

False Negative Problem
of Counting Bloom Filter

Deke Guo, Member, IEEE, Yunhao Liu, Senior Member, IEEE, Xiangyang Li, Senior Member, IEEE,

and Panlong Yang, Member, IEEE

Abstract—Bloom filter is effective, space-efficient data structure for concisely representing a data set and supporting approximate

membership queries. Traditionally, researchers often believe that it is possible that a Bloom filter returns a false positive, but it will

never return a false negative under well-behaved operations. By investigating the mainstream variants, however, we observe that a

Bloom filter does return false negatives in many scenarios. In this work, we show that the undetectable incorrect deletion of false

positive items and detectable incorrect deletion of multiaddress items are two general causes of false negative in a Bloom filter. We

then measure the potential and exposed false negatives theoretically and practically. Inspired by the fact that the potential false

negatives are usually not fully exposed, we propose a novel Bloom filter scheme, which increases the ratio of bits set to a value larger

than one without decreasing the ratio of bits set to zero. Mathematical analysis and comprehensive experiments show that this design

can reduce the number of exposed false negatives as well as decrease the likelihood of false positives. To the best of our knowledge,

this is the first work dealing with both the false positive and false negative problems of Bloom filter systematically when supporting

standard usages of item insertion, query, and deletion operations.

Index Terms—Bloom filter, false negative, multichoice counting Bloom filter.

Ç

1 INTRODUCTION

A Bloom filter (BF) [1] is a space-efficient data structure
for representing a set and supporting membership

queries. It outperforms other efficient data structures such
as binary search trees and tries, as the time needed to add
an item or check whether an item belongs to the set is
constant irrespective of the cardinality of the set. For these
advantages, BF has been extensively used in database as
well as networking applications [2], [3], Web cache sharing
[4], and routing on overlay networks [5], [6], [7]. Moreover,
BF has great potential to summarize streaming data in the
main memory [8], store the states of a large number of flows
in the on-chip memory of the routers [9], and speed up the
statistical-based Bayesian filters [10]. To make it more
effective and efficient, BF has been improved from different
aspects for a variety of applications. Some important
variations include the compressed Bloom filter [11], count-
ing Bloom filter (CBF) [4], distance-sensitive Bloom filter

[12], space-code Bloom filter [13], spectral Bloom filter [14],
generalized Bloom filter [15], and Bloomier filter [16].

Despite the aforementioned benefits offered by BF, a BF
may yield a false positive due to hash collisions for which it
wrongly determines that an item belongs to a data set when
the item is actually not. The cause is that all bits related to
the item were previously set to 1 by other items in the data
set. A possible way to deal with hash collisions is to design
perfect hash functions. This is only possible for a static data
set without item insertion and deletion after deployment. In
reality, however, BF and its variants are widely used to
represent both static and dynamic data sets. This means that
the data set is often unknown in advance, therefore, it is
impossible to design perfect hash functions. Thus, the false
positive is unavoidable in a BF and its variants, and hence,
many efforts were made to reduce the probability of false
positive during the past years [17], [18], [19], [20].

For a static data set X, it is not allowed to perform data
insertion or deletion operations after we represent it as a BF.
Thus, the bit vector of a filter always reflects the data set
correctly. The membership queries based on BF never
produce a false negative in this scenario. By handling a
dynamic data set, a deletion operation might hash an item
to be deleted and resets the related bits to 0. It may set a
location to 0 to which it is also hashed by other items in the
set X. In such a case, the filter no longer reflects the data set
correctly, thus, producing a false negative. To address the
problem, Fan et al. [4] propose the CBF in which each entry
is not a single bit but rather a small counter consisted of
several bits. When an item is added (or deleted), the
corresponding counters are incremented (or decremented,
respectively). By assuming that false negatives rarely happen
for a CBF, researchers thus pay less attention to false
negative problem of CBF. In this work, we reveal that a CBF

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. 5, MAY 2010 651

. D. Guo is with the Key Laboratory of C4ISR Technology, School of
Information Systems and Management, National University of Defense
Technology, Changsha 410073, China. E-mail: guodeke@ieee.org.

. Y. Liu is with the Computer Science Department, Hong Kong University of
Science and Technology, Hong Kong, China. E-mail: liu@cse.ust.hk.

. X. Li is is with the Institute of Computer Application Technology,
Hangzhou Dianzi University, Hangzhou Zhejiang, China, and the
Department of Computer Science, Illinois Institute of Technology, Sturt
Building, 237D, 10 West 31st Street, Chicago, IL 60616.
E-mail: xli@cs.iit.edu.

. P. Yang is with the Institute of Communication Engineering, P.L.A.
University of Science and Technology, PO Box 110, Nanjing Jiangsu,
China. E-mail: plyang@computer.org.

Manuscript received 25 Mar. 2009; revised 5 Oct. 2009; accepted 11 Oct.
2009; published online 4 Dec. 2009.
Recommended for acceptance by S. Greco.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-2009-03-0200.
Digital Object Identifier no. 10.1109/TKDE.2009.209.

1041-4347/10/$26.00 � 2010 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on April 05,2010 at 23:26:31 EDT from IEEE Xplore. Restrictions apply.

indeed can result in false negative items in many network-
ing applications. In many cases, the false negative is more
serious than the false positive because it wrongly decides
that an item does not belong to a data set when it does, and
rejects desired objects, leading to intolerable consequences
[8], [21], [22].

To the best of our knowledge, we are the first to explore
the root cause of the false negative problem of CBF in
standard usage of item insertion, query, and deletion
operations. We also measure the potential and exposed
false negative items from the aspects of theory and practice.
We propose two principles to minimize the number of
exposed false negative items. We also design a variant of
CBF to reduce the number of exposed false negative items.
Out contributions are as follows:

1. We show that a false positive can trigger a deletion
of a false positive item and result in at least one
multiaddress item. Both cases cause an incorrect
item deletion operation and lead to potential false
negative items.

2. We reveal that the resulting false negative items are
usually not fully exposed in consequent queries. We
also measure the potential and exposed false negative
items caused by an incorrect item deletion operation.

3. We propose two principles to make potential false
negatives unexposed whenever possible. Our design
is able to increase the ratio of bits set to a value larger
than one in a BF without decreasing the ratio of bits
set to zero.

4. We propose an enhanced BF scheme, which can
reduce about 50-80 percent of exposed false negative
items in BF. Through extensive experiments and
mathematical analysis, we show that our design
achieves the desired properties.

The rest of the paper is organized as follows: Section 2
briefly introduces the BF and related work, and discusses the
root cause of false negative items in a CBF. Section 3
measures the potential and exposed false negatives. Section 4
presents a variant of CBF. We discuss our experimental
methodology and evaluate this design in Section 5, and
finally, conclude the work in Section 6.

2 PRELIMINARIES

We first review some related concepts of Bloom filers and
then discuss why false negative items can happen in counting
Bloom filers. Some related works are also briefly reviewed.

2.1 Bloom Filter and Counting Bloom Filter

A set X of n items is represented by a BF using a vector of
m bits, which are initially set to 0. A BF uses k independent
random hash functions h1; h2; . . . ; hk with a range f1; . . . ;mg.
When inserting an item x in X, all bits of a Bloom filter
address BfaddressðxÞ (consisted of k addresses hiðxÞ for
1 � i � k) will be set to 1. To answer a membership query for
any item x, users check whether all bits hiðxÞ are set to 1. If
not, x is not a member of X. If yes, we assume that x is a
member of X, although we might be wrong in some cases.
Hence, a BF may yield a false positive due to hash collisions in
which all bits of BfaddressðxÞ were set to 1 by other items in

set X [1]. In BF, no item deletions are allowed. CBF [4]
provides a way to implement a delete operation on a BF
without regenerating the filter afresh. In a CBF, each item of
its bit vector is extended from being a single bit to being a
nL-bits counter, and L ¼ 4 usually suffices.1 The operation
of item insertion is extended to increment the value of each
respective counter (defined by hiðxÞ) by 1. The operation of
item deletion decrements the value of each respective
counter by 1.

Once a data set X is represented as a BF, user can
determine whether an item x 2 X by querying the filter
instead of set X. A membership query based on BF
produces one of the following results:

1. The judgment always matches the fact. In other
words, if x 2 X, then 8i 2 f1; 2; . . . ; kg and we have
hiðxÞ 6¼ 0; and if x 62 X, then 9i 2 f1; 2; . . . ; kg such
that hiðxÞ ¼ 0.

2. Although x does not belong to X, the judgment
returns a reversed result, called a false positive
judgment. In other words, if x 62 X, then 8i 2
f1; 2; . . . ; kg satisfying that hiðxÞ 6¼ 0. Here, x is
called a false positive item.

3. Although x belongs to X, the judgment returns a
reversed result, called a false negative judgment. In
other words, if x 2 X, then 9i 2 f1; 2; . . . ; kg satisfy-
ing that hiðxÞ ¼ 0. Here, the item x is called a false
negative item.

Let n be the number of items in the setX, and p denote the
probability that a random bit of the corresponding BF is 0. By
assuming that all hash functions produce values uniform
randomly from ½1;m�, clearly p ¼ ð1� 1=mÞkn � e�n�k=m, as
n� k bits are randomly selected, with probability 1=m in the
process of adding each item. The probability that a random
bit is 1 is therefore 1� ð1� 1=mÞkn. Now we test membership
of an item x1 that is not in X. Each of the k bits of the
Bfaddressðx1Þ is 1 with a probability as above. The probability
of all of the k bits being 1, which would cause a false positive,
is then

fðm; k; nÞ ¼ ð1� pÞk � ð1� e�k�n=mÞk: ð1Þ

These results about the membership query based on BF
also hold for the membership query based on CBF. Recall
that the basic component of a CBF is a counter instead of a bit.
Unless explicitly stated, we use the notations defined for BF
to explain the same concept in CBF in the rest of the paper.

2.2 Related Work

It is well known that false negative items do not arise in a
BF if the BF always correctly reflects the membership
information of a data set represented by it. Unfortunately,
this essential condition is often destroyed by many
nonstandard behaviors.

A BF is replicated by multiple nodes to support efficient
protocols in distributed systems. The replicas might become
stale because the changes of a BF cannot be spread quickly
to all replicated BFs. Hence, false negative items are

652 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. 5, MAY 2010

1. When k is chosen as optimal, ln 2 � mn , L ¼ 4 suffices since the
average load of a counter is ln 2 and the probability that a counter has
load 15 ¼ 24 � 1 is around 6:8� 10�17.

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on April 05,2010 at 23:26:31 EDT from IEEE Xplore. Restrictions apply.

produced. The false negative and false positive in the stale
replicas of a BF are analyzed in [22].

BF is widely used to represent stream data since the
allocated space is rather small compared to the size of the
stream. When a large number of items arrive, the false
positive rate increases to an unreasonable value quickly. To
address this issue, the stable BF [8] attempts to drop the
older data by randomly evicting some information from it
even they do not know which part is stale.

Based on the following two assumptions, the retouched
BF [21] removes entire false positives or partial serious false
positives by resetting individually chosen bits to 0. First, all
false positives and those serious ones can be identified after
the BF has been constructed. Second, the application can
tolerate false negative items. The retouched BF decreases or
avoids false positives, but actively produces many false
negative items. Note that it is uncommon for applications to
satisfy these two assumptions, especially the second one.

In summary, the stable BF and retouched BF adopt
specific bit cleaning operations to deal with application-
specific problems, yet introduce many false negative items.
These are essentially nonstandard usage of BF. If those
applications use CBF instead of BF, the nonstandard
behaviors will produce similar results. In this work, we
find that a CBF might produce false negative items even in
standard usages of item insertion, query, and deletion
operations. Specifically, we discuss false negative items
caused by an incorrect item deletion operation triggered by
once false positive in a CBF.

2.3 False Negative Items in Counting Bloom Filters

It is well known that CBF supports item deletion operation
at the cost of consuming more spaces than BF. Many
researchers have studied the scenario where item deletions
occur and are always correct. A common precondition is that
a data set is stored together with a corresponding CBF to
ensure that only the deletion instructions of items in the data
set are set to the CBF. That is, an item can be deleted from a
CBF only if it has been inserted into it. This precondition,
however, generally is not satisfied because it deviates from
the objective to replace a data set with a CBF, especially in
some network applications as follows: These applications
just maintain a CBF without keeping the data set.

As mentioned in [9], routers and networking devices are
likely to evolve to be more application-aware. Many
existing routers and switches begin to monitor traffic flows
by keeping state about TCP connections for security
violations and to steer traffic based on packet content.
Specifically, the intrusion detection devices and packaged
firewalls keep state for each TCP connection in order to
detect security violations. The application level QoS devices
track the state of each flow to provide more discriminating
QoS to applications by steering traffic based on packet
content, such as video congestion control [23] and identify-
ing Peer-to-Peer traffic [24]. For high-speed networking
devices, the challenge to track state for each flow on-chip
without resorting to slow off-chip memories is the limited
on-chip memory. For example, consider a router keeping
track of 1,000,000 (a number found in many studies [25])
TCP connections. If 100 bits are used to track each
connection, it costs 100 Mbits memory, which is impractical
using on-chip memory.

To deal with such challenging issues in many networking
applications, Bonomi et. al use a CBF to track the state of the
same number of concurrent flows such that the needed on-
chip memory can be reduced by a factor of 5-20 Mbits in [9].
Here, it is unnecessary and impractical for a networking
device to store states of flows together with a corresponding
CBF. In such scenarios, the CBF cannot ensure that only the
item, which has been inserted into it, can be deleted from it.
That is, the CBF reduces the value of each respective counter
by 1 when it receives a deletion instruction for a false positive
item, and thus, produces possible false negative items.

Throughout the paper, we call this type of item deletion
as incorrect deletion of a false positive item. In reality, several
intentional or unintentional behaviors might trigger an
incorrect item deletion. For example, adversaries can issue
an instruction to delete an item x after detecting that x is a
false positive item, and intentionally produce potential false
negative items. For another example, the id of a flow is
inserted into a CBF when its first packet arrives, subsequent
packets check whether the flow has been recorded, and the
flow is deleted when the last packet is processed. In some
cases, a network device might receive a subset of packets
without the first packet of a flow. If the id of this flow is a
false positive item, the last packet can result in false
negative items unintentionally.

We also find that an item deletion in a CBF might be
incorrect due to the multiaddress problem even when the
item has been inserted into the CBF. This kind of item
deletion might cause potential false negative items, and is
referred as the incorrect deletion of a multiaddress item. In
reality, we are aware of at least the following representative
scenarios about this kind of incorrect deletion.

First, a CBF may respond multiple BfaddressðxÞ for a
query with an itemx 2 X as input. For example, Bonomi et al.
use a CBF to store and track the states of many flows
associated with unique flow-id at network devices [9]. They
append the state value of a flow to the flow-id as an item, and
then add it in a CBF. When the state of a flow is retrieved or
updated, one must perform a membership query for each
combination of the flow-id and possible state value. In such a
situation, a flow may appear to have multiple states because
of one or more false positives in the CBF. It is difficult for the
CBF to determine which is the right one. Thus, a state update
operation may cause a wrong item deletion operation, and
then results in false negative items. In reality, each flow
transmits its state frequently during its life cycle, and the
number of flows tracked by a network device could be huge.
Thus, the number of cumulative false negative items is no
trivial, and their impact cannot be omitted.

Second, it seems that multiple CBFs represent a same
item even if only one CBF does so in several variants of
CBF, such as the dynamic CBF and scalable CBF [17],
[20]. A dynamic CBF uses a CBF to represent a dynamic
data set. If the cardinality of the dynamic data set reaches
a predefined threshold, it will allocate another CBF to
represent the following data items, and so on. An item x
belonging to the dynamic data set may appear in multiple
CBFs due to the false positives, and a CBF might wrongly
delete the item x, leading to false negative items. A
scalable CBF adopts a similar concept and suffers the
same problem.

GUO ET AL.: FALSE NEGATIVE PROBLEM OF COUNTING BLOOM FILTER 653

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on April 05,2010 at 23:26:31 EDT from IEEE Xplore. Restrictions apply.

In summary, the incorrect deletion of a false positive
item, or a multiaddress item, is the root causes of false
negative items in a CBF and its variants. They affect the CBF
and its variants in the same way by decrementing the value
of respective counters, and are equivalent in nature. The
only difference is that the incorrect deletion of a false
positive item is undetectable, while the incorrect deletion of a
multiaddress item is detectable in advance. In this work, we
only focus on the false negative problem in the CBF and
leave the study of the same issue in variants of the CBF as a
future work.

3 MEASUREMENT OF FALSE NEGATIVE ITEMS

In this work, we only discuss the incorrect deletion of a false
positive item since it is equivalent to the incorrect deletion
of a multiaddress item. Specifically, we first measure the
expected value of the number of false negative items caused
by an incorrect deletion of a false positive item. We observe
that the potential false negative items may not be exposed
to the upcoming membership queries immediately. In-
spired by the observation, we also measure how many false
negative items will be exposed in theory and practice. We
finally propose two principles to reduce the number of
exposed false negative items, even make all potential false
negative items unexposed.

Before measuring the false negative items, we review the
four rules to delete an item x from a respective CBF of a
set X as follows:

1. If a membership query for an item x 2 X responses a
right judgment, the CBF performs the item deletion
operation by decrementing respective counters by 1.

2. If a membership query for an item x 2 X responses a
false negative, the CBF rejects the item deletion
operation. It shows that the CBF does not reflect the
set X correctly.

3. If a membership query for x 62 X responses a right
judgment, the CBF omits the item deletion operation.

4. If a membership query for x 62 X responses a false
positive judgment, the CBF still performs the item
deletion operation. Consequently, the CBF does not
represent the set X correctly after the operation.

The event mentioned in the fourth rule is the root cause of
subsequent false negative judgments, and furthermore, it can
bring in the event illustrated in the second rule. According to
(1), the false positive probability of a CBF should decrease in
theory if it performs an item deletion operation. Thus, the
second rule may increase the false positive probability of a
CBF as an item is not deleted, although it should be deleted.
In summary, the fourth rule not only produces false negative
items directly but also may increase the probability of false
positive judgments indirectly.

3.1 Potential False Negative Items in Theory

Given a set X and its CBF, an incorrect deletion of a false
positive item causes the affected counters decrease at least
by 1. The resulting false negative items will be found
through the following steps: First, we delete each item,
whose CBF address overlaps with those affected counters
and all counters of its CBF address are larger than 0, from
the CBF and X correctly. Second, we perform a round of set

membership queries for each remaining item in set X based

on the CBF. Some false negative items will be found. Those

false negative items are called the potential false negative

items due to an incorrect item deletion operation.
In the following discussions, we measure the number of

potential false negative items due to an incorrect item

deletion, and then due to multiple incorrect item deletions,

respectively.

Lemma 1. The number of potential false negative items due to an

incorrect item deletion (no incorrect item deletions have been

performed before) is a discrete random variable, denoted by Y .

Its possible values are the integers ranging from 1 to k.

Proof. Given any x1 62 X, its CBF address consists of

counters hiðx1Þ for 1 � i � k, denoted by Bfaddressðx1Þ.
Let us define a subset Xi � X for each counter hiðx1Þ,
where Xi contains the item x 2 X such that the CBF

address BfaddressðxÞ involves the counter hiðxÞ. If the

CBF occurs an incorrect deletion for the item x1, the

value of each counter hiðx1Þ, 1 � i � k, is larger than 0

before the deletion operation, and is decreased by 1 after

the deletion operation.
To expose the potential false negative items caused by

the false deletion, let’s delete an item of any subset Xi for
1 � i � k if each counter in its CBF address is >0. We will
thus decrease respective counters by 1. Note that if the
item is also in other subsets, it should be removed from
those subsets. The CBF repeats the deletion operation
until all counters of hiðx1Þ for 1 � i � k are 0. By now,
each subset Xi for 1 � i � k still contains one item (they
may overlap). The reason is that, for the surviving item x
of the subset Xi where 1 � i � k, at least one counter of
the BfaddressðxÞ has been destroyed by the deletion of
item x1. Thus, the deletion operation of the surviving x
was taken over by the second item deletion rule, not the
first one.

The cardinality of the union of the k subsets is
indeed the number of false negative items caused by
the incorrect deletion of x1. It is a discrete random
variable, and the possible values can been shown as
follows: If the intersection of the k subsets is not empty
initially, and the deletion operations of all the common
items among k subsets have been taken over by the
first kind of item deletion rule, the value of Y is k. If
the deletion of one common item was taken over by the
second kind of item deletion rule, then the value of Y
is 1. Assume that the intersection of the k subsets is an
empty set, but the intersection of k� 1 subsets is not an
empty set. If the deletion of one common item among
k� 1 subsets was taken over by the second kind of
item deletion rule, then the value of Y is 2. And so on
and so forth, the value of Y can be 3; 4; . . . ; k� 1. Thus,
Lemma 1 holds. tu

Theorem 1. Let i denote the possible values of the discrete

random variable Y . The probability mass function of Y is

P ðY ¼ iÞ ¼
i!
P

z

Qi
j¼1

k
aj

� �
k�
Pj�1

l¼1
al

aj

� �

Pk
i¼1 i!

P
z

Qi
j¼1

k
aj

� �
k�
Pj�1

l¼1
al

aj

� � : ð2Þ

654 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. 5, MAY 2010

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on April 05,2010 at 23:26:31 EDT from IEEE Xplore. Restrictions apply.

Proof. Assume that i represents the possible value of Y , and

all aj for 1 � j � i are integers satisfying that
Pi

j¼1 aj ¼ k.

Let Yi denote the event that Y ¼ i, and means that i items

are deleted due to the second item deletion rule and

appeared as i false negative items. We need know the

number of mutually exclusive outcomes that can produce

the event Yi.
Consider an experiment clustering the k bits to form

i clusters, denoted by ci. The integer k can be decom-
posed as the sum of i integers, and usually exists
multiple different decomposition results. For each
possible result,

1. The number of possible outcomes of the experi-
ment is

Yi

j¼1

k�
Pj�1

l¼1 al
aj

 !
:

2. Consider an experiment that establishes a bijective
mapping between the number of i items and the
i clusters. The number of possible outcomes is i!.

3. Based on the former steps, for a cluster ci and its
related item x, let us consider an experiment that
establishes a bijective mapping between the CBF
address BfaddressðxÞ and the ai bits of the cluster.
The number of possible outcomes is ð kaiÞ.

We then can calculate the number of possible out-

comes of the experiment for each decomposition result,

and it is i!
Qi

j¼1 ð kajÞð
k�
Pj�1

l¼1
al

aj
Þ. Let us calculate such value

for other decomposition results of integer k using the

same method. Then, the number of possible outcomes of

the experiment to decomposing k as i clusters is

i!
X

Pi

j¼1
aj¼k

Yi

j¼1

k

aj

� �
k�

Pj�1
l¼1 al

aj

 !
:

Let z denote that
Pi

j¼1 aj ¼ k. Similarly, we can calculate

the number of possible outcomes for different i. Then,

the probability of Yi is given by (2). tu

Corollary 1. The expectation of Y can be calculated by

E½Y � ¼
Pk

i¼1 i� P ðY ¼ iÞ.

Corollary 1 shows the expectation of the number of

potential false negative items caused by an incorrect item

deletion in theory. We find that some (or even all) potential

false negative items are not exposed if respective counters

in a CBF are still larger than 0 after the incorrect item

deletion. On the other hand, the number of potential/

exposed false negative items increases as the number of

incorrect item deletion performed by the CBF increases.
Similar to the proof of Theorem 1, we have the following:

Corollary 2. The number of cumulative potential false negatives

caused by � undetectable incorrect item deletions is a discrete

random variable. Its possible values are integers ranging from

� to �� k. Its expectation is given by �� E½Y �.

3.2 Exposed False Negative Items in Theory

In reality, we find that the potential false negative items
caused by an incorrect item deletion often are not exposed
simultaneously to future queries for remaining items in
set X. The reason is that only one incorrect item deletion
might not cause all affected counters reaching 0. The
exposed false negative items show more realistic effect of
an incorrect item deletion than the potential ones. We thus
measure this new metric in theory in this section. Before in-
depth analysis, we first introduce several definitions that
will be used by later measurements.

Definition 1. Given a set X of n items and a random counter in
a CBF, the events An

>i, A
n
<i, and An

¼i denote that the value of
the related counter is larger than i, less than i, and equal to i,
respectively. The combination of the three events can produce
new events An

	i and An
�i.

The probability of the event An
¼0 can be calculated by

P ðAn
¼0Þ ¼ ð1� 1=mÞkn. The probability of the event An

¼1 can
be calculated by

P
�
An
¼1

�
¼ kn

1

� �
ð1� 1=mÞkn�1

m
:

The probability of the event An
	1 can be calculated by

P ðAn
	1Þ ¼ 1� P ðAn

¼0Þ.
We first study the probability that the potential false

negative items, due to one and only one incorrect item
deletion, are exposed or not. We then examine the
expectation of the number of exposed false negative items
caused by the incorrect deletion of one or multiple items.

Theorem 2. For an event that all potential false negative items,
caused by an incorrect deletion of an item x1 62 X, are not
exposed to queries for all items in set X, its probability is

�
1� ð1� 1=mÞkn�kÞ

�k ¼
�
P
�
An�1
	1

��k
: ð3Þ

Proof. If the CBF covers up all the potential false negative
items after the incorrect deletion of an item x1, all counters
corresponding to Bfaddressðx1Þ must be larger than 1
before deleting the item x1. It is obvious that the
construction process of the CBF is equivalent to throwing
kn balls inm bins randomly. The event can be explained as
follows: The bins Bfaddressðx1Þ are put k balls such that
each bin holds one ball. Other kn�k balls are thrown in the
m bins including the bins Bfaddressðx1Þ randomly. The
probability that each bin in Bfaddressðx1Þ is hit at least once
by the subsequent kðn� 1Þ balls is given by (3). tu

Theorem 3. For an event that a query for any item in the set X
discovers one of potential false negative items caused by an
incorrect deletion of an item x1 62 X, its probability is

Xk

i¼1

k

i

� �
P
�
An�1
¼0

�i
P
�
An�1
	1

�k�i
1� 1� i

m� P
�
An
	1

�
 !k

0
@

1
A:

ð4Þ

Proof. According to the definition of this event, at least one
counter among Bfaddressðx1Þ is set to 1 and others are set
to an integer larger than 1. The event defined in this

GUO ET AL.: FALSE NEGATIVE PROBLEM OF COUNTING BLOOM FILTER 655

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on April 05,2010 at 23:26:31 EDT from IEEE Xplore. Restrictions apply.

theorem can be explained as follows: First, let E1 denote
an event that exactly i counters among the counters
Bfaddressðx1Þ are set to 1 and other counters are set to
some integers larger than 1 for 1 � i � k. That is, each bin
among the bins defined by Bfaddressðx1Þ is put a ball
first, and i bins among the bins Bfaddressðx1Þ are not hit
(other k� i bins in Bfaddressðx1Þ are hit by balls) during
throwing kðn� 1Þ balls in the m bins. Its probability is

k

i

� �
P
�
An�1
¼0

�i
P
�
An�1
	1

�k�i
:

Second, on the basis of E1, let us consider another
event E2 that j hash functions hash the item x to the
i counters that were set to 1 among the Bfaddressðx1Þ,
and other k� j hash functions map the item x to other
counters set to nonzero among the m bits. We can infer
that 1 � j � k, and the probability of the event E2 is

Xk

j¼1

k

j

� �
i

m� P
�
An
	1

�
 !j

1� i

m� P
�
An
	1

�
 !k�j

¼ 1� 1� i

m� P
�
An
	1

�
 !k

:

Based on the conditional probability and total prob-
ability formulas, the probability that a subsequent set
membership query will discover a false negative item
can be calculated by (4). This finishes the proof. tu

Theorem 4. The number of false negative items, caused by an
incorrect deletion and exposed to queries for all items in the set
X, is a discrete random variable, denoted by Z. Its possible
values are integers in ½1; k�. Its probability mass function is

P ðZ ¼ iÞ ¼ k

i

� �
P
�
An�1
¼0

�i
P
�
An�1
	1

�k�i
: ð5Þ

Proof. We assume that a false positive item x1 62 X is
deleted incorrectly from a CBF representing the set X
with n items. Let E1 denote an event that exactly
i counters among the Bfaddressðx1Þ are set to 1 and
other counters are set to some integers larger than 1. That
is, each bin among the bins Bfaddressðx1Þ is put a ball
first, and i bins among the bins Bfaddressðx1Þ are not hit
(other k� i bins in Bfaddressðx1Þ are hit) during throw-
ing kðn� 1Þ balls in the m bins. Thus, i counters among
the Bfaddressðx1Þ will become zero after deleting the
item x1 incorrectly from the CBF. According to the proof
of Theorem 1, the i counters are mapped to i false
negative items with high probability (w.h.p.). On the
other hand, the values of i range from 1 to k.

The probability of E1 is k
i

� �
P ðAn�1

¼0 Þ
iP ðAn�1

	1 Þ
k�i. Thus,

(5) defines the probability mass function of Z. tu
Corollary 3. The expectation of Z is

E½Z� ¼
Xk

i¼1

i� P ðZ ¼ iÞ: ð6Þ

The expectation of exposed false negative items due to �
incorrect item deletions is �� E½Z�.

3.3 Potential and Exposed False Negative Items in
Practice

The hash functions are the fundamental factors which
influence the distribution of the number of exposed false
negative items. The ideal CBF makes the natural assump-
tion that the hash functions can map each item in the
unknown universe to a random number over the range
f1; . . .mg uniformly. In reality, this assumption is too strict
to achieve; thus, it is very difficult to implement a CBF
which can achieve the measurement results accurately
mentioned above. Thus, it is necessary to study the
potential and exposed false negative items triggered by an
incorrect item deletion from a practical aspect.

In the previous two sections, the probability that any bit
in a CBF is set to 0, 1, and an integer larger than 1 is studied
analytically, just as many papers did. In reality, the method
does not work well if the k hash functions cannot satisfy the
assumption of uniform random distribution. In such
scenarios, we use p0, p1, and p2 to denote the fraction of
bits set to 0, 1, and an integer larger than 1 in the CBF, and
use them as the probability that any one bit is set to 0, 1, and
an integer larger than 1. The new method is reasonable from
a viewpoint of the classic definition of probability, and also
practical because it is easy to collect the p0, p1, and p2. In this
section, we reconsider the problems mentioned in the
previous section from a practical aspect, and also revise the
results along the following steps:

1. First of all, let us perform the following modifica-
tions that P ðAn

¼0Þ ¼ p0, P ðAn
¼1Þ ¼ p1, P ðAn

	2Þ ¼ p2,
and P ðAn

	1Þ ¼ p1 þ p2.
2. The formulas using the P ðAn

¼0Þ, P ðAn
¼1Þ, P ðAn

	2Þ, and
P ðAn

	1Þ should perform the related modifications,
such as (3), (4), (5), and (6).

We further conduct experiments to verify theoretical
results of potential and exposed false negative items caused
by one or multiple incorrect item deletions. Specifically, we
will verify the probability distribution of random variables Y
and Z, the cumulative potential false negative items, and the
cumulative exposed false negative items. We adopt the
experimental methodology in Section 5.2 to design and
implement experiments, where c ¼ 1.

Figs. 1a and 1b plot the theoretical and experimental
results about the probability distribution of Y and the

656 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. 5, MAY 2010

Fig. 1. The provability distribution and number of potential false negative
items in theory as well as experiment, where m ¼ 1;600, n ¼ 100, and
k ¼ 5. (a) The probability distribution of Y . (b) The potential false
negative items.

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on April 05,2010 at 23:26:31 EDT from IEEE Xplore. Restrictions apply.

cumulative potential false negative items, respectively. The
figures show that the experimental results match well with
the theoretical results proved in Theorem 1 and Corollary 2.
On the other hand, Figs. 2a and 2b plot the theoretical and
experimental results about the probability distribution of Z
and the cumulative exposed false negative items, respec-
tively. The figures show that the experimental results match
well with the theoretical results proved in Theorem 4 and
Corollary 3. Thus, the experimental results verify the
correctness of those theoretical results.

By comparing Fig. 1a with Fig. 2a, we can find that
one incorrect item deletion can cause k potential false
negative items w.h.p., however, only about k=2 exposed
false negative items w.h.p. This motivates us to study the
exposed false negative items besides the potential ones.

3.4 Principles to Improve Counting Bloom Filter

According to the measurement results and observations
mentioned above, we find two useful and important
principles to improve counting Bloom filter.

1. The improved CBF should not increase the prob-
ability of false positive. Thus, at least it should not
decrease the ratio of bits set to 0, p0.

2. The improved CBF should decrease the exposed
false negative items caused by an incorrect item
deletion operation. Thus, at least it should increase
the ratio of bits set to a value larger than 1, p2.

To increase p2, more bits of the CBF address of an item
x1 62 X need to be set to an integer larger than 1. The activity
will decrease the number of exposed false negative items,
caused by the incorrect item deletion operation triggered by
x1. The two principles motivate us to consider a possible
improvement of CBF to increase p2 but do not decrease p0.
In the next section, we propose a new mechanism to
improve CBF and achieve the desired objectives. Although
the solution may not be the best one, it is useful to reduce
the exposed false negative items.

4 MULTICHOICE COUNTING BLOOM FILTER

The CBF assigns each item x 2 X just one CBF address
BfaddressðxÞ. The addresses of different items are indepen-
dent each other, and the value distribution of all bits in a
CBF is uncontrollable. Therefore, it is very difficult to
increase p2 by the traditional mechanisms widely used to

control the probability of false positive, for example, the
parameter optimization. If we introduce some choices about
the CBF address, it is possible to increase p2 with the help of
a suitable greedy algorithm. In this paper, we will combine
the CBF with a mechanism often applied to improve load
balancing, the power of more choices [26], and validate the
two principles mentioned above.

Lumetta and Mitzenmacher combine the power of two
choices with Bloom filter to reduce the false positive
probability [18]. They use two groups of hash functions
for mapping items and checking membership at the cost of
additional computations. Their experiments show that the
solution does not decrease the false positive probability
under any configuration of the parameters m, n, and k in the
online model, but achieves some improvement in the offline
model. Recently, Jimeno et al. propose a Best-of-N Bloom
filter replacing two groups of hash functions with N groups
[19]. They show that the idea works well under major
configurations in the online model, and the increase of N
always decreases the probability of false positive judgment.

The idea of our solution is similar to that of [18], [19], but
the objective and related methods are different. We try to
decrease the exposed false negative items triggered by an
incorrect item deletion, but the authors of [18], [19] aimed to
control the false positive probability and did not mention
any issue about the false negative judgment. We propose a
more suitable item insertion method to realize our objective,
which increases the fraction of bits set to an integer larger
than 1 and does not decrease the fraction of bits set to 0 in
the filter. The idea of using more choices to improve CBF
should also support the item deletion operation, however,
this problem is not discussed in [18], [19]. We propose a
reasonable solution to handle this issue, and analyze its
impact on the false positive and false negative judgments.
The average time complexities of the following item
operations for CBF and MCBF are OðkÞ and Oðc� kÞ,
respectively. The space complexities for CBF and MCBF are
the same, L�m.

4.1 Insertion Operation

Given a dynamic data set X with n items and a CBF with a
vector of m bits, let us consider the following variation on
the CBF. Instead of using a group of hash functions to
assign a CBF address for any item x 2 X, we use c groups of
hash functions to produce c CBF addresses as candidates
where c 	 2. The ith group consists of k hash functions
hi1; h

i
2; . . . ; hik for 1 � i � c, and produces the ith CBF

address for the item x, denoted by BfaddressiðxÞ. We
require that hash functions are perfectly independent, and
as random as possible. We call the improved CBF as
multichoice counting Bloom filter, abbreviated as MCBF.

After receiving an insertion request for an item x 2 X, the
MCBF will first calculate c CBF addresses for x as the
candidates, then choose one as the final CBF address
according to different approaches, and finally, increase the
value of counter by 1 for each bit in the final CBF address. A
natural greedy approach is proposed in the literature [18],
[19]. The basic idea is to calculate how many additional bits
would have to be set to 1 for each candidate and select the
candidate with the least additional bits to be set to 1. The
greedy approach produces less number of bits set to nonzero
than that produced by the CBF. It is well known that

GUO ET AL.: FALSE NEGATIVE PROBLEM OF COUNTING BLOOM FILTER 657

Fig. 2. The probability distribution and number of exposed false negative
items in theory as well as experiment, where m ¼ 1;600, n ¼ 100, and
k ¼ 11. (a) The probability distribution of Z. (b) The exposed false
negative items.

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on April 05,2010 at 23:26:31 EDT from IEEE Xplore. Restrictions apply.

decreasing the number of bits set to nonzero in a filter will
increase the number of bits set to an integer larger than 1 in
the same filter. Thus, the greedy approach also has positive
impact on implementing our fundamental objective although
its original goal is to decrease the false positive probability.

In this paper, we propose an improved greedy approach.
It still increases the ratio of the bits whose value is 0 at the
similar extent, just as the greedy approach does. At the
same time, it can increase the ratio of the bits whose value is
larger than 1 and decrease the ratio of the bits set to 1 than
that of the greedy approach. Thus, our new approach can
decrease the exposed false negative items, caused by an
incorrect item deletion, more than what the greedy
approach does. Algorithm 1 explains the improved greedy
approach in detail.

Algorithm 1. Improved Greedy Approach For Selecting a
CBF Address for an item x

1: Define and calculate a metric for each candidate to

measure the number of additional bits needed to be set

to one in order to cover x. Then select the minimum

value. If there is only one candidate whose metric value

equals to the minimum value, then that candidate is the

final CBF address of x. Otherwise, go to the next step

with the candidates whose metric equals to the
minimum value as the input parameters.

2: Define and calculate a metric for each candidate

contained in the input parameters to measure the

number of bits set to one currently. Then pick up the

maximum value. If there is only one candidate whose

metric value equals to the maximum value, then that

candidate is the final CBF address of x. Otherwise, go to

the next step with the candidates whose metric equals
to the maximum value as input parameters.

3: Define and calculate a metric for each candidate

contained in the input parameters to measure the

maximum value among the k counters. Then pick up

the minimum value. If there is only one candidate

whose metric value equals to the minimum value, then

it is the final CBF address of x. Otherwise, randomly

select one from the candidates whose metric equals to
the minimum value as the final CBF address of x.

4.2 Query Operation

When we query an item x, we will compute the BfaddressiðxÞ
for the ith group of hash functions, for i 2 ½1; c�, and test
whether all bits of BfaddressiðxÞ are nonzero. If it is, then we
say x passes the test of ith group. The query for x returns
“yes” if it passes the test of any group i 2 ½1; c�.

Both the greedy approach and the improved greedy
approach can increase the ratio of bits set to zero, and seem
to decrease the chances of a false positive. But using
c groups of hash functions would seem to increase the
chances of a false positive in that there are now c ways for a
false positive to occur. Specifically, recall that p0 is the
fraction of bits set to 0 in the filter, the probability of a false
positive is 1� ð1� ð1� p0ÞkÞc.

It is difficult to determine whether the greedy and
improved approaches always decrease the false positive
probability in the online model, although some preliminary
analyses have been done in the literatures [18], [19]. Lumetta

and Mitzenmacher did not provide clear comments about
the problem. Jimeno and Christensen believed that the
greedy approach always decreases the false positive prob-
ability as the increasing of c. Recall that the strict assump-
tions about hash functions are very difficult to reach, thus,
the analysis based on such assumptions cannot reflect the
reality. In this paper, we prefer to use the experiments rather
than the theoretical analysis to address the problem. The
results of our experiments show that the greedy and
improved greedy approaches decrease the false positive
probability as the increasing of cwhen the ratiom=n exceeds
a threshold, but increase it as the increasing of c under other
configurations.

4.3 Deletion Operation

During the process of item deletion, an item x 2 X may find
multiple possible CBF addresses. It is clear that only one
CBF address is assigned to the item x during the insertion
process, and others are false positive judgments. In such a
situation, if the MCBF persists in performing the item
deletion operation, the related counters of a wrong CBF
address may be decreased by 1 with some probability. As
discussed in Section 2.3, the incorrect deletion of a multiaddress
item always destroys the CBF and produces at most
k potential false negative items.

After the representation of set X, let Emulti denote the
event that an item x 2 X meets multiple possible CBF
addresses when performing the membership query of
item x. The event means that at least an additional group
of hash functions maps the item x to the bits set to an
integer larger than 0 besides the group of hash functions
related to the real CBF address of item x. The probability of
the event is

P ðEmultiÞ ¼ 1� ð1� ð1� p0ÞkÞc�1: ð7Þ

Formula (7) yields an upper bound on the probability that
event Emulti happens, and an upper bound on the number of
multiaddress items is nr � P ðEmultiÞ, where nr denotes the
cardinality of set X. Our experimental results show that the
real number of such items is much less than the upper
bound nr � P ðEmultiÞ. On the other hand, the deletion of a
such item is not always performed incorrectly in related
CBF. That is, the deletion of a multiaddress item also has
chance to be performed correctly without causing false
negative items. Theorem 5 analyzes the problem from the
probability theory.

According to the definition of event Emulti, the number of
false positives among the possible CBF addresses of item x
is a discrete random variable, which is denoted by U .

Theorem 5. For an item x which meets an event Emulti, the
probability that the deletion of the item x produces false
negative items is E½U�

1þE½U � .

Proof. The set of possible values of variable U is the integers
from 1 to c� 1. Its probability mass function is

P ðU ¼ iÞ ¼ c

i

� �
ðð1� p0ÞkÞið1� ð1� p0ÞkÞc�i:

Furthermore, E½U � ¼
Pc�1

i¼1 i� P ðU ¼ iÞ denotes the ex-
pectation of U . Therefore, the number of possible CBF
addresses of x is 1þ E½U �, and the probability that the
deletion of x will cause false negative items is E½U �

1þE½U � . tu

658 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. 5, MAY 2010

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on April 05,2010 at 23:26:31 EDT from IEEE Xplore. Restrictions apply.

According to Theorem 5 and the method to measure the
number of potential and exposed false negative items, we
estimate an upper bound on the number of potential and
exposed false negative items if the CBF deletes one of such
kind of items. We can also calculate upper bounds on the
number of potential false negative items and that of
exposed false negative items caused by all multiaddress
items. In reality, the number of potential and exposed false
negative items is much less than the related upper bounds
because the number of such items is much less than its
upper bound.

Traditionally, an MCBF decrements the values of the
respective counters when it receives a deletion instruction
of a multiaddress item. As a new policy, an MCBF can
simply omit the deletion instruction of a multiaddress item.
The objective is to prevent the MCBF from producing
potential and exposed false negative items. Thus, the MCBF
still keeps membership information for at most nr �
P ðEmultiÞ items even it receives the deletion instructions
for all items of the set X. If other items join the set X during
the process of deleting the original items, the MCBF reflects
not only current items of the set X but also at most nr �
P ðEmultiÞ retained items. It is reasonable that the false
positive probability of the MCBF is always larger than the
theoretical value. But, the difference between the real value
and theoretical value is small, and the negative impact of
the new policy can be controlled at an acceptable level. As
direct results of the new policy, queries of such items
always response false positive, and the filter does not need
to do any change when such items rejoin the set X.

In summary, if an MCBF deletes multiaddress items, it
may result in false negative items; otherwise, it increases the
false positive probability. In reality, it needs to make a trade-
off between these two policies. For applications in which the
harm of false negative is more serious than that of false
positive, it’s better to keep the MCBF after receiving a
deletion request for a multiaddress item. On the other hand,
it’s better to do related modifications to the filter. Recall that
even keeping all multiaddress items in an MCBF, the
negative impact on the false positive probability can be
controlled at a low and acceptable level. We thus recom-
mend to keep multiaddress items in filter because the harm
of false negative items is serious for major applications.

5 PERFORMANCE EVALUATIONS

We first describe the implementation issues of related CBF
and the configurations of our experiments, and then
compare the analytical model with the experiment results
in terms of exposed false negatives. We also evaluate the
false positive probability, the greedy and improved greedy
insertion of items, and the impact of item deletion methods.

5.1 Implementation

In this work, we extend the BF and CBF delivered by Guo et al.
in [17] to implement the multichoice counting Bloom filter.
One critical factor of the multichoice counting Bloom filter is
to create c groups of hash functions. In our experiments, a
group of k hash functions are generated by

hiðxÞ ¼
�
g1ðxÞ þ i� g2ðxÞ

�
mod m; ð8Þ

where g1ðxÞ and g2ðxÞ are two independent and random
integers in the universe with range f1; 2; . . . ;mg. The value
of i ranges from 0 to k� 1. We propose the following three
methods to generate two random integers for any item x:

1. The SDBM_BUZhash method. We choose the SDBM
and BUZ hash functions to produce the values of
g1ðxÞ and g2ðxÞ, respectively.

2. The SDBM_MersenneTwister method. The output
of SDBM Hash function acts as the seed of a
random number generator (RNG) MersenneTwis-
ter. The MersenneTwister produces two desired
random integers.

3. The BUZ_MersenneTwister method. The output of
BUZ hash function acts as the seed of MersenneTw-
ister. The MersenneTwister produces two desired
random integers.

The mechanism requires two hash functions or one hash
function and one random number generator to run k rounds
of (8) in order to generate a BfaddressðxÞ for an item x. For
other c� 1 Bloom filter addresses, we use the results of
appending c� 1 predefined strings on x as the inputs for
producing c� 1 pairs of two random numbers, and then
achieve other c� 1 CBF addresses by (8). The mechanism
can bring in a considerable reduction in processing over-
head compared to using c� k hashes, and does not increase
the false positive probability [27].

The quality of the hash functions and one random
number generator has significant impact on the experiment
results. The SDBM hash function has a good overall
distribution for different data sets and works well even if
the MSBs of items in a data set exhibit high variation. BUZ
hash function is fast and employed widely. It produces
near-perfect result even with extremely skewed input data.
The Mersenne twister provides for fast generation of very
high quality pseudorandom numbers and is designed to
rectify many flaws found in older algorithms.

5.2 Experiment Methodology

Note that CBF and MCBF are designed to represent any
possible sets, query sequences, and item deletion/insertion
sequences. In addition, there are no benchmark sets and
traces in the field of Bloom filters. Since we could not obtain
traffic traces [28] in the field of real-time identification of
P2P traffic based on CBF, we simply use a set from the
DBLP. The size of the data set is near 300 M. We retrieve
partial history information of papers published in the major
conferences from the DBLP records. We then use the name
of the authors to initialize a data set X to be represented by
our Bloom filter, and another data set Y to be used by the
tests of false positive judgments. Our experiments do not
seek particular sequences of item query/correct deletion/
incorrect deletion/insertion but simply use a synthetic
random sequence. The limitation is that we did not use the
actual traces. We plan to work on the real traces once we
obtain them. While the extension is necessary in a deeper,
trace-driven study, the initial results are independent to the
type of set and the sequence of those basic item operations
facing MCBF.

For each instance of experiment, we initialize the follow-
ing parameters before testing data: The first parameter is the

GUO ET AL.: FALSE NEGATIVE PROBLEM OF COUNTING BLOOM FILTER 659

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on April 05,2010 at 23:26:31 EDT from IEEE Xplore. Restrictions apply.

bits per item ratio ¼ m=n, and can be set to 8, 12, 16, 20, and
24. The second parameter k is bðm=nÞ ln 2c [1]. The third
parametern is set to 10,000. The fourth parameter is the upper
bound of c, and is set to 50. The fifth parameter T is the size of
data set used by the tests of false positive judgments, and is
set to 8� n. The hash algorithms are the three candidates
mentioned above. The item insertion algorithms are the
greedy together with its improved algorithms.

The experiments are divided into 3� 2� 5 ¼ 30 in-
stances. Each instance selects one hash algorithm from
three candidates, one item insertion algorithm from two
candidates, and the value of m=n from five candidates.
Other parameters are the same among different instances.
Each instance runs c rounds, with one round for each
integer in the range ½1; c�. The 30 instances are conducted on
a cluster with Linux and Solaris OS and more than 30 CPUs.

5.3 Experiment Results

5.3.1 False Positive Judgment

Figs. 3 and 4 plot the experiment results about the false
positive probability under several different configurations,
and we report results under the improved greedy algorithm
only. The results under the greedy algorithm are similar and
omitted due to the space limit. The change factor of false
positive is the ratio of false positive probability of MCBF to

that of CBF. Fig. 4 shows that MCBF always increases the ratio
of the bits set to 0 as the increasing of c, and the number of bits
set to 0 in an MCBF with c ¼ 50 increases about 40 percent of
that in a CBF whenm=n ¼ 8 or 12. The gain is about 30 percent

when m=n ¼ 16 or 20. The results demonstrate that when
MCBF satisfies the first policy we proposed in Section 3.4, the
ratio of bits set to 0 increases significantly and the false
positive probability might be decreased.

For the cases that m=n ¼ 8 or 12, the false positive
probability of MCBF is always larger than that of CBF as
the increasing of c. For the case thatm=n ¼ 20, MCBF indeed
decreases the false positive probability as the increasing of c.
The experiment results under the three different hash
algorithms have the similar trend for the four cases of m=n.
There may exist a threshold of the value ofm=n such that the
false positive probability of MCBF always decreases as the
increasing of c only if m=n exceeds it. When m=n ¼ 16,
the hash algorithm is SDBM_MersenneTwister or BUZ_Mer-
senneTwister, the false positive probability of MCBF is less
than or similar to that of CBF as the increasing of c. If the hash
algorithm is the SDBM_BUZhash, the false positive prob-
ability of MCBF is always larger than that of CBF as the
increasing of c. The experiment results show that the
SDBM_MersenneTwister and BUZ_MersenneTwister are
more suitable to the multichoice counting Bloom filters than
the SDBM_BUZhash.

In summary, the results show that MCBF satisfies the first
policy used to improve CBF. However, it cannot always
reduce the false positive probability in the online model
under any configurations. The reason is that the positive
contribution by increasing the ratio of the bits set to zero does
not always go beyond the negative influence of more chance
of a false positive resulted from the c possible Bloom filter
addresses. Thus, it is important to tune the parameters of

660 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. 5, MAY 2010

Fig. 3. The ratio of false positive probability of multichoice counting Bloom filter to that of Bloom filter. (a) SDBM MersenneTwister method.
(b) BUZ MersenneTwister method. (c) SDBM BUZhash method.

Fig. 4. The ratio of the bits set to 0 in multichoice counting Bloom filters with different configurations. (a) SDBM MersenneTwister method.
(b) BUZ MersenneTwister method. (c) SDBM BUZhash method.

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on April 05,2010 at 23:26:31 EDT from IEEE Xplore. Restrictions apply.

MCBF carefully in order to decrease the false positive
probability. The result recommends that the value of m=n
should not be less than 16 and prefers the SDBM_Mersen-
neTwister and BUZ_MersenneTwister hash algorithms.

5.3.2 False Negative Judgment

Theoretically, we show that MCBF can reduce the exposed
false negatives caused by incorrect deletion of items. Recall
that the experiment is divided into 30 instances. Now we
examine whether the experiment result is consistent with
theoretical result in each instance. The incorrect item
deletions triggered by different false positives have differ-
ent impacts on the exposed false negative items. Due to the
huge number of possible false positives in a given MCBF,
here we only show two representative categories.

In the first category, we emulate an incorrect deletion of
an item by decreasing the counters of k bits by 1, where the
k bits are randomly selected from those bits set to nonzero
in the MCBF. After multiple rounds of each instance, the
average value of the number of exposed false negative items
due to an incorrect item deletion is shown in Fig. 5. As the
analysis in theory, the improved greedy algorithm indeed
decreases the exposed false negatives more than the
traditional greedy algorithm under different configurations
of m=n and hash algorithms. We use the experiment results
shown in Fig. 6 to explain the reason of such conclusion. In
Fig. 6, a curve of our improved greedy algorithm is always
above a corresponding curve of the traditional greedy
algorithm in each experiment instance. This means that our
improved greedy algorithm updates more bits set to 1 with

a value larger than 1 than the traditional greedy algorithm.

Thus, more potential false negative items can be covered

and are not exposed under the improved greedy algorithm.

In summary, the improved greedy algorithm outperforms

the traditional one in theory and practice.
In the second category, we emulate an incorrect deletion of

an item by decreasing any � counters set to 1 and � counters

set to an integer larger than one by one in the MCBF, where

k ¼ �þ � and �
� �

p1

p2
. This method can reflect an incorrect

deletion of an item more accurate than the method used in the

first category. We then measure the exposed false negative

items due to one incorrect item deletion as well as the

cumulative exposed false negative items due to multiple

incorrect item deletions. Indeed, this set of experiments

covers the scope of the experiments in the first category. The

experiment results under the improved greedy algorithm are

shown in Fig. 7. We find that the number of exposed false

negative items increases more as the increasing of number of

incorrect item deletions in related CBF, and at least 50 percent

of the exposed false negative items become unexposed if we

introduce an MCBF with at most four groups of hash

functions when ratio ¼ 8. When ratio ¼ 12 and ratio ¼ 16,

an MCBF needs 10 and 20 groups of hash functions,

respectively, to achieve the similar result. The MCBF also

makes 80 percent of the exposed false negative items in a CBF

become unexposed by assigning a moderate value to the

parameter c. The results show that our improved greedy

algorithm still does better than the traditional one in this

scenario. We do not show the detailed results due to the page

GUO ET AL.: FALSE NEGATIVE PROBLEM OF COUNTING BLOOM FILTER 661

Fig. 5. The average value of exposed false negative items due to an incorrect item deletion triggered by a false positive.
(a) SDBM MersenneTwister method. (b) BUZ MersenneTwister method. (c) SDBM BUZhash method.

Fig. 6. The ratio of the bits set to a value larger than 1 to the bits set to 1. (a) SDBM MersenneTwister method. (b) BUZ MersenneTwister method.
(c) SDBM BUZhash method.

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on April 05,2010 at 23:26:31 EDT from IEEE Xplore. Restrictions apply.

limit. The similar results hold when ratio ¼ 20 and ratio ¼ 24
in both first as well as second category, and are omitted.

In summary, the results indicate that MCBF satisfies the
second policy to improve CBF mentioned in Section 3.4 and
makes about 50-80 percent of exposed false negative items
in a CBF become unexposed with the help of careful
configuration. It, however, does not mean that c should be
as large as possible because of the computation overhead.
On the other hand, the contributions of decreasing the false
positive probability and reducing the number of exposed
false negative items turn to be trivial after c exceeds a
certain threshold in MCBF.

5.3.3 The Maximum Load

Recall that each array position of a CBF is allocatedL bits, and

L ¼ 4 suffices if the k hash functions can map each item over

the range 1; . . . ;m uniformly and independently. Under the

context of multichoice counting Bloom filter, obviously, this

assumption is not true. Hence, it is necessary to reconsider

whether L ¼ 4 still suffices. We conduct nine experiment

instances to achieve the maximum load among the m array

positions under different configurations. Each instance

selects one hash function algorithm from three candidates,

and the ratio denoted the value of m=n from 8, 12, and 16.

Other parameters are the same among different instances.

The experimental results shown in Fig. 8 indicate that the

maximum load is less than 16 in eight instances except one

instance using the SDBM BUZhash algorithm. This shows

that other two hash algorithms are more suitable to the

MCBF than the SDBM BUZhash. Recall that the same

conclusion has been proposed in Section 5.3.1. The experi-

mental results also show that the maximum load is less than

16 when m=n 	 16, which we do not show. On the other

hand, the CBF and their variations often assign 8 or a larger

value to the parameter m=n in order to decrease the false

positive probability. In summary, L ¼ 4 still suffices in the

context of the MCBF.

5.3.4 Impact of Item Deletion Operation in MCBF

Recall that some items of a set X may have multiple
possible CBF addresses in an MCBF. The item deletion
operation mentioned in Section 4.3 remains the set member-
ship information of such items when dealing with item
deletion requests. It is easy to know that this operation may
increase the false positive probability of the MCBF. There-
fore, the number of such items should be as less as possible.
Let r denote the percentage of such items in X. An
estimated upper bound of r is given by (7) in theory. Each
experiment instance calculates the number of such items in
X and then achieves the experimental upper bound of r. We
also measure another metric called the real value of r

besides the theoretical and experimental upper bounds of r.
Each instance attempts to delete all items from X and
related MCBF following the recommended deletion opera-
tion. Finally, the ratio of remaining items to the original
items in X denotes the real value of r.

Fig. 9 shows that the real value of r is always less than its
estimated and experimental upper bounds. In Figs. 9a, 9b,
and 9c, all the three curves increase as the increasing of c. The
curves of the experimental upper bound of r and the real

662 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. 5, MAY 2010

Fig. 7. The exposed false negative items due to multiple incorrect item deletions triggered by multiple false positives. (a) SDBM MersenneTwister
method, ratio ¼ 8. (b) BUZ MersenneTwister method, ratio ¼ 12. (c) SDBM BUZhash method, ratio ¼ 16.

Fig. 8. The maximum counter value among all the m bits in the context of our improved greedy algorithm. (a) Ratio ¼ 8. (b) Ratio ¼ 12.
(c) Ratio ¼ 16.

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on April 05,2010 at 23:26:31 EDT from IEEE Xplore. Restrictions apply.

value of r increase smoothly and remain at a low level. In
practice, the frequency of deleting all items from a data set
and its MCBF is very low. If we insert othern items to the data
set and related MCBF once this event happens, the false
positive probability of resulting MCBF is often larger than
that of the original one, but is still at a lower and stable level.
Fig. 10 shows that it is appropriate to the original value when
c 	 10. In summary, the item deletion operation can avoid
producing false negative items at the cost of a trivial influence
on the false positive judgment if the size of X changes at a
stable level without immediately decreasing more.

6 CONCLUSIONS

We show that the false negative items can indeed occur in a
CBF and related variants. We also reveal that two types of
incorrect item deletion operations triggered by a false
positive are the root causes of false negative items, and the
potential false negative items usually are not fully exposed at
the same time. We then measure the potential and exposed
false negative items from aspects of theory and practice.
Finally, we introduce two fundamental principles to make
more potential false negative items become unexposed
whenever possible, and propose an improved CBF to
validate our principles. Our analytical and experimental
results demonstrate that the proposed CBF decreases the

number of exposed false negative items without increasing
the probability of false positive.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers

for their constructive comments. The work of Deke Guo

is supported in part by the NSF China under grants

No. 60903206 and No. 60903225. Xiangyang Li and Yunhao

Liu’s research is supported in part by the NSF CNS-0832120,

the NSF China under grants No. 60828003, No. 60773042, and

No. 60803126, the Natural Science Foundation of Zhejiang

Province under grant No. Z1080979, the National Basic

Research Program of China (973 Program) under grants

No. 2010CB328100 and No. 2006CB30300, the National High

Technology Research and Development Program of China

(863 Program) under grant No. 2007AA01Z180, the Hong

Kong RGC under grant HKBU 2104/06E, and the CERG

under Grant PolyU-5232/07E. The work of Panlong Yang is

supported in part by the 973 Program of China under grant

No. 2009CB3020402, and the 863 Program of China under

grant No. 2008AA01Z216.

REFERENCES

[1] B. Bloom, “Space/Time Tradeoffs in Hash Coding with Allowable
Errors,” Comm. ACM, vol. 13, no. 7, pp. 422-426, 1970.

[2] A. Broder and M. Mitzenmacher, “Network Applications of
Bloom Filters: A Survey,” Internet Math., vol. 1, no. 4, pp. 485-509,
2005.

[3] J.K. Mullin, “Optimal Semijoins for Distributed Database Sys-
tems,” IEEE Trans. Software Eng., vol. 16, no. 5, pp. 558-560, May
1990.

[4] L. Fan, P. Cao, J. Almeida, and A. Broder, “Summary Cache: A
Scalable Wide Area Web Cache Sharing Protocol,” IEEE/ACM
Trans. Networking, vol. 8, no. 3, pp. 281-293, June 2000.

[5] J. Li, J. Taylor, L. Serban, and M. Seltzer, “Self-Organization in
Peer-to-Peer System,” Proc. 10th ACM SIGOPS European Workshop,
Sept. 2002.

[6] S.C. Rhea and J. Kubiatowicz, “Probabilistic Location and
Routing,” Proc. IEEE INFOCOM, pp. 1248-1257, June 2004.

[7] A. Kumar, J. Xu, and E.W. Zegura, “Effcient and Scalable Query
Routing for Unstructured Peer-to-Peer Networks,” Proc. IEEE
INFOCOM, pp. 1162-1173, Mar. 2005.

[8] F. Deng and D. Rafiei, “Approximately Detecting Duplicates for
Streaming Data Using Stable Bloom Filters,” Proc. 25th ACM
SIGMOD, pp. 25-36, June 2006.

[9] F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh, and G.
Varghese, “Beyond Bloom Filters: From Approximate Member-
ship Checks to Approximate State Machines,” Proc. ACM
SIGCOMM, pp. 315-326, Sept. 2006.

GUO ET AL.: FALSE NEGATIVE PROBLEM OF COUNTING BLOOM FILTER 663

Fig. 9. The ratio of items with multiple addresses and the false positive probability. (a) SDBM MersenneTwister, ratio ¼ 8.
(b) BUZ MersenneTwister, ratio ¼ 8. (c) SDBM BUZhash, ratio ¼ 8.

Fig. 10. The original false positive probability and the resulting false
positive probability due to keeping additional r items.

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on April 05,2010 at 23:26:31 EDT from IEEE Xplore. Restrictions apply.

[10] K. Li and Z. Zhong, “Fast Statistical Spam Filter by Approximate
Classifications,” Proc. SIGMETRICS/Performance, pp. 347-358, June
2006.

[11] M. Mitzenmacher, “Compressed Bloom Filters,” IEEE/ACM Trans.
Networking, vol. 10, no. 5, pp. 604-612, Oct. 2002.

[12] A. Kirsch and M. Mitzenmacher, “Distance-Sensitive Bloom
Filters,” Proc. Eighth Workshop Algorithm Eng. and Experiments
(ALENEX ’06), Jan. 2006.

[13] A. Kumar, J. Xu, J. Wang, O. Spatschek, and L. Li, “Space-Code
Bloom Filter for Efficient Per-Flow Traffic Measurement,” Proc.
23rd IEEE INFOCOM, pp. 1762-1773, Mar. 2004.

[14] S. Cohen and Y. Matias, “Spectral Bloom Filters,” Proc. 22nd ACM
SIGMOD, pp. 241-252, June 2003.

[15] R.P. Laufer, P.B. Velloso, and O.C.M.B. Duarte, “Generalized
Bloom Filters,” Technical Report GTA-05-43, Univ. of California,
Los Angeles (UCLA), Sept. 2005.

[16] B. Chazelle, J. Kilian, R. Rubinfeld, and A. Tal, “The Bloomier
Filter: An Efficient Data Structure for Static Support Lookup
Tables,” Proc. Fifth Ann. Symp. Discrete Algorithms (SODA), pp. 30-
39, Jan. 2004.

[17] D. Guo, J. Wu, H. Chen, and X. Luo, “Theory and Network
Applications of Dynamic Bloom Filters,” Proc. 25th IEEE
INFOCOM, Apr. 2006.

[18] S. Lumetta and M. Mitzenmacher, “Using the Power of Two
Choices to Improve Bloom Filters,” http://www.eecs.harvard.
edu/michaelm/postscripts/, 2009.

[19] M. Jimeno, K. Christensen, and A. Roginsky, “A Power Manage-
ment Proxy with a New Best-of-n Bloom Filter Design to Reduce
False Fositives,” Proc. 26th IEEE Int’l Performance Computing and
Comm. Conf. (IPCCC), Apr. 2007.

[20] P.S. Almeida, C. Baquero, N.M. Preguiça, and D. Hutchison,
“Scalable Bloom Filters,” Information Processing Letters, vol. 101,
no. 6, pp. 255-261, 2007.

[21] D. Benoit, B. Bruno, and F. Timur, “Retouched Bloom Filters:
Allowing Networked Applications to Trade Off Selected False
Positives against False Negatives,” Proc. ACM Conf. Emerging
Network Experiment and Technology (CoNEXT), Sept. 2006.

[22] Y. Zhu and H. Jiang, “False Rate Analysis of Bloom Filter Replicas
in Distributed Systems,” Proc. 35th Int’l Conf. Parallel Processing
(ICPP), pp. 255-262, Aug. 2006.

[23] D. Forsgren, U. Jennehag, and P. Osterberg, “Objective End-to-
End QoS Gain from Packet Prioritization and Layering in MPEG-2
Streaming Video,” http://amp.ece.cmu.edu/packetvideo2002/
papers/61-ananhseors.pdf, 2010.

[24] T. Karargiannis, A. Broido, M. Faloutsos, and K.C. Claffy,
“Transport Layer Identification of P2P Traffic,” Proc. ACM
SIGCOMM, 2004.

[25] K. Thomson, G.J. Miller, and R. Wilder, “Wide-Area Traffic
Patterns and Characteristics,” IEEE Network, vol. 11, no. 6, pp. 10-
23, Nov./Dec. 1997.

[26] M. Mitzenmacher, “The Power of Two Choices in Randomized
Load Balancing,” IEEE Trans. Parallel and Distributed Systems,
vol. 12, no. 10, pp. 1094-1104, Oct. 2001.

[27] A. Kirsch and M. Mitzenmacher, “Less Hashing, Same Perfor-
mance: Building a Better Bloom Filter,” Proc. 14th Ann. European
Symp. Algorithms, pp. 456-467, 2006.

[28] T. Karargiannis, A. Broido, M. Faloutsos, and K.C. Claffy,
“Transport Layer Identification of P2P Traffic,” Proc. ACM
SIGCOMM, Sept. 2004.

Deke Guo received the BS degree in industry
engineering from Beijing University of Aeronau-
tic and Astronautic, China, in 2001, and the PhD
degree in management science and engineer-
ing from the National University of Defense
Technology, Changsha, China, in 2008. He is
currently an assistant professor of information
system and management at the National Uni-
versity of Defense Technology, Changsha,
China. He was a visiting scholar in the Depart-

ment of Computer Science and Engineering at the Hong Kong
University of Science and Technology from January 2007 to January
2009. His current research interests include peer-to-peer computing,
Bloom filters, data center networking, and wireless networks. He is a
member of the ACM and the IEEE.

Yunhao Liu (SM’06) received the BS degree in
automation from Tsinghua University, China, in
1995, the MA degree from the Beijing Foreign
Studies University, China, in 1997, and the MS
and PhD degrees in computer science and
engineering from Michigan State University in
2003 and 2004, respectively. He is currently an
associate professor and the postgraduate direc-
tor in the Department of Computer Science and
Engineering at the Hong Kong University of

Science and Technology. His research interests include wireless sensor
network, peer-to-peer computing, and pervasive computing. He and his
student Mo Li received the Grand Prize of Hong Kong ICT Best
Innovation and Research Award in 2007. He is a member of the ACM
and a senior member of the IEEE.

Xiangyang Li received the bachelor’s degrees
from the Department of Computer Science and
the Department of Business Management at
Tsinghua University, P.R. China, in 1995, and
the MS and PhD degrees from the Department
of Computer Science at the University of Illinois
at Urbana-Champaign in 2000 and 2001, re-
spectively. He has been in the Department of
Computer Science at the Illinois Institute of
Technology (IIT) since 2000. Currently, he is

an associate professor in the Department of Computer Science at IIT.
His research interests include wireless ad hoc and sensor networks,
noncooperative computing, computational geometry, optical networks,
and cryptography. He is an editor of the Ad Hoc and Sensor Wireless
Networks: An International Journal, and Networks: An International
Journal. He has been a guest editor of special issues for ACM Mobile
Networks and Applications and the IEEE Journal on Selected Areas in
Communications. He is a member of the ACM and a senior member of
the IEEE.

Panlong Yang received the BS, MS, and PhD
degrees in communication and information sys-
tem from the Nanjing Institute of Communication
Engineering, China, in 1999, 2002, and 2005,
respectively. Currently, he is an associate
professor at the Nanjing Institute of Communica-
tion Engineering. During November 2006 to
March 2009, he was a postdoctoral fellow in
the Department of Computer Science at Nanjing
University. His research interests include wire-

less mesh networks, wireless sensor networks, and cognitive radio
networks. He is a member of the IEEE Computer Society, the IEEE, and
the ACM SIGMOBILE Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

664 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. 5, MAY 2010

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on April 05,2010 at 23:26:31 EDT from IEEE Xplore. Restrictions apply.

