definition 1. Given two regular graphs, G and G1, a Level-1
regular compound graph G(G1) is obtained by replacing each
node of G by a copy of G1 and replacing each link of G by a
link which connects two corresponding copies of G1.

 

Figure 1: An illustrative example of the compound graph, which interconnects
eight rings by means of the three-dimensional hypercube.

A level-1 regular compound graph G(G1) employs G1 as
a unit cluster and connects many such clusters by means of a
regular graph G. In the resultant graph, the topology of G is
preserved, and only one link is inserted to connect two copies
of G1. An additional remote link is associated with each node
in a cluster. A constraint must be satisfied for the two graphs
to constitute a regular compound graph. The node degree of
G must be equal to the number of nodes in G1. Otherwise, an
irregular compound graph is obtained. For ease of explanation,
we show an example of the compound graph in Fig.1.

The basic idea of a compound graph can be extended to the
context of a multi-level compound graph, recursively. For ease
of explanation, we consider the case where the regular G is a
complete graph. A level-2 compound graph G2(G1) employs
G(G1) as a unit cluster and connects many such clusters using
a complete graph G. More generically, a level-i (i>0) graph
Gi(G1) adopts a level-(i−1) graph Gi−1(G1) as a unit cluster
and connects many such clusters by a complete graph G.

As we will show in the next section, the topology of DCell
is just a multi-level regular compound graph, while the topolo-
gies of FiConn and BCN are two different multi-level irreg-
ular compound graphs. The topologies of H-DCube and M-
DCube proposed in this paper are two types of one-level regular
compound graph. Note that the multi-level regular or irregular
graph is a natural way to construct hierarchical network. On
the other hand, BCube is an emulation of the generalized Hy-
percube and is an example of the product network [19]. DCell,
FiConn, BCN, and BCube are defined by recursively utilizing
the method of compound graph or product network.

2.2. Related work

Although several networking structures for large-scale data
centers have been proposed recently, they are not very suit-
able for containerized data centers that are using only dual-port
servers and low-end commodity switches. Firstly, the switch-
centric network structures require expensive, high-end switches
at the top levels in order to alleviate the bandwidth bottleneck to
some extent by incurring an even higher cost. We will now dis-
cuss DCell, FiConn, and BCN, three enlightening server-centric
structures for large-scale data centers.

The key insight behind DCelli is a level-i regular compound
graph Gi(DCell0) constituted recursively for any i≥1. More
precisely, any high-level DCell is constituted by connecting a
given number of Dcells in the next level down via a complete
graph. Thus, Dcells at the same level are fully connected with
one another. DCell0 is the basic building block in which n
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servers are connected to a n port commodity switch. Although
DCell has many desirable features for large-scale data centers,
it faces obstacles in containerized data centers. Typically, DCell
requires more ports and links per server, e.g., 4, for connecting
about 4k servers via low-end commodity switches. If we want
to interconnect near 4k dual-port servers, all low-cost switches
would have to be replaced with high-end ones, each with a lot
of ports which would incur an even higher cost. Additionally,
the upcoming containerized data centers may hold more than
4k servers to accommodate the service expansion. This further
limits the usage of DCell in this setting.

FiConn and BCN are different from DCell: these build a
large-scale data center consisting of a large number of dual-
port servers. As mentioned in our previous work [20], the key
insight behind DCell is the multi-level regular compound graph,
while behind FiCoon and BCN is the multi-level irregular com-
pound graph. The multi-level compound graph, however, incurs
imbalanced traffic at different levels of links; hence, reducing
the resulting aggregate bottleneck throughput. More specifi-
cally, those links that are interconnecting building clusters po-
tentially carry higher traffic than links attached to switches, and
high-level links always carry much more flows than low-level
links in Dcell, FiCoon, and BCN.

Typically, DCell, FiConn, and BCN should have at least
a level-2 compound regular or irregular graph for connecting
about 4k servers using 16-port switches, and should require a
higher level compound graph as the server size increases in fu-
ture containers. On the contrary, the family of network struc-
tures proposed in this paper is always only a level-1 regular
compound graph, regardless how many servers a container ac-
commodates. The multi-level compound graph, however, in-
curs imbalanced traffic at different levels of links; hence, reduc-
ing the resulting aggregate bottleneck throughput. More specif-
ically, those links that are interconnecting building clusters po-
tentially carry higher traffic than links attached to switches, and
high-level links always carry much more flows than low-level
links in Dcell, FiCoon, and BCN. That is, DCube does not suf-
fer from such disadvantages; hence, it exhibits better perfor-
mance than these related proposals in terms of the link conges-
tion and aggregate bottleneck throughput.

BCube is the first dedicated structure for containerized data
centers using more than two ports, typically 4, hence the re-
quirement of a large number of links and switches. DCube sig-
nificantly reduces the number of required wires and switches
compared to BCube; hence, the construction cost, energy-consumption,
and cabling complexity are largely reduced. In addition, DCube
achieves a higher speedup than BCube for one-to-one and one-
to-several traffic patterns. A challenge that arises here is the
fact that DCube cannot achieve the same aggregate bottleneck
throughput (ABT) as BCube, which employs more ports for
each server and switches for routing. In fact, the lower ABT
of Dcube is the tradeoff of less number of links and switches.
As shown in Section 6, this can be addressed by some tech-
niques at the application layer, such as the locality-aware task
placement.

Additionally, many interconnection networks have been pro-
posed in parallel computing, such as Mesh, Torus, Hypercube,

Fat Tree, Butterfly, de Bruijn digraph, and Kautz digraph. The
Kautz digraph has the smallest diameter among all of existing
non-trivial digraphs under the same configurations of network
size and maximum node out-degree [21]. However, compared
to the hierarchical network structures for data centers, such as
DCube, the Kautz digraph cannot not achieve a relative small
network diameter. Existing interconnection networks cannot be
utilized to tackle the technical problem we proposed in this pa-
per. For example, a 2-ary Kautz digraph requires 4 ports at
each server since the in-degree and out-degree of a 2-ary kautz
digraph is 2, while this paper considers the case that the com-
modity servers in today’s data centers come with dual-port. Ac-
tually, literatures [8, 10] also report the similar observations
about the introduction of existing interconnection networks in
the field of data centers.

3. The DCube Structure

In this section, we begin with the construction of DCube,
a family of server-centric structures for containerized data cen-
ters with dual-port servers. We then describe two representative
designs of DCube, i.e., H-DCube and M-DCube, that emulate
the hypercube and möbius cube, respectively.

3.1. DCube construction

DCube network is built with two kinds of devices: dual-port
servers and n-port mini-switches. The basic building block, de-
noted by Cube, is simply n servers connecting to an n-port mini-
switch. After arranging the n servers into k groups, the Cube is
partitioned into k sub-blocks, denoted by Cube0, Cube1,...,Cubek−1.
Each sub-block is built with m=n/k servers connecting to the
n-port switch in the basic building block, as shown in Fig.2. A
DCube network consists of k sub-networks, denoted by DCube1,
DCube2,...,DCubek, which share all of the mini-switches in the
DCube network. Throughout this paper, we impose a limitation
on the value of k such that n mod k=0.

For 0≤i≤k−1, DCubei is a compound graph of Cubei and
a hypercube-like graph. DCubei is obtained by replacing each
node of the hypercube-like graph with a copy of Cubei and re-
placing each link of the hypercube-like graph with a link which
connects two corresponding copies of Cubei. In DCubei, the
topology properties of the hypercube-like graph are preserved
at the cost of an additional link that is associated with each
server in DCubei. For each server in DCubei, the first port is
used to connect to the switch while the second port is used to in-
terconnect with another server in a different copy of Cubei. Al-
though the construction of DCube requires that DCubeis adopt
the homogeneous hypercube-like graph, the basic ideas also ap-
ply to the heterogeneous setting. That is, each DCubei may use
different hypercube-like graphs, such as the hypercube and its
variants.

When constructing a DCubei, a constraint that arises is that
the node degree of the hypercube-like graph must be equal to
the number of servers in Cubei, so as to constitute a regular
compound graph. Thus, this requires an m-dimensional hypercube-
like graph, in which each node is assigned a unique address
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am−1 . . .a1a0 from the vector space Z2
m, where m=n/k. For

0≤i≤k−1, we can infer that DCubei has 2m×m servers and 2m

switches; hence, DCube has 2m×m×k=2m×n servers and 2m

switches. We can see that DCube can be uniquely defined by
two parameters, n and k, and is characterized by DCube(n,k).
For ease of presentation, we use the term DCube to represent
DCube(n,k) throughout the rest of this paper.

We now present the construction of DCube(n,k) as follows.
We number the k sub-networks from DCube0 to DCubek−1 and
number all switches from 0 to 2n/k−1. Equivalently, we use
an address am−1 . . .a1a0 from Z2

m to denote a switch. We can
use a term u to number those servers that are connected to the
same switch from 0 to n−1, and we can denote a server in
DCube(n,k) using the form 〈am−1 . . .a1a0,u〉. The connection
rule between servers using their second ports depends on the
used m-dimensional hypercube-like graph. In this paper, we fo-
cus on the hypercube of diameter m and the 1-möbius cube of
diameter d(m+ 1)/2e [22]. The resulting structures are char-
acterized by H-DCube and M-DCube, respectively. The basic
ideas also apply to other hypercube-like graphs with a similar
diameter as that of the 1-möbius cube, such as the 0-möbius
cube, Twisted cube [23], Flip MCube [24], and Fastcube [25].

Before presenting the construction approach for the H-DCube
and M-DCube, we first introduce notations and definitions used
throughout this paper.

1. Let e j denote the m-dimensional binary vector with only
the jth dimension equals to 1, where j is the index of e j.

2. Let E j denote the m-dimensional binary vector with 1 in
dimensions x j through x0, where j is the index of e j.

3. Given two m-dimensional binary vectors, + denotes the
modulo-2 addition for the corresponding elements.

3.2. H-DCube
In an m-dimensional hypercube, denoted by H(m), two nodes,

xm−1 . . .x1x0 and ym−1 . . .y1y0, are called the mutual jth neigh-
bors if their addresses differ by only the jth vector component.
That is ym−1 . . .y1y0=xm−1 . . .x1x0+e j, where 0≤ j≤m−1. The
node degree and network diameter of H(m) are well known to
be m. In an H-DCube(n,k), any server 〈am−1 . . .a j . . .a0,u〉 is
interconnected with another server 〈am−1 . . .a j . . .b0,u〉 using
their second ports, where j=u mod m. This simple connection
rule guarantees the desired structure of an H-DCube network
consisting of k sub-networks H-DCubei for 0≤i≤k−1. We now
discuss the correctness of such connection rule as in the follow-
ing.

Only m servers and the unique switch in a basic building
block falls into a sub-block Cubei if the sequence number u
of those servers falls into the range of [i×m,(i+1)×m), where
0≤i≤k−1. A sub-network, H-DCubei, is a compound graph
made by interconnecting a given number of copies of Cubei
by means of H(m), and is obtained by the following opera-
tions. Firstly, any node 〈am−1 . . .a j . . .a0〉 and its jth neigh-
bor node 〈am−1 . . .a j . . .b0〉 in H(m) are replaced by two copies
of Cubei. Secondly, the link from node 〈am−1 . . .a j . . .a0〉 to
its jth neighbor node in H(m) is replaced by a remote link
between servers 〈am−1 . . .a j . . .a0,u〉 and 〈am−1 . . .a j . . .b0,u〉,
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Figure 2: DCube with n = 6 and k = 2, which employs a hypercube.

where u = i×m+ j. It is easy to see that only one link is con-
nected to the second port of each server and that method is
equivalent to the aforementioned connection rule. We can infer
that all k sub-networks can be constructed in the same way, and
they share all of the 2m switches. Thus, the connection rule can
guarantee the desired structure of an H-DCube network.

Fig.2 plots an H-DCube with n=6 and k=2, which consists
of 8 basic building blocks, each with 6 servers and one switch.
Note that the entire structure of each of the three basic building
blocks 000, 001, and 011 are plotted, while the structures of the
other basic building blocks are only partially plotted. All de-
vices form two sub-networks, H-DCube0 and H-DCube1, each
is a compound graph of Cubei and a 3-dimensional hypercube.
The servers, whose sequence numbers are less than 3, belong
to H-DCube0, while others belong to H-DCube1. Fig.2 shows
entire and partial structures of H-DCube0 and H-DCube1, re-
spectively. Clearly, H-DCube0 and H-DCube1 share all of the
switches.

3.3. M-DCube

An m-dimensional möbius cube is such an undirected graph:
its node set is the same as that of an m-dimensional hyper-
cube; any node X=xm−1 . . .x1x0 connects to m other nodes Yj
(0≤ j≤m−1), where Yj satisfies one of the following equations:

Yi =

{
xm−1 . . .x j+1x jx j−1 . . .x0, ifx j+1 = 0
xm−1 . . .x j+1x jx j−1 . . .x0, ifx j+1 = 1

(1)

According to the above definition, a node X connects to its
jth neighbor Yj=X + e j that differs in bit x j if x j+1=0 and to
Yj=X +E j if x j+1=1. The connection between X and Ym−1 has
xm as undefined. Here, xm is either equal to 1 or 0, resulting in
slightly different network topologies. This paper assumes that
xm=1: the resulting network is called the 1-möbius cube [22].
The node degree and network diameter of the m-dimensional
1-möbius cube are m and d(m+1)/2e, respectively.

In an M-DCube(n,k), all 2m× n servers and 2m switches
are first grouped into 2m basic building blocks, each of which
consists of n servers connecting to one switch using their first
ports. For any server 〈am−1 . . .a j+1a ja j−1 . . .a0,u〉, we con-
nect it to a server 〈am−1 . . .a j+1a ja j−1 . . .a0,u〉 if a j+1=0 or
〈am−1 . . .a j+1a ja j−1 . . .a0,u〉 if a j+1=1 via their second ports,
where j=u mod m. This connection rule guarantees the desired
structure of an M-DCube network consisting of k sub-networks
M-DCubei for 0≤i≤k−1. We omit the discussion about the
correctness of this connection rule since the proof is very sim-
ilar to that discussed in Section 3.2. Fig.3 shows an M-DCube
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Figure 3: DCube with n = 6 and k = 2, which employs a 1-möbius cube.

network with n=6 and k=2, which consists of 8 basic build-
ing blocks, each with 6 servers and one switch. The servers,
whose sequence numbers are less than 3, belong to M-DCube0
and others are associated with M-DCube1.

In summary, we can support 2048 servers in DCube(8,1) us-
ing 8-port switches and 4096 servers in DCube(16,2) using 16-
port switches for both D-DCube and M-DCube. Another possi-
ble way of using 16-port switches is to construct DCube(16,1)
with 1048576 servers, which is too large for containerized data
centers. Moreover, the network diameter and expected routing
path length are also relatively higher than that of DCube(16,2).
Inspired by such fact, we prefer to construct DCube(n,k) as
k>1 interconnected sub-networks when the number of ports on
each switch exceeds an upper bound, for example 8.

4. Routing for one-to-one and one-to several traffic patterns

One-to-one traffic is the basic traffic pattern and good one-
to-one support also results in good several-to-one and all-to-
one support. In this section, we start with the single-path rout-
ing scheme for one-to-one traffic pattern, which only needs lo-
cal decisions to identify a path or the next hop for any pair
of servers in DCube. We then study the parallel multi-paths
for one-to-one traffic pattern. Finally, we analyze the one-to-
several traffic support properties of DCube.

4.1. Single-path routing in DCube

For two servers, A and B, we use h(A,B) to denote the ham-
ming distance between the two switches that are connecting
the two servers, respectively, which is the number of differ-
ent digits in their address arrays. It is clear that the maximum
hamming distance between two switches in a DCube(n,k) is
m=n/k. In this paper, two servers are neighbors if they con-
nect to the same switch or if they directly connect to each other.
The distance between two neighboring servers is one. Addi-
tionally, two switches are neighbors if there exists at least one
pair of directly connected servers, each belonging to one of
the two switches. Actually, the construction rules of H-DCube
and M-DCube ensure that two neighboring switches have k
pairs of such connecting servers, and each belongs to one sub-
network. For example, two switches, 000 and 001, are neigh-
bors since two servers, 〈000,0〉 and 〈000,3〉, directly connect
to two servers, 〈001,0〉 and 〈001,3〉, respectively, as shown in
Fig.2.

Based on such facts, we design two routing algorithms, H-
DCubeRouting and M-DCubeRouting, as shown in Algorithms
1 and 3 respectively, to find a single path for any server pair.

Algorithm 1 H-DCubeRouting(A,B)
Require: A=〈am−1 . . .a0,ua〉 and B=〈bm−1 . . .b0,ub〉

1: path(A,B) = {A,};
2: symbols is a permutation of Expansion-hypercube(A,B);
3: Pswitch = 〈am−1 . . .a0〉 and Cswitch = 〈am−1 . . .a0〉;
4: while symbols not empty do
5: Let ei denote the leftmost term in symbols;
6: Cswitch =Cswitch+ ei and u = bua/mc×m+i;
7: append 〈Pswitch,u〉 and 〈Cswitch,u〉 to path(A,B);
8: remove ei from symbols and Pswitch =Cswitch;
9: append server B to path(A,B);

10: return path(A,B);
Expansion-hypercube(A,B)

1: terms = {};
2: for i=m−1 to 0 do
3: if A[i]6=B[i] then
4: {A[i]=ai; B[i]=bi.}
5: append ei to terms;
6: return terms;

4.1.1. Single-path routing in H-DCube
In H-DCubeRouting, we assume that A=〈am−1 . . .a0,ua〉 and

B=〈bm−1 . . .b0,ub〉 are the source and destination servers, re-
spectively. We first find a sequence of switches by correct-
ing one digit of the previous switch, so as to produce a switch
path from the source switch am−1 . . .a0 to the destination switch
bm−1 . . .b0. To make two adjacent switches in the switch path
be neighbors, we have to choose one from the k pairs of con-
necting servers, each is connected to one of the adjacent switches.

A natural way of selecting the pair of connected servers
belonging to the same sub-network, H-DCubei (i=bua/mc), is
shown in Algorithm 1. Generally, another pair of connecting
servers is also desirable if the two servers belong to the same
sub-network, H-DCubei (i=bub/mc), as the destination server
B. These efforts ensure that all intermediate servers in a rout-
ing path belong to the same sub-network, so as to ensure the
load balance of each server under a uniform traffic model. The
switches in the resulting path of Algorithm 1 can be uniquely
determined by the identifiers of servers and hence are omitted
from the path.

From H-DCubeRouting, we obtain the following theorem.

Theorem 1. The diameter of an H-DCube(n,k) is 2×m+1, where
m=n/k.

PROOF. In an H-DCube(n,k), the shortest path between any
two servers traverses, at most, m+1 switches, including the
source switch, the destination switch, and other m−1 interme-
diate switches.

For any intermediate switch, there exists a one-hop packet
transmission from the server receiving a packet to another server,
which will forward the packet to its neighboring server in the
next switch along with the switch path. For the source switch,
there also exists a one-hop packet transmission if the source
server cannot directly forward a packet to a server in the next
switch. For the destination switch, a one-hop packet transmis-
sion is also necessary if the server receiving a packet is not the
destination server. In addition, the total length of these m inter-
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Algorithm 2 Expansion-mobius(A)
Require: A=am−1 · · ·a0 is a m-dimensional vector over {0,1};

A[i]=ai
1: symbols={} and index=m−1;
2: while index < 0 do
3: if index == 0 then
4: if A[index] == 1 then
5: append E0 to symbols;
6: index = index−1;
7: else
8: if A[index]==0 then
9: index==index−1;

10: else
11: if A[index]A[index−1] == 10 then
12: append eindex to symbols;
13: if A[index]A[index−1] == 11 then
14: append Eindex to symbols;
15: A = am−1 · · ·aindex−2 · · ·a0;
16: index = index−2;
17: return symbols;

switch sub-paths between any adjacent switches in the shortest
path is m. Thus, Theorem is 1 proven.

4.1.2. Single-path routing in M-DCube
We first discuss the expansion techniques of a vector, which

are fundamental to our detailed discussion on the routing of
M-DCube. The set R={e j,E j|0≤ j≤m−1} forms a redundant
basis for Zm

2 . Any vector X in Zm
2 can be expanded by R in the

form:

X=
m−1

∑
j=1

(α je j +β jE j), (2)

with each α j ∈ {0,1} and β j ∈ {0,1}.

Definition 2. For a vector X, the set of e j and E j with non-zero
coefficients in Equation 2, denoted as E(X), is called an expan-
sion of the vector X. Any t ∈ E(X) is a term of this expansion
of X. The weight of an expansion E(X) is called W (X) and is
equal to the cardinality of E(X).

There can be more than one expansion of a vector due to
the use of a redundant basis. Thus, an expansion with minimal
weight is referred to as the minimal expansion of X . Algorithm
2 shows a simple procedure for finding the minimal expansion
for any vector. In each round, the algorithm first generates a
sub-vector starting from the bit position index to the rightmost
bit position of the vector X . If the sub-vector is 1, a term E0
is added into the symbols set. If the sub-vector is 0, the algo-
rithm is terminated. If the leftmost bit of the sub-vector is 0,
the algorithm decreases the index by one and executes the next
round. If the leftmost two bits of the sub-vector are 10, a term
eindex is appended to the symbols set. Otherwise, a term Eindex
is added into the symbols set, and the vector X is updated by
X +Eindex since the term Eindex complements all bits from the
position index to the rightmost position of X . The algorithm
then carries out the next round after decreasing the index by
two.

For a source server A=〈am−1am−2 · · ·a0,ua〉 and a destina-
tion server B=〈bm−1bm−2 · · ·b0,ub〉 in M-DCube(n,k), we de-
fine A+B as the vector obtained by the mod 2 sum of the switch
addresses am−1am−2 · · ·a0 and bm−1bm−2 · · ·b0. To generate the
shortest path between A and B, we first derive a switch path
from the source switch am−1am−2 · · ·a0 to the destination switch
bm−1bm−2 · · ·b0. We then find a pair of servers to connect two
adjacent switches indirectly. Actually, the switch path between
any pair of switches in M-DCube(n,k) is equivalent to the path
between two corresponding nodes in the m-dimensional möbius
cube.

For any switch, ei or Ei denotes its immediate neighbor
along dimension i. For this reason, we refer to ei or Ei as a rout-
ing symbol. To form a switch path, a sequence of routing sym-
bols should be applied to the source switch. The minimal ex-
pansion E(A+B), achieved by Algorithm 2, cannot be directly
used to produce the switch path due to the following challeng-
ing issue. According to the definition of a 1-möbius cube, given
any node, only one of ei and Ei can be the routing symbol along
the ith dimension, where 0≤i≤m−1. Consequently, a routing
symbol in the minimal expansion does not always correspond
to an edge in the 1-möbius cube, and hence may be inapplica-
ble to the current node. A natural way to deal with this issue is
to replace any inapplicable routing symbol with an equivalent
routing sequence obtained from Theorem 2.

Theorem 2. Given a node A = am−1am−2 · · ·a0:

1. if ei is inapplicable to the node A, it can be replaced by
an equivalent routing sequence, EiEi−1 or Ei−1Ei, which
is applicable to A.

2. if Ei is inapplicable to the node A, it can be replaced by
an equivalent routing sequence, eiEi−1 or Ei−1ei, which
is applicable to A.

PROOF. It is clear that ei=Ei+Ei−1 and that Ei=ei+Ei−1. As-
sume that ei is inapplicable to node A. This implies that ai+1=1;
hence, Ei is applicable to node A. If ai=1, then Ei−1 is appli-
cable to node A; thus, Ei−1Ei is applicable to node A. Here,
EiEi−1 is inapplicable to node A since traversal along edge Ei
from node A makes ai become 0. If ai=0, Ei−1 is inapplicable
to node A, but the application of Ei complements the bit ai. Now
Ei−1 is applicable to node A+Ei, making EiEi−1 be applicable
to node A.

Assume that Ei is inapplicable to node A. This implies that
ai+1=0; thus, ei is applicable to node A. If ai=1, then Ei−1 is
applicable to node A; thus, Ei−1ei is applicable to node A since
traversal along edge Ei−1 from node A does not complement the
bit ai+1. If ai=0, the application of ei complement bit ai. Now
Ei−1 is applicable to node A+ei, making eiEi−1 be applicable to
A. Thus, Theorem 2 is proven.

According to the aforementioned strategies, we design M-
DCubeRouting, as shown in Algorithm 3, to find a path from
a source server A to a destination server B. The algorithm be-
gins with achieving the minimal expansion of A+B by invoking
Algorithm 2. It then calls the exact-routing algorithm to derive
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Algorithm 3 M-DCubeRouting(A,B)
Require: A=〈am−1 . . .a0,ua〉 and B=〈bm−1 . . .b0,ub〉;

1: symbols=Expansion-mobius(A+B);
2: path(A,B) = {A,};
3: Exactrouting(am−1 . . .a0,symbols);
4: append server B to path(A,B);

Exactrouting(S,symbols)
Require: S denotes a current switch in the shortest path;

1: while symbols is not empty do
2: Let t denote the leftmost term in symbols;
3: if t is applicable to S. then
4: Let t ′ denote the rightmost applicable term to S in symbols;

{The rightmost applicable term can be the leftmost applica-
ble term.}

5: u=bua/mc×m+i, where i is the index of t ′=ei or t ′=Ei;
6: append 〈S,u〉 and 〈S+ t ′,u〉 to path(A,B);
7: remove t ′ from symbols and Exact-routing(S+t ′,symbols);
8: else
9: if The term t is in the form ei then

10: replace ei with EiEi−1 if ai=0 or Ei−1Ei otherwise;
11: else
12: replace Ei with eiEi−1 if ai=0 or Ei−1ei otherwise;
13: Exactrouting(S,symbols);

a sequence of routing symbols, which can be successfully ap-
plied to the source switch so as to establish a switch path to the
destination switch. In each round, the exact-routing algorithm
ranks all terms in the symbols set in descending order according
to the index of each term and then examines the leftmost term.
If the leftmost term t is inapplicable to the current switch S, it
is replaced by the equivalent routing sequence defined in The-
orem 2. If the leftmost term is applicable to the current switch
S, the rightmost applicable term t ′ will be applied first and then
it updates the current switch S and symbols. This strategy can
avoid the appearance of the worst result as in the following.
If the leftmost applicable term is E j, the application of it will
make makes all next applicable terms become inapplicable.

After deriving the shortest switch path between the source
and destination servers, we need to choose one from k pairs
of the connecting servers between any adjacent switch S and
S+ t ′ so as to make them be neighbors in M-DCube(n,k). As
shown in Fig.3, two switches, 000 and 111, are neighbors since
servers, 〈000,2〉 and 〈000,5〉, are directly connected to servers,
〈111,2〉 and 〈111,5〉, respectively. It is natural to choose the
pair of servers which belong to the same sub-network, M-DCubei
(i=bua/mc), as the source server A. Servers 〈S,u〉 and 〈S+t ′,u〉
append to the routing path, where u=bua/mc×m+i and i de-
notes the index of t ′. Actually, another pair of connecting servers
is also desirable if they belong to the same sub-network, M-
DCubei (i=bub/mc), as the destination server B.

From M-DCubeRouting, we obtain the following theorem.

Theorem 3. The diameter of an M-DCube(n,k) is 2×d(m +
1)/2e+1, where m=n/k.

PROOF. Given any two servers, A and B, in an m-dimensional
1-möbius cube, the weight of minimal expansion E(A+B) is
at most dm/2e since no two terms have adjacent indices, ac-
cording to Algorithm 2. The leftmost inapplicable term ti in

the minimal expansion is then replaced by a routing sequence
with a length of 2. This strategy ensures that no other inapplica-
ble terms exist in the routing path after replacing ti since EI−1
complements the bit a j+1 for any inapplicable term t j, where
j<i. Thus, Algorithm 3 ensures that the diameter of an m-
dimensional 1-möbius cube is d(m+1)/2e, and hence the short-
est path between any two servers in an M-DCube(n,k) traverses,
at most, d(m+1)/2e+1 switches. As mentioned in the proof of
Theorem 1, there is a one-hop transmission within each switch
and between two adjacent switches in the routing path. Thus,
Theorem 3 is proven.

4.2. Multi-paths for one-to-one traffic
Traditionally, two parallel paths between a source server

and a destination server exist if the intermediate servers and
switches on one path do not appear on the other. It is clear that
there exists, at most, two parallel paths for any pair of servers
under this strict definition due to the dual-port on each server.
In this paper, two paths are called parallel if the intermediate
switches on one path are not involved in the other path, except
for the beginning and ending switches. In addition, two neigh-
boring switches possess k pairs of directly connected servers.
To maximize the utility of such an advantage, a switch path
can be utilized as k weak parallel paths, which share the same
set of switches but have different intermediate servers. Such
parallel and weak parallel paths between any pair of servers
can be further utilized to improve the transmission rate or to
enhance the transmission reliability for one-to-one traffic with
Multipath TCP [26, 27]. In addition, Multipath TCP can ex-
plore such multiple paths to tackle traffic congestion, leading to
higher network utilization.

The following theorem specifies the exact number of paral-
lel paths and weak parallel paths between any two servers in a
DCube(n,k).

4.2.1. H-DCube
Theorem 4. There are m parallel and n weak parallel paths
between any two servers in an H-DCube(n,k), where m=n/k.

The m parallel paths between any two servers in an H-DCube(n,k)
can be simplified to m parallel switch paths since all inter-switch
sub-paths of two adjacent switches in the m paths are disjoint.
Thus, we can show the correctness of Theorem 4 by construct-
ing such m parallel switch paths. Algorithm 1 produces a short-
est switch path from A to B using any permutation of the mini-
mal expansion E(A+B), which contains e j for some 0≤ j≤m−1
but not E j for any 0≤ j≤m−1. In the minimal expansion of
A+B, W (A+B) distinct terms form an initial routing sequence,
resulting in W (A+B)! minimal routing sequences. Theorem 5
indicates that only W (A+B) parallel switch paths from A to B
can be generated.

Theorem 5. Let the minimal expansion E(A+B) generated by
the Expansion-hypercube be t1, t2, ..., tW (A+B). Algorithm 1 gen-
erates W (A+B) parallel switch paths from A to B using permu-
tations as follows. The ith permutation for 0≤i<W (A+B) is
denoted as p1, p2, ..., pW (A+B), where p j=t( j+i) mod W (A+B) for
1≤ j≤W (A+B).
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PROOF. Actually, these permutations are obtained by moving
each term of the initial routing sequence to the mod left by i,
for 0≤i<W (A+B), under the following two constraints. Firstly,
any pair of such permutations differ in the addition of leftmost
j terms for 1≤ j≤W (A+B). Secondly, the addition of any left-
most j terms is different from that of any left j′ terms where
j 6= j′ for each of these permutations. Thus, this pattern en-
sures that the resulting W (A+B) paths are disjoint except for
the source and destination switches; thus, the W (A+B) paral-
lel switch paths are produced. For example, e1e0 and e0e1 are
two minimal routing sequences, resulting in two parallel switch
paths between servers 〈000,0〉 and 〈011,0〉, as shown in Fig.2.
The resulting two parallel paths are {〈000,0〉, 〈000,1〉, 〈010,1〉,
〈010,0〉, 〈011,0〉} and {〈000,0〉, 〈001,0〉, 〈001,1〉, 〈011,1〉,
〈011,0〉}, respectively.

Assume that t ′h belongs to {em−1, · · · ,e1,e0} but does not
appear in the minimal expansion E(A+B). We achieve a new
routing sequence by appending t ′h to the leftmost and rightmost
terms of one existing routing sequence. This further results in
a switch path, which is parallel with the W (A+B) switch paths
generated in Theorem 5. For example, e2e1e0e2 or e2e0e1e2
produces another path, which is parallel with the two paths gen-
erated by e1e0 and e0e1, for two servers, 〈000,0〉 and 〈011,0〉,
as shown in Fig.2. The path generated by e2e1e0e2 is {〈000,0〉,
〈000,2〉, 〈100,2〉, 〈100,1〉, 〈110,1〉, 〈110,0〉, 〈111,0〉, 〈111,2〉,
〈011,2〉, 〈011,0〉}. The path resulting from e2e0e1e2 is {〈000,0〉,
〈000,2〉, 〈100,2〉, 〈100,0〉, 〈101,0〉, 〈110,1〉, 〈111,1〉, 〈111,2〉,
〈011,2〉, 〈011,0〉}.

Consider that m−W (A+B) terms in {em−1, · · · ,e1,e0} do
not appear in the minimal expansion E(A+B). Thus, we can de-
rive m−W (A+B) parallel switch paths with lengths of W (A+B)+2
using the same approach as mentioned above. Thus, we can
construct m parallel switch paths between two servers,, A and
B in an H-DCube(n,k). If we produce another switch path be-
tween A and B using a new routing sequence, at least one switch
in the new path has to have appeared on existing switch paths.
The root cause for this is that the leftmost and rightmost terms
of the new routing sequence must have to have appeared at
the beginning and/or end of the m previous routing sequences.
Thus, the largest number of parallel switch paths between any
pair of servers in an H-DCube(n,k) must be m.

After discussing the parallel switch paths between any pair
of servers in an H-DCube(n,k), we further consider the sub-
path between any adjacent switches in these paths. Algorithm 1
selects one pair of connecting servers for each pair of neighbor-
ing switches in any switch path so as to realize a path including
servers and switches. However, k weak parallel paths can be
produced based on a given switch path between two servers af-
ter updating line 6 with u= j×m+i for 0≤ j≤k−1. That is, each
one of the m parallel paths between two servers can be realized
as k weak parallel paths. For this reason, we can induce that
there are m×k=n weak parallel paths between any two servers.
Thus, Theorem 4 is proven.

4.2.2. M-DCube
Theorem 6. There are m parallel and n weak parallel paths
between any two servers in an M-DCube(n,k), where m=n/k.

We use a similar approach to show the correctness of The-
orem 6 by constructing such parallel paths and weak paral-
lel paths. Given two servers, A and B, in an M-DCube(n,k),
Expansion-mobius generates a minimal expansion of A+B in
the scenario of an m-dimensional möbius cube. It is worth
noticing that some terms in the minimal expansion may be in-
applicable to the current switch and should thus be replaced by
an equivalent routing sequence as defined in Theorem 2. To ad-
dress this issue, M-DCubeRouting generates an initial routing
sequence by invoking exact-routing with the minimal expan-
sion E(A+B) as input. Assume that the initial routing sequence
is denoted as t1, t2, ..., tl , where l≥W (A+B).

M-DCubeRouting can further generate some parallel switch
paths between servers A and B by using permutations of the
initial routing sequence. Any permutation on the initial routing
sequence forms a new routing sequence. For this reason, one
can conclude that there exists l! routing sequences, but only the
following ones can produce l parallel switch paths. Assume that
the ith permutation for 0≤i<l is denoted as p1, p2, ..., pl , where
p j=t( j+i) mod l for 1≤ j≤l.

The first challenging issue we face is the fact that terms in
each permutation of the initial routing sequence may be inap-
plicable to the current switch and should be revised according
to Theorem 2 so as to generate an applicable routing sequence.
The resulting applicable routing sequence can generate a new
switch path, which will be parallel with existing switch paths.
For example, the initial routing sequence for a shortest path
from server A=〈a2a1a0=000,0〉 to server B=〈100,0〉 in Fig.3
is E2E1, which is applicable. The first permutation of E2E1 is
it. The second permutation of E2E1 is E1E2, in which E1 is
inapplicable to A=000 since a2 = 0. As a result, E1E2 should
be replaced by e1E0E2.

Besides the l parallel switch paths, we will show how gener-
ate other m−l parallel switch paths between any servers, A and
B, in an M-DCube(n,k). Let t ′m denote any term, which belongs
to {em−1, · · · ,e1,e0}, but is not the leftmost term in the rout-
ing sequences defined by the above permutation operation. We
achieve a new routing sequence by appending t ′m to the leftmost
and rightmost terms of one existing routing sequence, which
further results in a new switch path. This switch path is parallel
to the l switch paths generated by the aforementioned l permu-
tations of the initial routing sequence. For example, the routing
sequence, e0E2E1e0, is achieved by appending t ′m=e0 to the be-
ginning and end of E2E1. It then generates a new path from
A=〈000,0〉 to B=〈100,0〉 in Fig.3. That is, {〈000,0〉, 〈001,0〉,
〈001,2〉, 〈110,2〉, 〈110,1〉, 〈101,1〉, 〈101,0〉, 〈100,0〉}.

The second challenging issue we face is the fact that ap-
pending a t ′m term to the leftmost and rightmost terms of an
existing routing sequence, for example the initial routing se-
quence t1, t2, ..., tl , does not necessarily result in a parallel path
in a general scenario. Actually, if t ′m appears at the end of an
existing routing sequence, then the last two switches, includ-
ing the destination switch, in the new switch path must have
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occurred in the related path.
To produce a parallel path based on t ′mt1, t2, ..., tlt ′m, we need

to find a t ′′m from t1, t2, ..., tl , which does not appear at the end
of those routing sequences defined by the above permutation
operation. If there exists such a t ′′m, we move it to the end of
t ′mt1, t2, ..., tlt ′m and optimize it so as to generate an applicable
and parallel path. Otherwise, we need to replace a given term
in t1, t2, ..., tl with an equivalent routing sequence, as defined in
Theorem 2, which contains such a t ′′m. We then move the t ′′m
to the end of the resulting routing sequence and optimize it so
as to generate an applicable and parallel path. Based on those
techniques, we can derive other m−l switch paths which are
parallel with the l switch paths generated by the above permu-
tation operation.

As discussed in the proof of Theorem 4, there are k pairs of
connected servers between any two neighboring switches. For
this reason, M-DCubeRouting produces k weak parallel paths,
based on one switch path between two servers, by updating line
5 with u= j×m+i for 0≤ j≤k−1. Thus, one can induce that the
m parallel paths between two servers can be realized as m×k=n
weak parallel paths; hence, Theorem 6 is proven.

4.3. Speedup for one-to-several traffic

A complete graph consisting of a set of servers can speed up
data replications in distributed file systems. We show that edge-
disjoint complete graphs with m+ 1 servers can be efficiently
constructed in a DCube(n,k).

Theorem 7. In a DCube(n,k), a server 〈src,us〉 and a set of m
servers can form an edge-disjoint complete graph, where each
of the m servers connects to a different neighboring switch of
the switch src.

In the case of H-DCube(n,k), the ith neighbor of switch
src is defined as src+ei for 0≤i<m. Assume that src+ei and
src+e j are two neighboring switches of the switch src, where
i 6= j. A switch path with a length of two from src+ei to src+e j
can be generated by a routing sequence, e jei, and is denoted as
{src+ei, src+ei+e j, src+ei+e j+ei=src+e j}. It is easy to see
that two different pairs of ei and e j cannot produce the same
result of ei + e j, where i6= j. Consequently, this pattern ensures
that the switch paths among a switch src and its m neighbors
are edge-disjoint.

In the case of M-DCube(n,k), the ith neighbor of switch src
is defined as src+ti for 0≤i<m, where ti is ei or Ei according to
the definition of an m-dimensional möbius cube. Assume that
src+ti and src+t j are two neighbors of the switch src, where
i 6= j. A switch path from src+ti to src+t j can be generated
by an initial routing sequence, t jti. In special cases, the result-
ing switch path is applicable and denoted as {src+ti, src+ti+t j,
src+ti+t j+ti=src+t j}. In general cases, each term in the initial
routing sequence might be inapplicable. To generate an appli-
cable switch path, each inapplicable term should be replaced
with an equivalent routing sequence consisting of two terms, as
defined in Theorem 2. For this reason, we can induce that the
applicable and shortest switch path from src+ti to src+t j is, at
most, four hops. In addition, we can see that two different pairs

of ti and t j cannot produce the same result of ti + t j, where i6= j.
That is, the switch paths among a switch src and its m neighbors
are edge-disjoint.

From the above construction approaches, we can see that
the resulting complete graph is only two switch hops and is, at
most, four switch-hops in H-DCube(n,k) and M-DCube(n,k),
respectively.

Given an edge-disjoint complete graph formed by the source
switch src and its m neighboring switches, each edge in the
complete graph should be replaced by a pair of connected servers
since two adjacent switches are not connected directly. It is
worth noticing that there are k pairs of connecting servers for
each edge in the complete graph. We only choose the pair of
servers, which are located in the same sub-network DCubei as
the source server, 〈src,us〉. The motivation is to separate the
traffic in k complete graphs for any server 〈src,us〉 into the
corresponding sub-networks. This operation ensures that the
whole paths among the source server and m selected servers,
including switches and servers, are still edge-disjoint.

We further show how to choose the m servers, denoted as d j
for 0≤ j≤m−1, for the source server 〈src,us〉. For the jth neigh-
boring switch of the switch src, we choose d j from n servers
connecting to that switch, such that d j locates in the same sub-
network DCubei as the source server, where i=bus/mc. In this
way, each d j has m choices since a switch allocates m of n
servers to each sub-network DCubei. In this paper, we just
randomly select d j from m choices and, we will study other
selection methods of d j in our future work.

So far, we have demonstrated that a complete graph can be
formed by the source server and a set of m selected servers in
the sub-network DCubei. Actually, we can generate k such
complete graphs for any server 〈src,us〉 by the following ap-
proach since a DCube(n,k) consists of k sub-networks DCubeis.
Assume that the selected server for d j in the sub-network DCubei,
is denoted as 〈src+t j,u j〉 for 0≤ j≤m−1. The corresponding
server 〈src+t j,u j+k×m〉 and the source server generate a new
complete graph in the kth sub-network DCubek, where k 6= i.

A file on distributed file systems can be divided into chunks,
and each chunk is typically replicated to three chunk servers.
The source and the chunk servers establish a pipeline to reduce
the replication time, as discussed in literature [10]. The edge-
disjoint complete graph that is built into DCube works well
for chunk replication speedup. When one writes a chunk to
r (r≤m+1) chunk servers, it sends 1/r of the chunk to each
chunk server. Meanwhile, every chunk server distributes its
copy to the other r−1 servers by using the edge-disjoint edges.
Consequently, this will be r times faster than the pipeline model.

5. Analysis and Evaluation

In this section, we conduct simulations to evaluate several
basic properties of DCube.They include the speedup for one-
to-one and one-to-several traffic patterns, aggregate bottleneck
throughput based on measurements of real-world data center
traffic from [28], the cost, the power consumption, and the ca-
bling complexity. We also compare the performance of DCube
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with not only Fat-tree but also DCell, HCN, Fat-tree and BCube,
which are three particularly enlightening server-centric data-
center structures. In the evaluation setting, the number of servers
in DCube ranges from 2048 to 12288, and the capacity of each
link is 1Gb/s. The setting matches the scale and configurations
of a typical containerized data center.

To ensure a fair comparison, such network structures inter-
connect the same number of servers, denoted as N, with switches
each of n ports. They, however, differ in the number of server
ports, the number of switches, the number of cables, and the
interconnection rules. DCell, HCN, and BCube are recursively
defined structures, whose levels are denoted by k1, k2 and k3,
respectively, where k1≤k3.

5.1. Speedup for one-to-one and one-to-several traffic

For the one-to-one and one-to-several traffic patterns, we
show the speedup as compared with other networking structure.
We first summarize the throughput of such two traffic patterns
under different networking structures in Table 1.

For any server pair, A and B, DCube(n,k) provides dn/ke
parallel and n weak parallel paths for them. These properties
not only speedup the one-to-one traffic, but also offer grace-
ful degradation of performance. We can see from Fig.4(a) that
DCube offers more parallel paths for any pair of servers than
HCN and BCube, as the network size increases from 2048 to
4096, 8192, and 12288. Although DCell possesses more paral-
lel paths for any server pair than DCube, DCube delivers large
number of weak parallel paths and hence achieves better speedup
performance for one-to-one traffic.

For any source server, we show that the complete graph can
significantly speedup the one-to-several traffic. Assume that
server A=〈000,2〉 in Fig.2 replicates 20G data to two servers,
B=〈010,2〉 and C=〈001,2〉. With the complete graph approach,
the data is split into two parts and sent to both B and C, respec-
tively. B and C then exchange their data with each other. On
the contrary, with the pipeline approach, A sends the data to
B, and B sends the data to C. The complete graph can achieve
about 2 times the speedup compared to the pipeline approach.
In general, when a source deliver a chunk to r servers in the
same complete graph, it sends 1/r of the chunk to each of the
server. Meanwhile, every chunk server distributes its copy to
the other r−1 servers using the disjoint edges in the complete
graph. This will be r times faster than the pipeline model. This
implies that DCube executes speedup well when it comes to the
one-to-several traffic pattern.

Recall that DCube can offer the largest complete graph of
size n/k+1. The largest cardinality of a complete graph in
DCell and BCube is k1+2 and k3+2, as proved in [29]. Fig.4(b)
plots the largest cardinality, r+1, of a complete graph for one-
to-several traffic in DCube, DCell, HCN and BCube. We can
see that DCube always outperforms others when the data center

Table 1: Comparison of M-DCube, DCell, HCN, Fat-tree, and BCube

Throughput M-DCube DCell HCN Fat Tree BCube
One to one 2 k1+1 2 1 k3+1
One to several n

k +1 k1+2 n 1 k3+2
All-to-all N

1/3×n/k
N

2k1
N

2/3×2k2
N N
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Figure 4: (a) Number of parallel paths and weak parallel paths. (b) Order of the
complete graph for one-to-several traffic.

size increases from 2048 to 4096, 8192, and 12288. This means
that DCube results in a higher speedup than DCell, HCN and
BCube for one-to-several traffic pattern.

5.2. Aggregate bottleneck throughput
Aggregate bottleneck throughput (ABT) is defined as the

number of flows times the throughput of the bottleneck flow
under the all-to-all traffic pattern [10]. ABT of Fat-Tree and
BCube are N since they achieve the nonblock communication
between any pair of servers. ABT of H-DCube and M-DCube
are proved in Theorem 8 and Lemma 1. ABT of Dcell is N/k1,
as proved in [29], while that of HCN is N

2/3×2k2
.

Fat-Tree and BCube outperform M-DCube in terms of the
ABT under all-to-all traffic pattern. Such a result is not sur-
prising since M-DCube utilizes much less switches, links, and
ports than the other two structures. We argue that the benefits
of H-DCube and M-DCube outweigh such a downside since it
is unlikely that all servers frequently participate in the all-to-
all communication. Moreover, M-DCube achieves higher ABT
than DCell and HCN since n/(3k) is typically less than 2k2+1/3
and 2k1 . Besides the above theoretical analysis, we also conduct
simulations, based on real-world data center traffic from [28],
to evaluate the ABT of three networking structures. We can see
from Fig.5 that DCube achieves higher ABT than DCell and
HCN, irrespective the data center size.

Theorem 8. For a H-DCube(n,k) network, its ABT under the
all-to-all traffic pattern is N

2/3×n/k , where n is the number of
ports per switch and N is the number of servers.

PROOF. The diameter of H-DCube(n,k) is 2×n
k +1, as we have

proved in Theorem 1. Accordingly, we can derive that the ex-
pected distance, i.e., the average path length, approximates to
n
k . The links in H-DCube(n,k) consist of two parts. Firstly, each
of N server connects to a switch using its first port and thus gen-
erates one link. The number of such links is N. Secondly, each
of N server connects with another server using its second port
and thus generates one link. The number of such links is N/2.
The total number of links in H-DCube(n,k) is 3N/2.

The number of flows carried in one link is fnum=
N(N−1)n/k

3N/2 ,
where N(N−1) is the total number of flows. The throughput
one flow receives is thus 1

fnum
, assuming that the bandwidth of

a link is one. The aggregate bottleneck throughput is therefore
N(N−1) 1

fnum
= N

2/3×n/k . Thus, Theorem 8 is approved.
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Lemma 1. For a M-DCube(n,k) network, its ABT under the
all-to-all traffic pattern is N

1/3×n/k , where n is the number of
ports per switch and N is the number of servers.

PROOF. The diameter of M-DCube(n,k) is 2×d(n/k+1)/2e+1,
as we have proved in Theorem 3. Accordingly, we can derive
that the expected distance approximates to n

2k . The proving pro-
cess of Lemma 1 is similar to that of Theorem 8.

5.3. Qualification of cost and cabling complexity
We first consider five networking structures for a container

with 2048 servers and many 8-port switches. Such structures
are constructed as follows. DCube structure is a DCube(8,1).
DCell is a partial DCell(8,2) with 28 DCell(8,1)s. HCN struc-
ture is a partial HCN(8,3) with 4 full HCN(8,2)s. BCube struc-
ture is a partial BCube3 with 4 full BCube2s, where n=8. Fat-
tree structure has five layers of switches, with layers 0 to 3
having 512 switches per-layer and layer-4 having 256 switches
[10]. In this setting, DCube, DCell, HCN, BCube and Fat-tree
employ 256, 252, 256, 1280 and 2304 8-port switches, while
the number of NIC ports on each server are 2, 3, 4, 4, and 1,
respectively. Note that a 8-port switch costs about $40 and con-
sumes near 4.5W of power. For one-port, two-port, and 4-port
NICs, their costs are about $5, 1$0, and $20, while the power
consumptions are about 5W, 7.5W, and 10W, respectively.

We then consider DCube, DCell, HCN and BCube for a
container with 4096, 8192, and 12288 servers, respectively. In
this setting, DCube structures are DCube(16,2) using 16-port
switches, DCube(32,4) using 32-port switches, and DCube(48,6)
using 48-port switches, respectively. DCell structures are par-
tial DCell(16,2)s with 15, 30 and 45 DCell(16,1)s using 16-port
switches, respectively. HCN structures using 8 ports switches
are a HCN(8,3), a partial HCN(8,4) with 2 HCN(8,3)s, and a
partial HCN(8,4) with 3 HCN(8,3)s, respectively. BCube struc-
tures with 8-port switches are a full BCube3, a partial BCube4
with 2 full BCube3s, and a partial BCube4 with 3 full BCube3s,
respectively. Note that BCubes with 4096, 8192, and 12288
servers may have different structures. For example, BCube
structures with 16-port switches are a full BCube2, a partial
BCube3 with 2 full BCube2s, and a partial BCube3 with 3 full
BCube2s, respectively. Note that a 16-port switch costs about
$150 and consumes 21W of power, a 32-port switch costs about
$400 and consumes 75W of power, while a 48-port switch costs
about $600 and consumes 103W of power.

Fig.6 summarizes the number of wires and switches, the
cost of switches and NICs, and the power consumption of switches
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Figure 6: Measuring networking structures under different sizes of data centers.

and NICs in such five networking structures with 2048, 4096,
8192, and 12288 servers, respectively. When DCell, HCN and
BCube structures are incomplete under some aforementioned
settings, we need to build partial structures. For a partial BCubei,
Guo et. al suggest that we build the needed BCubei−1s and then
connect the BCubei−1s using full layeri switches [10].

More precisely, Fig.7(a) and Fig.7(b) demonstrate that both
the number of NIC ports on servers and that of links of DCube
are always considerably less than that of BCube and DCell, ir-
respective the data center size. Thus, DCube largely reduces
the cabling complexity, especially for large containerized data
centers. Note that DCube and HCN achieve the similar per-
formance in terms of the two metrics since they interconnect
dual-port servers. Moreover, DCube has other advantages due
to the less number of wires and switches. As shown in Fig.6 and
Fig.8, DCube outperforms BCube, DCell and HCN in terms of
the entire cost and power consumption of switches and NICs,
irrespective the data center size. Additionally, we find that the
BCube structure with 16-port switches results in more cost and
power consumption compared to the BCube structure with 8-
port switches under the same number of servers.

5.4. Summary

DCube significantly reduces the required wires and switches
compared to Fat-tree and BCube, because of this, it largely re-
duces the cabling complexity compared to other structures, es-
pecially for large containerized data centers. On the other hand,
DCube considerably outperforms BCube in terms of the entire
cost and power consumption, irrespective the data center size.
Besides these benefits, the maximum throughput of DCube is
twice that of Fat-tree, but less than that of DCell and BCube
whose number of levels is typically larger than 2. For the one-
to-several traffic pattern, DCube achieves a higher speedup than
Fat-tree, DCell and BCube. Additionally, DCube achieve the
higher ABT than DCell and offers graceful degradation.
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Figure 7: The sum of NIC ports and links vary as the increasing servers in data
centers.

6. Discussions

6.1. Locality-aware task placement
Although the proposed network structures have many ad-

vantages, such as easy wiring and low cost, they may not be
able to achieve the same ABT as BCube under the all-to-all traf-
fic pattern. Recall that BCube offers many NIC ports for each
server and utilizes large numbers of switches so as to achieve a
higher ABT; hence, significantly bringing about more cost and
power consumption. In fact, the relatively lower ABT of DCube
compared to BCube results from the lower number of links and
switches, resulting in a longer average routing path; this is the
tradeoff of other measurements. Fortunately, this issue can be
addressed by some techniques at the application layer since a
server is likely to communicate with a small subset of other
servers for typical applications in common data centers.

Therefore, a locality-aware approach can be used for plac-
ing those tasks onto servers in DCube. That is, those tasks with
intensive data exchanges can be first placed onto servers that
connect to the same switch. If those tasks need some more
servers, they may reserve the several nearest basic building blocks.
There are only a few switch-hops, maybe even one, between
those building blocks. It is easy to see that DCube is usu-
ally sufficient enough to contain hundreds of servers where the
number of switch hops is, at most, two. Therefore, the locality-
aware mechanism can largely save network bandwidth by avoid-
ing unnecessary remote data communications.

6.2. Extension to more server interfaces
The basic idea of this paper is to design a family of net-

work structures for containerized data centers using constant
number of embedded NIC interfaces. Although we assume that
all servers are equipped with two built-in NIC interfaces, the
design methodologies of DCube can be easily extended to in-
volve any constant number, denoted as q, of server interfaces.
In fact, servers with four embedded NIC interfaces have been
made available due to the rapid innovation on server hardware.

Given any server with q interfaces, it can contribute q−1
interfaces for interconnecting other basic building blocks after
reserving one port for connecting to switch. Intuitively, a server
with q ports can be treated as a set of q−1 dual-port servers. In
this way, we can extend DCube to embrace any constant num-
ber of server ports. Additionally, each server can contribute its
q−1 interfaces as a virtual interface by the port trunking [18],
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Figure 8: The cost and power consumption of switches and NICs under differ-
ent settings.

e.g., three 1Gbps interfaces can be bundled into a virtual in-
terface at 3Gbps. In this way, the link capacity between two
servers can be significantly improved. There may exist many
specific ways for interconnecting servers with a constant node
degree of more than 2. We leave this research issue to be the
focus of our future work.

6.3. Impact of server routing
Server routing is a challenging issue faced by server-centric

networking structures for data centers. In a DCube structure,
servers connecting to other basic building blocks have the re-
sponsibility of forwarding packets. Although DCube can use
software-based or FPGA-based forwarding schemes, just as ini-
tial server-centric structures do, it incurs additional forwarding
delay.

To address the latency due to server routing using software-
based or FPGA-based forwarding schemes, Guo et. al pro-
posed ServerSwitch [14]. It integrates the programmable com-
modity switching chip into a built-in NIC for packet forward-
ing and leverage the CPU and RAM of server for in-network
packet processing and storage. Since ServerSwitch is easily
configured and it can forward packets at line-rate, we can eas-
ily re-configure ServerSwitch to forward self-defined packets
for DCube without any hardware re-designing. Recently, more
hardware-based commodity devices have been implemented to
support server routing by reducing the forwarding latency.

7. Conclusion

We present DCube, a family of low-cost and robust net-
work structures for containerized data centers with dual-port
servers and commodity switches. It offers high degrees of reg-
ularity and symmetry, which very well conform to container-
ized data centers. These benefits are obtained at the cost of
only associating with each server only two links, regardless
of the network size. This largely reduces the cabling com-
plexity of the containerized data center. In addition, DCube
achieves a higher speedup than BCube for one-to-one and one-
to-several traffic patterns. Moreover, DCube exhibits a graceful
performance degradation as the server and switch failure rate
increases. Although this paper first considers that all servers
are equipped with two built-in NIC ports, the design method-
ologies of DCube can be easily extended to any number of NIC
ports after minimal modifications.
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