SRUF: Low-Latency Path Routing with SRv6
Underlay Federation in the Wide Area Network

Bangbang Ren!, Deke Guo'?*, Guoming Tang?, Weijun Wang?, Lailong Luo!, Xiaoming Fu

3%

National University of Defense Technology', Peng Cheng Laboratory?, University of Géttingen®

Abstract—Existing Internet routing protocols much focus on
providing interconnection service for independent autonomous
systems (ASes) rather than end-to-end low latency transmission.
Nowadays, a growing number of applications and platforms
have high requirements for low latency. However, developing
new routing protocols in the wide area network that provides
low latency routing service is very challenging, and remains an
open problem due to the obstacles of compatibility, feasibility,
scalability and efficiency. On the other hand, the ignorance
of latency performance results in triangle inequality violations
(TIV). In this paper, we leverage TIV and a new routing
technology, SRv6, to build a new distributed routing protocol,
SRv6 underlay federation (SRUF), which aims to provide low-
latency routing services in network core. We design a novel
method to find alternative paths with lower latency between any
pair of ASes in SRUF. This method can achieve high scalability
as it incurs only O(n) bandwidth overhead in each member
of SRUF. SRv6 is then employed to steer the flows along the
selected indirect low-latency paths, while keeping compatibility
to legacy routing systems. The experimental results with real-
world datasets demonstrate that SRUF can effectively reduce
the average end-to-end delay by 5.4% ~ 58.9%.

I. INTRODUCTION

Nowadays, many Internet applications have strict require-
ments for end-to-end latency, e.g., high-frequency e-commerce
trading or high-resolution video conference [1]. As the data
delivery latency affects users’ experiences as well as providers’
profits, it has become a critical concern for service providers
today [2]. Some large cloud providers like Microsoft and
Google leveraged software defined network (SDN) to provide
low-latency services in their private networks [3], [4]. These
solutions require that the traffic is steered only in the private
network which is managed by a central controller. Unfortu-
nately, this requirement is hard to be satisfied in the global
Internet, which is composed of a large number of autonomous
systems (ASes). In fact, a cloud provider’s private network
may not cover its all datacenters. Sometimes, the applica-
tions may even be deployed on different providers’ clouds
considering the tradeoff between price and performance. As a
consequence, flows from different datacenters could traverse
the Internet. In the example network AS topology shown in
Fig. 1, there are three datacenters in Shanghai, Guangzhou
and Moscow, respectively. In this case a path between any
two datacenters may traverse multiple ASes.

To find routing paths in the wide area network efficiently,
two types of routing protocols are necessary. One is the interior

Correspondence to: Deke Guo (dekeguo@nudt.edu.cn) and Xiaoming Fu
(fu@cs.uni-goettingen.de).

Moscow
. (N55.45°, E37.35°

)
&)

N31.23°, F121.47°)
Guangzhou '
(N23.17°, E113.23°)
Fig. 1. An example to show inter-domain routing (where AS1 is congested)

would lead to Triangle Inequality Violation (TIV), i.e, ts—nr > ts—a +
tGM-

Shanghai

TABLE I
THE RESULTS OF LINK MEASUREMENT BETWEEN ANY TWO DATACENTERS
INCLUDING END-TO-END DELAY AND PACKET LOSS RATE (PLR) [7].

(Delay(ms), PLR) i G Moscow
Shanghai (0,0.00%) (28.2,0.04%) (262.1, 25.24%)
Guangzhou (27.6,0.04%) (0,0.00%) (245, 0.68%)
Moscow (261.5, 25.28%) (245, 0.75%) (0,0.00%)

gateway protocol e.g., OSPF, which is used to find routing
paths inside an AS. The other is the border gateway protocol
(BGP) which is a standardized exterior gateway protocol
and used to find routing paths between ASes. These routing
protocols work together to build routing paths between any
pair of nodes in the wide area network (WAN). However, these
paths only ensure connectivity without guaranteeing quality of
service metrics like delay or bandwidth. As prior studies [5],
[6] have demonstrated, none of the criteria BGP uses for
picking up paths directly has an explicit relationship with
performance, e.g., preferring paths with fewer AS-level hops
and peering over transit, and performing hot potato routing,
etc. On the other hand, any modifications or optimizations
of BGP are hard to implement since BGP is widely adopted
in the Internet and deployed in a large amount of devices.
Therefore, there is a pressing need to develop new methods
that are capable of reducing end-to-end delay and compatible
with the existing routing paradigms.

A recent public cloud interconnection test has shown that
the default direct paths to connect two datacenters sometimes
are worse than indirect paths [7]. Table I summarizes part
of the measurement results. The end-to-end delay between
Shanghai and Moscow is 262.1ms, while its packet loss rate

could be as high as 25.24% due to the congested links in
the path. This high packet loss rate could result in extra
100ms delay due to the retransmission mechanism in the
transport layer [7]. Surprisingly, if the packets first reach
Guangzhou before arriving at Moscow, its delay would be less
than the direct path delay between Shanghai and Moscow.
The phenomenon that the indirect paths outperform direct
paths in terms of end-to-end delay is the so-called triangle
inequality violations (TIV), which has been widely reported
in Internet [8], [9].

Based on the above observation, some overlay routing
methods have been proposed to steer traffic along the indirect
but lower latency paths [10]-[12]. However, these methods
have two shortcomings. First, they focus on constructing
overlay routing over end hosts which are bundled with specific
distributed applications, e.g., VoIP [13]. For those non-overlay
applications or simple interdomain unicast sessions, the above
methods are not applicable. Second, these overlay indirect
routing methods usually do not scale well. Although the work
in [11] has reduced the per-node communication from O(n?)
to O(n'®) where n is the number of nodes in the overlay
network, it still faces the scalability problem considering the
scale of Internet.

In this paper, we study how to leverage TIV to provide
low-latency indirect routing paths for any pair of nodes across
the WAN in a transparent way, which means that this service
is provided by the network core and could be used by any
applications without the need of deploying extra overlay rout-
ing protocols. There are two main challenges in achieving this
goal: 1) How to implement this routing strategy considering
compatibility and feasibility. The Internet has been evolving
for decades, leaving many legacy infrastructures including
physical devices and software protocols. Thus, the new func-
tion deployment on the Internet must consider feasibility and
compatibility, i.e., incremental deployment and no conflicts
with other protocols. 2) How to pick up the correct indirect
paths considering scalability and efficiency. The dynamic
network state may make the selected indirect paths fail in the
future. Thus, we need to monitor the network and find the
low-latency indirect paths continuously. However, the number
of ASes could be as large as tens of thousands such that we
have to achieve the goal in a distributed way.

To tackle the above two challenges, we propose the SRv6
Underlay Federation (SRUF) to provide low-latency routing
service in the WAN. Segment routing over IPv6 (SRv6) is a
new waypoint routing protocol which steers traffic through
one or multiple waypoints along the route from a source
to a destination [14]. The routing paths between any two
neighbor waypoints are generated by existing routing protocols
(see more details in Sec. II-C). SRUF proposed in this work
consists of two main parts: a searching algorithm to find the
low-latency paths in the control plane and an implementation
method enabled by SRv6 in the forwarding plane. In the
first part, some ASes will collaborate to form the SRUF.
Through our highly scalable searching method, any pair of
ASes in SRUF could find several candidate indirect low-delay

80%

72.4%
68.1%

60%

40%

The percentage

20% 17.3%
8.6%

Best one-hop Best two-hops Random one-hop

Routing methods

Random two-hops

(a) The percentages of indirect paths whose latencies are lower than them
of direct paths under different methods.
Best two-hops path

y‘FFﬁ,:F':FF%FF‘ Random one-hop path

50 100 150 —— Random two-hops path

1.0

0.8

w 0.6
S
0.4

Direct path
Best one-hop path

0.2

0.0

T T T T
4000 6000 8000 10000

Latency(ms)

T
0 2000

(b) The CDFs of the latencies with different routing methods.

Fig. 2. Important observations: Comparisons among direct path, one-hop
routing and two-hop routing.

paths with one or two relay nodes. In the second part, after
finding the low-latency alternative path, the corresponding
SRv6 instructions are inserted into the packet header when
the SRUF node receives the packets. With the support of
SRv6, traffic could be routed along the selected path without
modifying any legacy routing protocols.

The contributions of this work are summarized as follows:

o Compatibility: SRUF could find low-latency routing
paths in the core of the wide area network without any
modifications in deployed BGP and are transparent to
applications (Sec. III).

« Feasibility: SRUF is open to accept new ASes to join in
as long as the virtual network coordinates are updated and
synchronized. An enhanced method further relaxes the
restriction that all SRUF nodes should form a v/n x v/n
grid in virtual network coordinates (Sec. IV).

o Scalability: Our method ensures that each node in SRUF
only probes O(y/n) nodes and disseminates its measure-
ment results to other O(y/n) nodes, empowering SRUF
to support a large number of ASes (Sec. IV).

o Efficiency: We evaluate SRUF using numerical ex-
periments and emulation experiments with real-world
datasets. The experiment results demonstrate that SRUF
can effectively reduce the average latency by 5.4% ~
58.9% (Sec. VI).

II. MOTIVATION AND PRELIMINARIES
A. Observation

Though triangle inequality violations could be leveraged
to reduce network latency, it still faces the challenge of
selecting proper intermediate nodes. To address this issue, we
analyze a public latency trace of Seattle network [15]. This
trace contains 99 nodes and has latencies for every pair of

To/from other ASs

Prefix | BGP Next Hop Router IGP Path

To/from other ASs,

- B

18.0/16 E

12.5.5/24 A C

c

o|lo|>

=

E

128.34/16 D

128.69/16 A E C

BGP table for the AS IGP Table for the router B

A
o Prefix IGP Path
/ 18.0/16 C
@ 12.5.5/24 A
= 128.34/16 C
I 128.69/16 A

To/from other ASs Routing Table for router B

(a) The overview of the illustrative (b) BGP table, IGP table and the
example. final routing table at Router B.

Fig. 3. Examples of interdomain and intradomain routing protocols. All
routers run iBGP and an intradomain routing protocol. Border Routers A,
D, and E also run eBGP to interconnect other autonomous systems [17].

nodes. We call the indirect path with one intermediate node
as one-hop routing and two intermediate nodes as two-hop
routing. We compare two different methods, i.e., select the
intermediate nodes randomly and select the best intermediate
nodes. Fig. 2(a) and Fig. 2(b) show that both the best one-hop
routing and the best two-hop routing lead to lower latency
than direct path with a high probability. 68.1% best one-hop
routing paths and 72.4% best two-hop routing paths have lower
latencies. However, random one-hop routing and random two-
hop routing have less than 20% probability to outperform
direct paths. Besides, Fig. 2(b) also shows that indirect paths
with two hops could perform better than one-hop indirect path
in some cases.

These important observations show that intermediate nodes
selection plays a crucial role in reducing network latency.
However, finding the best indirect paths is not easy because of
lacking the whole view of network latencies. Considering that
the Internet is composed of tens of thousands of ASes [16],
probing all nodes in the network will lead to high overheads.
Thus, we need to find a method to balance optimality and
scalability. On the other hand, we hope that the low latency
routing service through indirect paths should be transparent to
applications and provided by the network core. Our solution
addresses all above concerns, which is introduced in detail in
Sec. III and Sec. IV.

B. Preliminary I: Internet Routing

The Internet consists of billions of nodes, which is a huge
distributed system spreading all over the world. To manage
this huge system efficiently, it has been divided into many
domains, i.e., autonomous systems (ASes). There are two
mainly different kinds of routing protocols including the inte-
rior gateway protocol (IGP) and the exterior gateway protocol
(EGP). IGP works inside an AS and is used to exchange
routing information between routers within the AS. EGP is
a protocol for exchanging routing information among ASes.
Today, BGP is the most important exterior gateway protocol.
Fig. 3 gives an example of Internet routing. Routers A, B,
C, D and E belong to the same AS. Routers A, D and
E run eBGP session with other ASes to exchange routing
information and broadcast the learned routing information to
other routers inside the AS. Each router in the AS will get a

BGP table just as shown in the top left of Fig. 3(b). On the
other hand, Router B will learn how to reach other routers
inside the AS through IGP and get an IGP table (see the top
right of Fig. 3(b)). Finally, Router B will combine BGP table
and IGP table together and generate the final routing table
which indicates the next-hop.

C. Preliminary II: Segment Routing over IPv6

The key idea of segment routing is to break a routing path
into multiple segments, i.e, subpaths. There are two different
data planes to implement segment routing including MPLS and
IPv6. In this paper, we select SRv6 to implement our system
as SRv6 can coexist with pure IPv6 network. Fig. 4 gives
an illustrative example of SRv6. Host-1 and Host-2 address
packets to Host-3. The packets from Host-1 and Host-2 will
be first forwarded to the default gateway, i.e., Router 1. As
introduced in Section II-B, the routing protocols will build
routing paths on routers through configuring routing tables.
Without loss of generality, we assume that three routing paths
{R1 — R2, R2 — R3, R1 — R3} have been built by
default routing protocols. R1 will forward all packets whose
destination is Host-3 along the path (R1 — R3). However, if
we want to balance the link utilization by steering the packets
from Host-2 along (R1 — R2 — R3), we could use SRv6
technology to add segment routing headers (SRH) into the
packets. As shown in the top part of Fig. 4, for the packet from
Host-2, R1 will add an SRH into it which is composed of two
segment lists and an index variable, S L, indicating the current
activated segment. Meanwhile, the destination address of the
packet will be replaced by R2’s address. When R2 received the
packet, it will decrease the value of SL and use the activated
segment list to replace the destination address, then the packet
will go to R3 along R2 — R3. Similarly, R3 will also decrease
SL and forward the packet to the activated segment list, i.e.,
H3. Above example indicates that SRv6 could be used to
steer traffic flexibly by combining the existed routing paths
in demands.

In fact, such ability to appoint routing flexibly promises that
SRv6 will bring new network programmability to SDN. Dif-
ferent from the clean-and-slate SDN protocol, OpenFlow [18],
[19], which changes routing by rewriting routing tables in
every switch devices along the path, SRv6 only needs to up-
grade several crucial switch devices'. Literatures [14] and [21]
showed that SRv6 has more advantages than OpenFlow in
wide area networks.

ITII. SRUF PHILOSOPHY
A. Label Technology and One-hop Routing

The Internet can be viewed with a layered architecture.
Each layer focuses on realizing its functions and provides
its services to other layers through standard APIs, which are
usually represented by labels in packet header. One classical

'Any SRv6 enabled router could parse pure IPv6 packets. Besides, the
network is evolving from IPv4 to IPv6 [20]; hence, in this paper, we assume
that the network supports IPv6.

SA: H2
DA: R2
SL:2 SL: 1
0: H3 0: H3

SA: H2
DA:R3

SA: H2
DA: H3
SL: 0

RS RS
SATH2 0: 13
DA H3 2 2:R2 RS
: Payload = Payload :
Payload = LS4 : 2:R2
P v Y Router 2 % Payload
Host 2 _— i
S ;
1 -

E\/ Router

SA:HI
DA: H3
Payload

SA:H1 ‘g‘\L >
DA: H3 7
Payload

outer 3 ,,‘

Host 1 Host 3

SA: H1
DA: H3
Payload

Fig. 4. An illustrative example of SRv6.

application of label technology is multi-protocol label switch-
ing (MPLS), which is a routing technique that steers packets
from one node to the next based on the labels rather than
network addresses. This label technology brings many benefits
to guarantee network performance.

One-hop source routing is first proposed in [22] to improve
the reliability of Internet paths. This work showed that a
path failure could be quickly recovered by routing indirectly
through a small set of randomly chosen intermediaries. It
inserts an extra label in the packet header to steer the packet
to the selected intermediary node for avoiding traversing the
failed links. Note that the extra label, i.e., the IP address of the
intermediary node, will call the basic routing service provided
by the bottom IP layer automatically.

The existence of triangle inequality violations (TIV) and
the idea of one-hop source routing motivate us to design a
compatible method for the network core which provides low-
latency service in inter-domain routing based on current BGP
infrastructure.

B. Overview of SRv6 Underlay Federation

Our goal in this paper is to address the challenges of
providing low-latency routing services in Internet without
modifying legacy inter-domain routing infrastructures. Our
solution, called SRUF, is an SRv6-based underlay federation
routing system that substitutes the default direct routing paths
with the selected indirect low-latency delay paths. Fig. 5 gives
an overview of the SRUF including its architecture in single
AS (see Fig. 5(a)) and its incremental deployment in Internet
(see Fig. 5(b)). All the members in SRUF will work together
to find the low-latency indirect path.

As shown in Sec. II-B and Fig. 5(a), in the legacy routing
system, routers run IGP and BGP simultaneously. These
protocols will update their routing information tables in real-
time in order to catch up the network dynamics. Finally, these
routing tables will be combined together to generate forward
information base (FIB). When a router receives a new packet,
it will forward the packet to correct port through looking up
the FIB. Here, we assume that the BGP protocol is configured
to select the shortest AS path. Thus, in ASO, any packet
forwarded to AS9 will be routed along (AS0 — AS1 —
AS3 — AS8 — AST — AS9).

SRUF never interacts with the control plane of legacy rout-
ing systems; instead, it just parses the BGP routing information

Legacy Routing System E
gacy g Sy :@

| IGP Daemon | | BGP Daemon | E SRUF Proxy

v v
IGP Routing BGP Routing
Information Table Information Table

=

Packet-in

Packet-ou g

| — Payload [SrH
(a) The deployment of SRUF in single AS.

[Packet Header

O SRUF AS

(b) The deployment of SRUF in Internet.
Fig. 5. The overview of SRUF

O Non-SRUF AS

table and leverages SRv6 to change the routing destination.
There are three main components in SRUF, namely the SRv6
daemon, the SRUF proxy and the SRUF table.

e The SRv6 daemon: this component is responsible for
getting the destination address by parsing the packet
header and assigning new routing path by encapsulating
new SRv6 segment label. There is already an open-source
software of SRv6, thus in this paper we do not focus on
the implementation of SRv6 daemon [23], [24].

o The SRUF table: this component is the crucial part of
SRUF. As shown in the example in Table II, the SRUF
table records the alternative low-latency paths. The first
attribute reflects the destination AS. The second attribute
records the IPv6 addresses of the ASes on the alternative
path which is used to insert the segment routing header
to steer the packet along the low-latency path. Besides,
to fresh the network state in time, we set TTL values for
each alternative path. The unit of TTL could be set with
per one minute, per 10 minutes or other proper intervals.

o The SRUF proxy: this component first parse the packet
passed by SRv6 daemon to get the next-hop address
and then look up the SRUF table to get the proper
alternative path. Finally, it will tell the SRv6 daemon
how to encapsulate the packet. Besides, the SRUF proxy
is responsible for updating SRUF table.

TABLE 11
AN ILLUSTRATIVE EXAMPLE OF SRUF TABLE IN AS1.
Destination Alternative Path TTL
AS5 1) 1
AST TP(AS5) 3
AS8 IP(AS5) — IP(AST) 2

SRUF is a distributed system, where any AS can participate.
In SRUF, each AS can ping to any other AS to measure
the delay of the default direct path which is decided by
the legacy routing system. These delay measurement results
will be disseminated into the selected SRUF members (the
selection strategy is explained in Sec. IV). Leveraging these
measurement results, we can easily find the low-latency indi-
rect path between a pair of ASes and record them in a table,
i.e., SRUF Table. However, there are several challenges in
constructing SRUF Tables at each SRUF member considering
the overhead and scalability. These challenges are introduced
in Sec. III-C and solved in Sec. IV.

Here, we give an example to illustrate the workflow of
SRUF clearly. As shown in Fig. 5, AS1, AS5, AS7 and AS8
are the members of SRUF. These four ASes have found the
low-latency indirect paths among each other. Without loss of
generality, we assume that AS1 finds that its delay measure-
ment results satisfy tas1 455 + tasssas7 < tasisast.
Next, we present the journey of a packet originating from ASO
to AS9 in Fig. 5 as follows,

1) When the packet reaches to AS1 which is a member of
SRUF, it will first be intercepted by the SRv6 daemon
at AS1. If the packet is an SRv6 packet, SRv6 daemon
will decrease the value of SL, activate corresponding
segment and then pass it to the SRUF proxy. If the packet
is a pure IPv6 packet, it will be moved to the SRUF
proxy directly.

2) The SRUF proxy will look up the BGP routing infor-
mation table and find that the AS path for this packet
is (AS3 — AS8 — AS7 — AS9). Additionally, it finds
that there are two SRUF members, {AS7, AS8}, and
the farthest one is AS7.

3) Through looking up the SRUF table, it finds that the
delay between AS1 and AS7 could be reduced by an
indirect path AS1 — AS5 — AST Thus, it adds the
address of ASS5, i.e., IP(AS5), into the packet’s SRH.

4) The new encapsulated packet will be forwarded to AS5
according to the FIB.

From above example, we can see that SRUF uses routers in
the network core to intercept the packets and leverage SRv6 to
change the routing path without modifying any FIBs generated
by legacy routing protocols; hence, SRUF naturally possesses
compatibility to the legacy Internet infrastructure. The crucial
point of SRUF is that how to find the correct low-latency
indirect paths. Besides, the feasibility and scalability of SRUF
relies on the construction of SRUF Table. The challenges in
constructing the SRUF table will be shown in Sec. III-C.

C. The Challenges of Constructing SRUF Table

Note that each SRUF member cannot find the low-latency
indirect paths between it to all other members with only
knowing its measurement results. For example, if the low-
latency indirect path between A and B is (A — C — B),
neither A or B could find this path since A does not know
tcp and B does not know ¢ 4¢. To address the above problem,
we can make every SRUF member node not only periodically
monitor its links to all other n — 1 member nodes in SRUF,
but also disseminate its measurement results with n —1 entries
to them. Such method generates O(n?) per-node probing and
disseminating overhead. This method ensures that each node
knows the delay between any pair of nodes; hence being able
to finding the best low-latency indirect path for any pair of
nodes. The probing overhead and disseminate overhead grow
linearly with the number of probed nodes. Thus, having every
node continuously monitor all of the other nodes is neither
feasible nor desirable for large-scale networks.

One alternative method is to make every node probe a set
of nodes and just disseminate its probing results to several
selected nodes. Then the selected member nodes could find
low-latency paths for the pair of nodes which have sent them
probing results. For example, node A and node B will probe
a set of nodes independently. Assume that both A and B have
probed node C. We can make A and B send their probing
results to C, then C could calculate the delay of the indirect
path A — C — B. However, this simple idea will be hardly
feasible until the following challenges have been solved.

o The first challenge is that every member node is unaware
of which member node it should probe. One method is to
make every node probe all other nodes at the cost of high
bandwidth overhead. The other method is to make every
node probe a set of nodes randomly [22]. However, this
method cannot ensure that the intersection of two probing
sets is nonempty for any node pair and usually cannot find
candidate indirect paths for that node pair. In summary,
we need a deterministic approach that could find as more
candidate paths for every node pair as possible.

o The second challenge comes from selecting a set of mem-
ber nodes to collect the probing results. The constraint is
that we need to ensure that any pair of member nodes
have at least one common node receiving their probing
results. Though we could make a central node to receive
all probing results, it will suffer the performance bottle-
neck and the single point of failure. We need to find a
distributed approach that could find common rendezvous
nodes for each node pair.

o The third challenge is to enlarge the set of candidate paths
to select the best low-latency path. One method to realize
this goal is to increase the probing set of each node while
it will increase the overhead. The analysis in Sec II-A
shows that two relay nodes could significantly increase
the possibility to get low-latency paths.

Yy
Vi 5 % Node 16 probes
3 {13,14,15,12, 8,4}
29 || | 2
1| s 6 | 7 8
Node 1 probes
0 |2 |3 L {2,3,4,5,9,13}

0 1 2 3 X

Fig. 6. The virtual network coordinate in SRUF.
IV. LOW-LATENCY PATH SELECTION

A. Virtual Network Coordinate

From Sec. III-C, we need to find a deterministic approach
to decide the set of probing nodes for each member of SRUF.
To track and probe these member nodes efficiently, we build
a virtual network coordinate system. Assume that we have
v/n x y/n SRUF members {q,qs, ..., ¢, } Where \/n is an
integer (the more general case will be introduced in Sec. V).
We place these SRUF members into a /n x y/n grid. Without
loss of generality, we assume that the node ¢; fills the i*" grid
cell in a managed way. It needs to be emphasized that the
detail manage method is out of scope of this paper. Actually,
we can manage these nodes through network configuration or
using P2P registration.

B. Candidate Paths

1) Probe and Disseminate: After embedding all the SRUF
members into the virtual network coordinate, we find that
this coordinate has some structure features. For any node
q; whose position is denoted by (z;,v;), let S(g;) denote
the set that contains 2,/n — 2 nodes in row z; and col-
umn y; except itself. For another node ¢; whose position
is (z;,y;), we can easily know that S(g;) and S(g;) share
two common nodes in positions (x;,y;) and (z;,y;) if g¢;
and ¢; are in different rows and columns; otherwise, g;
and ¢; share \/n — 2 nodes in the same row or column
except themselves. For example, in Fig. 6, ¢; and ¢i6 are in
different rows and columns. S(q1) = {2, ¢3, 44, 5,99, q13},
S(q16) = {a4,98, 012, 013, 914, q15, Q16 }» S0 they share two
common nodes {q4,q13}. g1 and g3 are in the same column
and S(q13) = {q1, g5, 99, 914, q15, 16 - We can see that S(q;)
and S(q;3) share v/16 — 2 nodes, i.e., {gs,qo}. With above
definition about S(g;), we propose the probe strategy as
follows,

Probe Strategy: For any node ¢;, let it probe all the nodes
in S(g;). Since S(g;) and S(g;) share 2 or \/n — 2 nodes, this
probe strategy ensures that the intersection of two probing
sets for every node pair will never be empty. Thus, the first
challenge in Sec. III-C is solved. Additionally, this probe
strategy ensures that every node is probed balancedly, i.e,
every node g; is probed by 2v/n — 2 nodes in S(g;).

In probe phase, node ¢; will acquire a link state table
recording the latency measurement results between it and

P ERET CEErE S >
3| 14 | 15 3 13 | 14| 15 | 16
o ®, s fs L
2 9 10 11 1211 2 |09 10 11 12
L ST s N » Rt R S o
1ofiis o6 |tz |is) L T T A O 1
HE T Yv
o 1Oz 1 | @ UNEOR- 3K :)
> >
0 1 2 3 X 0 1 2 3 X

(a) Case 1: the candidate paths be- (b) Case 2: the candidate paths be-
tween node 1 and node 16. tween node 1 and node 4.

Fig. 7. The examples of candidate paths between a pair of nodes in two
different cases.

all nodes in S(g;). To find the possible low-latency indirect
path between ¢; and g¢;, there should be at least one node
receive the link state tables from both ¢; and g;. We call
such nodes that are responsible for finding the alternative
paths as rendezvous nodes. As shown in the second challenge
in Sec. III-C, we could select a central rendezvous node to
receive link state tables from all nodes. This approach will
consume O(y/n) bandwidth per-node since each node probes
O(y/n) nodes. However, this approach relies heavily on the
central rendezvous node which may cause the single-point
failure. Besides, finding the candidate paths for all node pairs
in a central rendezvous node would incur the performance
bottleneck. Another approach is to make every node broadcast
its link state table to all other n — 1 nodes which will
consume O(n!'-®) bandwidth per-node [11]. This approach
will also bring too much redundant information since every
node can calculate the candidate paths for any pair of nodes.
Combing above two approaches together, we propose our own
disseminate strategy as follows,

Disseminate Strategy: For any node g;, let it disseminate
its latency measurement results to all the nodes in S(g;). In
this way, every node ¢; acts as a rendezvous node for the other
2+/n—2 nodes. Thanks to the probe strategy, any pair of nodes
have 2 or \/n—2 rendezvous nodes. Thus, the second challenge
in Sec. I1I-C is solved. Since there are O(y/n) nodes in S(g;),
node ¢; will consume O(y/n X v/n) = O(n) bandwidth.

2) Path Selection: After probing and disseminating, each
rendezvous node is prepared to calculate the candidate paths.
For a pair of node ¢; and g;, there are two cases for their
relationship. We introduce the path selection in these two cases
respectively.

Case 1: Node ¢; and node g; are in different rows and
columns where z; # x; and y; # y;. There are 2\/n — 2
candidate paths from ¢; and g;, including \/n — 1 paths
(¢i, a4, q;) and \/n—1 paths (g;, g, g}, ¢;), Where the relay
nodes ¢,, ¢, g and g, are in positions (zq,¥:), (Ta,¥;),
(xi,yp) and (z;,ys). Here, 2, € {1,2,...,/n} — {x;}, and
Yo € {1,2, ..., v/} —{ui}.

There are two common rendezvous nodes (in positions
(xj,v;) and (z;,y;)) which are responsible for calculating
the best low-latency path. The rendezvous nodes will receive

Algorithm 1 Finding backup paths at any node g5 in SRUF

Input : Node gx and the virtual network coordinate of all SRUF
nodes.
Output : A set of low-latency paths for some node pairs.
1: for Any pair of nodes (g;, g;) in S(qx) do
2: Let P denote the candidate indirect paths between ¢; and g;
and initialize it as ()
3: if ¢; and g; are not in the same row and column then

4: for z, in {1,2,...,/n} — {z;} do

5: Add path (g, ga, g4, g;) into P where q, = (xq,y;) and
q{z = (xa,yj)

6: for y, in {1,2,...,/n} — {y:} do

7: Add path (g, gv, g5, q;) into P where g, = (;,) and
@ = (%5, ys)

8: Select the path with the lowest latency from P and notify

this path to ¢; and g;
9: for Any node ¢; € S(qx) do
10: Let P denote the candidate paths between g; and qx
11: if Nodes ¢; and g;, are in the same row then

12: for z, in {1,2,...,/n} — {z;,z} do

13: Add path (g, qa, qi) into P where y, = yi

14: for y, in {1,2,...,/n} — {yx} do

15: Add path (g, gv, g5, ¢;) into P where z, = z1, and z;, =
X4

16: if Nodes ¢; and g are in the same column then

17: for y, in {1,2,...,/n} — {yi,yx} do

18: Add path (g, ga, ¢;) into P where x4 = z

19: for z in {1,2,...,/n} — {xx} do

20: Add path (qx, qv, @1, ;) into P where y, = yi, and y;, =
Zq

21: Save the lowest latency path from P in gx and notify the path
to q;

the latency measurement results from all nodes in S(g;) and
S(g;); hence, they know the latency of each hop in the
candidate paths. After calculating the latencies of all candidate
paths, the rendezvous node will select the best one and
disseminate this path to g; and ¢;. For example, in Fig. 7(a),
node ¢; and node ¢4 are in different rows and columns. Node
q4 and node ¢;3 are the rendezvous nodes that are responsible
for calculating the latencies of the candidate paths between
q1 and q16. Here, we take one candidate path (q1, g2, q14, G16)
as an example. The one-hop latencies 4,4, and 4,4, will
be disseminated to g4 by g2, while the one-hop latency g4, ,4,,
will be disseminated to g4 by q14; hence, g4 could calculate the
latency of {tg, 4., tq1.q:6 }- NOte that i3 also can calculate the
latency of {t4, s, tqiaqie | SinCe it can know t,, 4, from ¢; and
{tg192+ tqraqis ; from g14. Consequently, the two rendezvous
nodes can calculate the latencies of all 2v/n — 2 candidate
paths and find the best path among them. Finally, the best
path will be notified to ¢; and g¢i¢.

Case 2: In case two, ¢; and g; are in the same row or column
where {x; # x;,y; = y;} or {z; = z;,y; # y;}. There are
2y/n—3 candidate paths from ¢; and ¢;, including /n—2 paths
(¢isqa»q;) and y/n — 1 paths (i, g, g}, q;). For the former
\/n — 2 paths, the relay node g, can be any node in the same
row or column with ¢; and g; but not themselves. For the other
\/n — 1 paths, the relay nodes ¢, and ¢ are in the positions
(xi,yp) and (x;,y;) where yp =y, € {1,2,...,\/n} — {y;} if
g; and g; are in the same row. If ¢; and g; are in the same

- SL: 2 SL: 1 SL: 0

SL:2 0: IP(AS5) 0: IP(AS5) 0: IP(AS5)

0: IP(AS5) 1: TP(AS4) 1: TP(AS4) 1: IP(AS4)

1: IP(AS4) 2: IP(AS7) 2: IP(AS7) 2: IP(AST)

2: IP(AS6) 3: IP(AS6) 3: IP(AS6) 3: IP(AS6)
Payload Payload Payload Payload

Fig. 8. An illustrative example of inserting SRHs in SRUF.

column, the relay nodes g, and gj are in the positions (z, y;)
and (z3,y;) where z, = xj, € {1,2,...,y/n} — {z;}. Different
from case 1, ¢; and g; can direct calculate the latency of these
24/n— 3 candidate paths locally. See the example in Fig. 7(b),
for path (¢1,¢2,q4), g1 would get t4,,, by its own probing
result and get t4,,, from go. For path (g1, ¢s,¢s,¢4), ¢1 could
get {tg, 45, tgsqs) from g5 and ¢4, from g4. Finally, both ¢;
and ¢4 can find the best candidate path locally.

From above two cases, we can conclude that when ren-
dezvous node g calculates the best candidate paths between
¢; € S(qr) and g; € S(gx), it will only need to concern the
case that ¢; and g are not in the same row or column. If
¢i»¢; € S(gx) and they are in the same row or column, the
candidate paths can be calculated by themselves. In Fig. 7(b),
node 1 and node 4 are in the same column, rendezvous
node 2 does not need to calculate the candidate paths for
them. Besides, node ¢ is also responsible to calculate the
candidate paths from it to other nodes in S(gx). Thus, we
divide the operations in rendezvous node gy into two rounds
and summarize them with details in Algorithm 1.

From above descriptions, we can conclude that given any
pair of nodes, our method could generate 21/n — 3 candidate
indirect paths if the two nodes are in the same row or column;
otherwise, 21/n — 2 candidate indirect paths will be generated.

C. SRv6 Header Insertion

Each node g in SRUF will finally record the alternative
paths toward all other nodes in its SRUF table. When a packet
is intercepted by SRUF proxy in g, it will first look up the
BGP table to get the default BGP path. Then it will find the
last SRUF node in the BGP path and insert its corresponding
IPv6 address into the SRH. To introduce the SRv6 header
insertion clearly, we give an example in detail. As shown in
Fig. 8, a packet from ASO hopes to reach ASS and the default
BGP path is (A4S0, AS1, AS2, AS3, AS4, AS5). We assume
that {AS1, AS3, AS4, AS6, AST7} has joined SRUF and have
built the SRUF tables. When the packet arrives at AS1, the
SRUF proxy will intercept it and find that the last SRUF node
in the default BGP path is AS4. Then AS1’s SRUF proxy will
lookup the low-latency path between AS1 and AS4, which

Algorithm 2 Inserting Segments into Packet Header in SRUF-
enabled AS;

Input : The packet P intercepted by SRv6 daemon
Output : The new encapsulated packet P’.
: SRv6 daemon parse P, get the value of segment index SL
: if P does not have SRH then
Set the value of segment index with 0, i.e., SL =0
: Look up the BGP table to get the default AS path and get the
farthest SRUF-enabled AS, i.e., AS;
5: Look up the SRUF table to get the alternative path p;; between
ASZ and AS]
6: if p;; has one relay node ASy then
7: Insert segments SL : IP(AS;), SL + 1 :
header of P and let SL = SL+1
8: else if p;; has two relay nodes ASy, AS) then
9: Insert segments SL : IP(AS;), SL+1:IP(ASk), SL+2:
IP(AS}) into header of P and let SL = SL + 2
10: else if p;; is () then
11: Pass

BNy =

IP(ASy) into

is (AS1, AS6, AS4). Thus, it will add the IPv6 addresses of
{AS5, AS4, AS6} into the packet header. When ASG6 receives
the packet, its SRv6 daemon will first parse the packet and
decrease the value of SL and find that the next-hop destination
is AS4. SRv6 daemon will pass this destination information
to the SRUF proxy. The SRUF proxy find that there will be
a low-latency indirect path between AS6 and AS4, i.e., (AS6,
AS7, AS4), then it will insert AS7’s IPv6 address into the
SRH and update the value of SL. Similarly, AS7 and AS4
will do the same operations. Finally, the packet will reach its
destination. We summarize the procedures of inserting SRH
in Algorithm 2.

V. ENHANCED METHOD

Using the aforementioned method to find the alternative
low-latency paths still face two problems. 1) The number of
SRUF nodes may not be just \/n X /n, thus cannot form a
perfect square like Fig 7. 2) Each node always probes the same
set of nodes, which may miss some better paths to other nodes.
The above two problems could be solved by our adaptive
virtual network coordinate.

A. SRUF with Any Number of Nodes

If the SRUF has n nodes and \/n is not an integer, we
could still form a [y/n | X [y/n] grid and place those n
nodes into the grid. There will be [/n | x [{/n | —n empty
cells whose positions are {(n%[v/n |, [v/n 1), n%[v/n |+
L[vn]), e ([v/n]—1,[v/n])}. To fill the grid, we copy
the nodes in positions {(n%[v/n |, [vn] —1), (n%[v/n |+
Lvn]—=1),c..([vV/n]—=1,]v/n]—1)} to the empty
nodes. Then the virtual network coordinates will be filled and
the proposed method in Sec. IV could be leveraged. Here we
give an example to illustrate this enhanced method with more
details. Assume that there are 13 SRUF nodes {q1, ¢2, ..., q13}
in Fig. 7(b)’s example, then positions {(1,3),(2,3),(3,3)}
will be empty. To fill the 4 x 4 grid, we could copy ¢ in
(1,3), ¢11 in (2, 3) and ¢12 in (3, 3). Then the path (1 — 13 —
16 — 4) really means (q1 — g13 — q12 — q4). It should be

Node 16 probes

Node 16 probes
{4,8,12,13,14,15) 3 | 1B 15 | 16

{3,6,9,13,14,15}

Node I probes
{2,3,4,8,11,14}

I0EE -
o 1 2 3 x 0o 1 2 3 x

(a) The positions of all SRUF mem- (b) The positions of all SRUF mem-

bers in round 1. bers in round 2.

y y

Node 16 probes
{1,6,11,13,14,15}

Node 16 probes 5
{2,8,10,13, 14,15} B s e

Node 1 probes
{2,3,4,6,11,16}

Node I probes

2347015 0 | 2| 3 | 4|1

0 1 2 3 X 0 1 2 3 X

(c) The positions of all SRUF mem- (d) The positions of all SRUF mem-
bers in round 3. bers in round 4.

Fig. 9. Rotational sampling: change the positions of all the SRUF members
iteratively in the virtual network coordinate in different time round.

noted that this completion method may generate more one-
hop indirect paths. For example, the two-hops indirect path
(1 —» 13 — 16 — 12 really means the one-hop indirect path

(@1 = q13 = q12).

B. Rotational Sampling

Though each node in SRUF only needs to probe O(y/n)
nodes which is much lower than probing all nodes, it may
miss some better low-latency paths. To explore more candidate
paths without increasing the overhead of each node, we
propose rotational sampling in each round. In detail, rotational
sampling changes the positions of all SRUF nodes in a regular
way, that is, all nodes in the i*” row move i + 1 cells right
in each new round. Fig. 9 gives an illustrative example of
rotational sampling. In round 2, we move all nodes in the
0t row one cell to the right, all nodes in the 1*" row two
cells to the right, all nodes in the 2! row three cells to
the right and all nodes in the 3'" row four cells to the
right. Then we will get S(q1) = {¢2, 43,94, 9s,q11,q14} and
S(q16) = {43,496, 99, 013, q14, 15 }- These two new sets will
explore new indirect paths. This rotational sampling method
in fact enlarge the set of candidate indirect paths and improves
the possibility to find the better low-latency alternative path.

VI. PERFORMANCE EVALUATION

We first introduce the experiment setting and then evaluate
SRUF performance in numerical and emulation experiments.

A. Experiment Setting

1) AS-topology: We use two different AS-topologies to
evaluate SRUF. The method to collect AS-level topology has
been introduced in literature [16] and one public dataset
could be downloaded in [25]. We select a part of this
topology which has 6313 nodes as our large-scale topology
in numerical experiment. As for the emulation experiment,

5000

8000
4000

6000
£ 3000

Count

5]
O 2000 4000

1000 2000

0
0 100 200 300 400 500 0 500 1000 1500

Latency(ms)

Latency(ms)

(a) Trace 1: The distribution of syn- (b) Trace 2: The distribution of syn-
thesized latency (PlanetLab dataset). thesized latency (Seattle dataset).

Fig. 10. The distributions of synthesized latency traces over all links of the
large-scale AS-level topology in one time slot.

we select a small-scale topology which has 42 nodes as our
ground network from Internet Topology Zoo [26].

2) Link latency: There are no latency datasets in [25]
and [26]; hence, we synthesis link latency dataset by ourselves
based on the latency traces of Seattle network and PlanetLab
network [15]. Both of the two traces have different time
slices. Based on the theory of self-similarity in Internet packet
delay [27], we assign the value sampled from the latency
datasets to our AS-topologies randomly. Fig. 10 shows the
distributions of the two synthesized traces in one time slice.
It should be emphasized that the SRUF method could work
regardless of the latency distribution.

3) Compared methods: To evaluate the performances of our
SRUF in finding the low-latency paths, we compare it with two
detour routing methods. One is the random one-hop algorithm
in literature [22], which aims for improving the robustness
of the network. The other one is the best one-hop algorithm
in literature [11]. Note that above two benchmark algorithms
only have impacts on picking up alternative paths, they still
need to collaborate with other modules in SRUF to provide
low latency routing service in network core. In other words,
the two compared methods only have differences in selecting
the relay node. Also, we compare SRUF to the default BGP
with preferring the minimum AS hops.

B. Numerical Result

1) The performances of SRUF in static environment:
Fig. 11 and Fig. 12 depict the experiment results in a static
environment, where the latency of each link is unchanged.
From these results, we can conclude that both SRUF and
the best one-hop method can certainly reduce the latencies.
We first set the size of SRUF is 60 x 60. Fig. 11(a) and
Fig. 12(a) illustrate that best one-hop method could find the
better alternative paths than SRUF. This is because that best
one-hop method alway find the optimal alternative path with
the whole view of network. The gap between the best one-hop
method and our SRUF method in Fig. 11(a) is larger than that
in Fig. 12(a). The reason behind this phenomenon is that the
distribution of link latencies will influence the performance
of SRUF. This phenomenon also indicates that SRUF is sure
to work no matter what the link latency distribution is. The
skew distribution like Fig. 10(b) will increase the probability
of finding the better alternative paths in SRUF. Besides, we

1.0 -

5001 FZ1 Default
SRUF

400{ EZ3 Best one-hop
Random

200
ol
°
100 o
°
I o
50

top 10% top 50% top 100%
Different Percentile Cases

0.8
0.6

0.4

—— SRUF

0.24 —— Best one-hop

—— Default
Random

CDF
The Averagge Latency (ms)
6°%6°6%0%0°%0

0.0

0 250 500 750 1000 1250 1500 1750 2000
Latency(ms)

(a) The comparisons of latency distri- (b) The comparisons of latencies with
butions with 60 x 60 SRUF size. 60 x 60 SRUF size.

22 Default

SRUF

1 Best one-hop
Random

The Average Latency (ms)

(c) The average latency comparisons with differ-
ent SRUF sizes.

Fig. 11. The performances of different methods with synthesized trace 1.

1.0
osl f—/—
0.6 /
w
a
(@)
0.4+

°
—— SRUF 2 300 o
0.2 — Best one-hop 200 - A
—— Default ol
Random 100 o o
001 xw: g

[500 1000 1500 2000 2500 3000 3500 4000 top 10% top 50% top 100%
Latency(ms) Different Percentile Cases

@ 801 773 pefault

SRUF
EZ3 Best one-hop
Random

E 0
9
2 600
I
5 500
-

© 400
o

a

The Ave

(a) The comparisons of latency distri- (b) The comparisons of latencies with
butions with 60 x 60 SRUF size. 60 x 60 SRUF size.

— . ZZ3 Default -

(23] SRUF Z

21 Best one-hop
Random

The Average Latency (ms)

(c) The average latency comparisons with differ-
ent SRUF sizes.

Fig. 12. The performances of different methods with synthesized trace 2.

compare the average latency in different percentiles. As shown
in Fig. 11(b) and Fig. 12(b), the SRUF method has little
improvement in top 10% link latency, but it can reduce the
default average latency of top 50% by 8.7% and 36.2%, and
reduce the default average latency of all links by 11.7% and
50.8%. This phenomenon indicates that it is easier for SRUF
to optimize the paths in long tail latency part.

We further evaluate the performance of SRUF with different
sizes, i.e., {30 x 30,40 x 40,50 x 50,60 x 60}. As shown in
Fig. 11(c) and Fig. 12(c), compared to SRUF with 30 x 30
size, SRUF with 60 x 60 size can reduce the default average
latency by 15.9% and 31%, respectively, showing the benefit
of the SRUF design. In Sec. IV-B, we have proved that SRUF

—e— Default

—— Rotational SRUF

—a— Best one-hop N
Random

—=— SRUF

Ve

—

—e— Default

700 —— Rotational SRUF
—— Best one-hop
650 Random

—a— SRUF

'—‘\,_./.—._._.A\/\
o] A -

Ay A
1 2 3 4 5 6 7 8 9 10 11 12
Time slot

& 1100

2 N o v o
g 3 &8 8 8
8 8 &8 8 8

w
3
38

S
8
8

The average latency (ms)

The average latency (m

1 2 3 4 5 6 7 8 9 10 11 12
Time slot

(a) Performance of different methods (b) Performance of different methods
with trace-1. with trace-2.

Fig. 13. The comparisons of the average latencies in dynamic environment.
can find 2/n — 2 or 24/n — 3 candidate paths in different
cases. The larger size of SRUF can find more candidate paths
and then find better low-latency paths.

2) The performances of SRUF in dynamic environment: In
this experiment, we set 12 time slots in total and change the
link latencies in each slot. We select 3600 nodes randomly to
form a 60 x 60 SRUF. Additionally, we evaluate the perfor-
mance of enhanced SRUF which is introduced in Sec. V-B.
As shown in Fig. 13(a) and Fig. 13(b), our SRUF method can
reduce the latencies by 7.0% and 40.72% comparing to the
Default method respectively, however, these paths have much
fluctuation as the default routing paths. This phenomenon may
be caused by that always probing the same set of nodes lose
the opportunity to find better paths. As a contrast, the enhanced
SRUF with rotational sampling performs more stable and it can
reduce the latencies by 12.4% and 58.9% against the Default
method, respectively. In fact, the reason why rotation SRUF
performs better is that it enlarges the set of candidate paths
through probing dynamically.

C. Emulation Result

We conduct a small-scale emulation experiment to further
evaluate SRUF. We use IPMininet [24] to implement a pro-
totype system. This experiment emulates a small-scale real
network topology with 42 nodes (Fig. 14). Similar to the nu-
merical experiment, we also synthesized link latencies with the
Seattle trace. As shown in Fig. 15(a), SRUF and the best one-
hop method have different bandwidth consumptions per-node.
The difference increases as the size of SRUF becomes larger.
This result is consistent with our conclusion in Sec. IV-B
that the per-node bandwidth overhead is O(n) in SRUF and
O(n+/n) in best one-hop method. The 95" percentile latency
of the default routing is 1520ms and SRUF can reduce it by
16.4% reaching 1270ms.

In Fig. 15(c), we evaluate SRUF with different sizes. When
SRUF has only 2 x 2 members, its average delay is higher than
the default method’s. Meanwhile, we can see that the average
latency of SRUF decreases as the SRUF size grows up. When
the size of SRUF reaches 4 x 4, its average latency becomes
lower than the default method’s. In 6 x 6 SRUF, the average
latency is 25.2% lower than the default method’s.

VII. RELATED WORK

Existing solutions for providing low-latency path routing in
the wide area networks include two categories: protocol-inside
improvement and protocol-outside control.

N
&
2
3

—&— SRUF
—— Best one-hop

N
S
8
s

1500

1000
— SRUF
02 —— Best one-hop

—— Default
-———/. 0.0

Random
4 36 o 500 1000 1500 2000 2500
Latency(ms)

Bandwidth Overhead (Bytes)
g
8

o

9 16 25
The number of members in SRUF

(a) The bandwidth consumption in (b) The comparisons of latencies
one SRUF member node. with 60 x 60 SRUF size.

FZ2 Default
=] SRUF

The Average Latency (ms)

The size of SRUF

(c) The comparisons of average latencies with
different SRUF sizes.

Fig. 15. The performances of different methods in emulation experiments.

Protocol-inside improvement: As the infrastructure of
inter-domain routing protocol, BGP is architecturally rigid.
BGP requires direct neighbors to use the same protocol, which
makes it more difficult for the Internet’s routing infrastructure
to change or evolve [28]. In fact, in 1999, literature [29]
have showed that there were large number of alternative
paths that had lower path latencies than the paths chosen by
BGP. However, until 2020, performance-based BGP routing
mechanisms are still in progress [30], [31]. The huge inertia
of legacy inter-domain infrastructure makes any modification
or improvement of BGP hard to move forward.

Protocol-outside control: To sidestep the performance-
obliviousness of BGP routing, content providers build sophis-
ticated control systems that use performance measurements
to serve clients via low-latency options [32]. For example,
Microsoft measured performance from clients to different
servers and then use their DNS servers to redirect the client
to the best server [33]. Google even use Espresso to route
cloud traffic via its private WAN instead of public Internet to
avoid traversing multiple ASes [34]. Above content providers’
solutions mainly serve for their own traffic in private WANS,
while our solution aims to provide general low-latency service

for any kind of traffic through cooperation of multiple ASes
in Internet. On the other hand, some distributed applications,
e.g., VoIP and P2P system, use overlay routing in application
layer to find low-delay paths. In [10], the authors implemented
a latency-reducing routing overlay system named PeerWise.
Literature [11] and [12] devoted to finding the best relay
node with minimal network latency in a scalable way. Though
above works can find low-latency paths, they leave the routing
problem to applications in overlay layer. In this paper, we
trust that the low-latency routing paths should be provided by
network core instead of applications.

VIII. CONCLUSION

This paper presented a method named SRUF to provide
low-latency path routing service in wide area network. At its
core, SRUF leverages the TIV phenomenon of the end-to-end
latencies in the Internet to provide better alternative paths. We
designed a novel method which has high scalability to find the
correct indirect path for any pair of nodes. This method permits
SRUF to scale up to more ASes incrementally. Furthermore,
SRUF leverages SRv6 to steer a flow along the selected path,
ensuring its compatibility with the legacy routing system. We
implemented SRUF using IPMininet, and evaluated it through
both numerical and emulation experiments. The experimental
results with real-world datasets demonstrate that SRUF is a
promising solution to reduce latency in wide area networks.

ACKNOWLEDGMENT

This work is partially supported by the National
Key Research and Development Program of China (No.
2018YFE0207600 and No. 2020YFE0200500), National Nat-
ural Science Foundation of China (No. U19B2024 and No.
61802421), European Union’s Horizon 2020 research and
innovation program under the Marie Sklodowska-Curie Grant
(No. 824019), and China Postdoctoral Science Foundation
(No. 2019M663017).

REFERENCES

[1] D. R. Mafioletti, A. B. Liberato, R. da Silva Villaga, C. K. Dominicini,
M. Martinello, and M. R. N. Ribeiro, “Latency measurement as a vir-
tualized network function using metherxis,” Computer Communication
Review, vol. 46, no. 4, pp. 14-16, 2016.

[2] B. Briscoe, A. Brunstrom, A. Petlund, D. A. Hayes, D. Ros, I. Tsang,
S. Gjessing, G. Fairhurst, C. Griwodz, and M. Welzl, “Reducing internet
latency: A survey of techniques and their merits,” IEEE Commun. Surv.
Tutorials, vol. 18, no. 3, pp. 2149-2196, 2016.

[3] C. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri, and
R. Wattenhofer, “Achieving high utilization with software-driven WAN,”
in Proc. of ACM SIGCOMM, 2013, pp. 15-26.

[4] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Holzle, S. Stuart,
and A. Vahdat, “B4: experience with a globally-deployed software
defined wan,” in Proc. of ACM SIGCOMM, 2013.

[5] Z. Li, D. Levin, N. Spring, and B. Bhattacharjee, “Internet anycast:
performance, problems, & potential,” in Proc. of ACM SIGCOMM, 2018.

[6] N. T. Spring, R. Mahajan, and T. E. Anderson, “The causes of path
inflation,” in Proc. of ACM SIGCOMM, 2003.

[7] “Interconnection Test of Public Cloud,” Available:https://mp.weixin.qq.
com/s/rEO6ICeNvWIIBUIEH Yewlg, 2020.

[8] G. Wang, B. Zhang, and T. S. E. Ng, “Towards network triangle
inequality violation aware distributed systems,” in Proc. of ACM IMC,
2007.

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]
[20]

[21]

[22]

(23]
[24]

[25]
[26]

[27]

(28]

[29]

[30]
(31]

(32]

[33]

[34]

C. Lumezanu, R. Baden, N. Spring, and B. Bhattacharjee, “Triangle
inequality variations in the internet,” in Proc. of ACM IMC, A. Feldmann
and L. Mathy, Eds., 2009.

C. Lumezanu, R. Baden, D. Levin, N. Spring, and B. Bhattacharjee,
“Symbiotic relationships in internet routing overlays,” in Proc. of NSDI,
2009.

D. A. Sontag, Y. Zhang, A. Phanishayee, D. G. Andersen, and D. R.
Karger, “Scaling all-pairs overlay routing,” in Proc. of ACM CoNEXT,
2009.

Y. Fu and E. Biersack, “MCR: structure-aware overlay-based latency-
optimal greedy relay search,” IEEE/ACM Trans. Netw., vol. 25, no. 5,
pp- 3016-3029, 2017.

Y. Amir, C. Danilov, S. Goose, D. Hedqvist, and A. Terzis, “An overlay
architecture for high-quality voip streams,” IEEE Trans. Multimedia,
vol. &, no. 6, pp. 1250-1262, 2006.

P. L. Ventre, S. Salsano, M. Polverini, A. Cianfrani, A. Abdelsalam,
C. Filsfils, P. Camarillo, and F. Clad, “Segment routing: a comprehensive
survey of research activities, standardization efforts and implementation
results,” CoRR, vol. abs/1904.03471, 2019.

“Network Latency Datasets,” Available:https://github.com/uofa-rzhu3/
NetLatency-Data, 2020.

B. Zhang, R. A. Liu, D. Massey, and L. Zhang, “Collecting the internet
as-level topology,” Computer Communication Review, vol. 35, no. 1, pp.
53-61, 2004.

L. L. Peterson and B. S. Davie, Computer networks: a systems approach.
Elsevier, 2007.

N. McKeown, T. E. Anderson, H. Balakrishnan, G. M. Parulkar, L. L.
Peterson, J. Rexford, S. Shenker, and J. S. Turner, “Openflow: enabling
innovation in campus networks,” Computer Communication Review,
vol. 38, no. 2, pp. 69-74, 2008.

J. Xie, D. Guo, Z. Hu, T. Qu, and P. Lv, “Control plane of software
defined networks: A survey,” Comput. Commun., vol. 67, pp. 1-10, 2015.
“IPv6 Statistics,” Available:https://https://www.internetsociety.org/
deploy360/ipv6/statistics/, 2020.

R. Hartert, S. Vissicchio, P. Schaus, O. Bonaventure, C. Filsfils,
T. Telkamp, and P. Francois, “A declarative and expressive approach
to control forwarding paths in carrier-grade networks,” in Proc. of ACM
SIGCOMM, 2015.

P. K. Gummadi, H. V. Madhyastha, S. D. Gribble, H. M. Levy, and
D. Wetherall, “Improving the reliability of internet paths with one-hop
source routing,” in Proc. of USENIX OSDI, 2004.
“ROSE: Research on Open SRv6 Ecosystem,”
netgroup.github.io/rose/, 2020.

“IPMininet’s documentation,” Available:https://ipmininet.readthedocs.io/
en/latest/, 2020.

“Internet topology,” Available:http://konect.cc/networks/topology/, 2020.
“The Internet Topology Zoo,” Available:http://www.topology-zoo.org/,
2020.

M. S. Borella, S. Uludag, G. B. Brewster, and I. Sidhu, “Self-similarity
of internet packet delay,” in Proc. of IEEE ICC, 1997.

R. R. Sambasivan, D. Tran-Lam, A. Akella, and P. Steenkiste, “Boot-
strapping evolvability for inter-domain routing with D-BGP,” in Proc.
of ACM SIGCOMM, 2017.

S. Savage, A. Collins, E. Hoffman, J. Snell, and T. E. Anderson,
“The end-to-end effects of internet path selection,” in Proc. of ACM
SIGCOMM, 1999, pp. 289-299.

“Performance-based BGP Routing Mechanism,” Available:https://tools.
ietf.org/id/draft-ietf-idr- performance-routing-02.html, 2020.

“BGP Optimal Route Reflection (BGP-ORR),” Available:https://tools.
ietf.org/html/draft-ietf-idr-bgp-optimal-route-reflection-20, 2020.

T. Arnold, M. Calder, I. Cunha, A. Gupta, H. V. Madhyastha,
M. Schapira, and E. Katz-Bassett, “Beating BGP is harder than we
thought,” in Proc. of Hotnets, 2019.

M. Calder, R. Gao, M. Schroder, R. Stewart, J. Padhye, R. Mahajan,
G. Ananthanarayanan, and E. Katz-Bassett, “Odin: Microsoft’s scalable
fault-tolerant CDN measurement system,” in Proc. of NSDI, 2018.

K. Yap, M. Motiwala, J. Rahe, S. Padgett, and et al, “Taking the edge off
with espresso: Scale, reliability and programmability for global internet
peering,” in Proc. of ACM SIGCOMM, 2017.

Available:https://

