
Efficient Indexing Mechanism for Unstructured
Data Sharing Systems in Edge Computing

Junjie Xie∗†, Chen Qian†, Deke Guo∗‡, Minmei Wang†, Shouqian Shi†, Honghui Chen∗
∗Science and Technology on Information Systems Engineering Laboratory

National University of Defense Technology, Changsha Hunan 410073, China
†Department of Computer Science and Engineering, University of California Santa Cruz, CA 95064, USA

‡Tianjin Key Laboratory of Advanced Networking, School of Computer Science and Technology
Tianjin University, Tianjin 300350, P. R. China.

Deke Guo is the corresponding author: dekeguo@nudt.edu.cn

Abstract—Edge computing promises a dramatic reduction in
the network latency and the traffic volume, where many edge
servers are placed at the edge of the Internet. Furthermore,
these edge servers cache data to provide services for edge users.
The data sharing among edge servers can effectively shorten
the latency to retrieve the data and further reduce the network
bandwidth consumption. The key challenge is to construct an
efficient data indexing mechanism no matter how the data is
cached in the edge network. Although this is essential, it is
still an open problem. Moreover, existing methods such as the
centralized indexing and the DHT indexing in other fields fail
to meet the performance demand of edge computing. This paper
presents a COordinate-based INdexing (COIN) mechanism for
the data sharing in edge computing. COIN maintains a virtual
space where the switches and the data indexes are associated with
the coordinates. Then, COIN distributes data indexes to indexing
edge servers based on those coordinates. The COIN is effective
because any query request from an edge server can be responded
when the data has been stored in the edge network. More
importantly, COIN is efficient in both routing path lengths and
forwarding table sizes for publishing/querying the data indexes.
We implement COIN in a P4 prototype. Experimental results
show that COIN uses 59% shorter path length and 30% less
forwarding table entries to retrieve the data index compared to
using Chord, a well-known DHT solution.

I. INTRODUCTION

Edge Computing has been proposed to shift computing
and storage capacities from the remote Cloud to the net-
work edge in close proximity to mobile devices, sensors,
and end users [1] [2]. Meanwhile, it promises a dramatic
reduction in network latency and traffic volume, tackling the
key challenges for materializing 5G vision. In edge computing,
edge servers (also called as nodes) can perform computation
offloading, data storage, data caching and data processing for
edge users. However, unlike Cloud data center servers, edge
servers are usually widely geographically distributed and have
heterogeneous computation and storage capacities [2]. In edge
computing, when an edge user sends a data request, the request
is first directed to the nearest edge server. If the edge server
has cached the data, it will return the data to the edge user,
otherwise, it will retrieve the data from the Cloud for the
edge user. However, retrieving data from the Cloud would
incur a large amount of backhaul traffic and a long latency.
Furthermore, retrieving the data from those neighboring edge
servers that have cached the required data can efficiently

reduce the bandwidth consumption and the latency of request
response, as shown in the literature [3]. Therefore, there is an
urgent need to study the data sharing among edge servers.

To enable the data sharing, the key challenge is to achieve
the data index, which indicates the location of a data in the
edge computing environment. However, it remains an open
problem, and an efficient data indexing mechanism is very
essential. Some earlier work about the data indexing in other
computing environments is divided into three categories. The
first one is the full indexing [4] where each edge node main-
tains a full index for all data in the edge network. The main
drawback is that the bandwidth cost is too high to maintain the
full index since each data location needs to be transferred to
all edge nodes by the broadcast or the multicast. The second
one is the centralized indexing [5] where a dedicated indexing
server is needed to maintain all the data indexes. However, the
centralized indexing suffers from the performance bottleneck
and drawbacks in the fault-tolerance and the scalability. The
last one is the distributed hash table (DHT) indexing [6], which
has been extensively studied in Peer-to-Peer (P2P) networks
and could be a candidate solution for the data sharing in edge
computing. However, our observation shows that the DHT
indexing goes through a significantly longer path to retrieve
a data index compared to the shortest path between two edge
nodes.

In this paper, we propose an efficient data indexing mecha-
nism, called COordinate-based INdexing (COIN), for the data
sharing in the edge computing environment. Those data from
the Cloud and edge devices are locally cached in edge servers,
and no global caching rules are required in the whole edge
network. Therefore, for the data sharing of those unstructured
data, this is an unstructured data sharing system. To achieve the
COIN mechanism, the control plane of the network maintains
a virtual 2-dimensional (2D) space where each switch is
associated with a coordinate. Furthermore, each data index
is also mapped into a coordinate in the virtual space. Then,
the data index is stored in the indexing edge server that is
directly connected to the switch whose coordinate is closest
to the coordinate of the data index in the virtual space.

The COIN is effective because any query request from an
edge server can be responded when the data has been cached
in the edge network. More importantly, the lookup speed

shows the efficiency of the COIN mechanism, which achieves
the shortest path lengths and the fewest forwarding table
entries in switches to retrieve the data indexes. Furthermore, to
enhance the robustness of the indexing systems, multiple index
copies are essential in the edge network. In this case, the key
challenge is how to quickly retrieve the data index from the
nearest indexing edge server. To enable these advantages, our
COIN mechanism embeds the path length between switches
into the distance between points in the virtual space. After that,
the data requester can instantly retrieve the data index from
the nearest indexing edge servers by comparing their distances
in the virtual space.

We conducted extensive experiments, using both P4 imple-
mentation and simulations, to evaluate the performance of the
COIN mechanism. Experimental results show that the COIN
mechanism uses 30% less forwarding table entries and 59%
shorter path length to retrieve the data index compared to using
the well-known DHT indexing mechanism [6].

The rest of this paper is organized as follows. In section
II, we introduce the motivation and the design overview of
this paper. We detail the COIN mechanism in Section III.
In Section IV, we evaluate the performance of the COIN
mechanism based on a small-size testbed and large-scale
simulations. We introduce the related work and conclude this
paper in Section V and Section VI, respectively.

II. MOTIVATION AND OVERVIEW

A. Motivation

Edge computing is to offload computing and storage to
the network edges so as to enable computation-intensive
and latency-critical applications. The promised gains of edge
computing have motivated extensive efforts in both academia
and industry on developing the technology [2][7]. In edge
computing, each edge node caches some data to provide
services for those edge users located in a given area. When
a user sends a data request, the request is first directed to
the edge node that is nearest to the Access Point (e.g. a
base station). If the edge node has cached the data, it will
immediately return the data to the edge user, otherwise, it
will retrieve the data from the remote Cloud for the user, as
shown in Fig. 1. Meanwhile, the data will be also cached in
the corresponding edge node. It is no doubt that retrieving the
data from the remote Cloud consumes too much bandwidth
and incurs significantly long latency.

In edge computing, the need for data sharing mainly comes
from two folds. One is that many popular contents in Cloud
are asynchronously and repeatedly requested by different edge
users. It has been predicted by Cisco that mobile video
streaming will occupy up to 72% of the entire mobile data
traffic by 2019 [7]. One unique property of such services is
that the content requests are highly concentrated. Motivated
by this fact, wireless content caching was proposed to avoid
the frequent retrieval of the same contents. Another one is
that the edge servers can deliver those data generated by some
edge devices to other edge devices that are located in different
geographical areas. It is estimated that tens of billions of edge
devices will be deployed in the near future, and their processor

Edge node

Cloud

Edge node

Base station
User (1)

Base station

Base station

User (2)

(1)

(1)

Edge node

(1)

(1) (1)

(2)

(2)

(2)

(2)

Fig. 1. Retrieving data in the edge computing environment.

speeds are growing exponentially, following Moores Law [7].
The development of the edge devices further promotes the data
sharing and the repeated using of the data among edge servers.
Therefore, there is an urgent need to study the data sharing
among edge servers.

Meanwhile, the data sharing among multiple edge nodes
can efficiently reduce the latency of data retrieval and the
bandwidth consumption in the backhaul network [3]. Given
a data sharing framework, when an edge node receives a data
request, it will first lookup if the data has been cached in
itself or other edge nodes in the edge network. If the data
has been cached in the edge network, retrieving the data
from the closer edge node is more efficient than from the
remote Cloud. As shown in Fig. 1, when user 2 requests the
same data as user 1, user 2 can retrieve the data from the
corresponding edge node instead of the Cloud. Meanwhile, for
the robustness of the indexing system, multiple index copies
could be maintained for each shared data. It is also essential
to optimize the indexing system for multiple index copies.

B. Design Overview

To achieve the data sharing among edge nodes, the key
challenges are where to place the data index, how to search
the data index and how to retrieve the data after getting a
data index. Our COIN mechanism mainly solves the first
two problems. The routing problem from the data requester
to the data location that is indicated by the data index is
orthogonal to our work. When a data requester gets a data
index that indicates a data location, the data can be retrieved
from the location by using the shortest path routing or other
more efficient routing schemes. In the edge network, there
are multiple edge nodes where each edge node consists of
multiple edge servers. We use the following terms to describe
the data sharing framework throughout the paper:

1) An ingress edge server refers to the closest edge server
to a base station (BS). All data requests from the BS are
firstly forwarded to this edge server.

2) A storing edge server refers to an edge server that stores
some shared data items.

3) An indexing edge server refers to the edge server that
stores the indexes of cached data at storing edge servers.

Switch
Edge node

Edge node

Edge node

Base station User

Full DIT

(a) Full indexing.

Switch
Edge node

Edge node

Edge node

Base station User

Full DIT

(b) Centralized indexing.

Switch
Edge node

Edge node

Edge node

Base station User

Partial DIT

(c) DHT indexing.

Switch
Edge node

Edge node

Edge node

Base station User

Partial DIT

(d) COIN.

Fig. 2. Packet forwarding under different data indexing mechanisms.

Note that each edge node determines one of the edge
servers as the indexing edge server.

4) An indirect edge server refers to an intermediate edge
server that forwards any query request of data index, not
including the ingress edge server and the indexing edge
server.

We explain the design choices for the data indexing and
compare those choices with representative alternative designs
to illustrate why we make those choices. To efficiently support
the data indexing in edge computing, a direct design is to
maintain a full Data Indexing Table (DIT) of all shared data
in each edge node in the edge network. As shown in Fig.
2(a), on top of the full indexing mechanism, each edge node
can quickly know if a data item exists in the edge network.
However, the disadvantage of the full indexing is that the
bandwidth cost of maintaining the full indexing is too huge.
When an edge node caches a new data item, it needs to publish
the data location to all edge nodes in the edge network.

The second choice is to choose a dedicated edge server to
provide the centralized indexing service for all shared data
in the edge network as shown in Fig. 2(b). In this scenario,
the dedicated indexing server stores all data indexes, and each
edge node forwards the data request to the unique indexing
server. That is, only the dedicated indexing edge server needs
to store the full DIT. However, an obvious flaw of this
design is that the centralized indexing server will become
the performance bottleneck. Furthermore, it also suffers from
worse fault tolerance and load balance.

The third design is the DHT indexing mechanism, which
has been extensively studied in peer-to-peer (P2P) networks
[6][8][9]. The DHT indexing is a distributed indexing mech-
anism, and each indexing edge server just stores partial DIT.
However, the DHT indexing mechanism employs multiple
overlay hops to retrieve a data index where each overlay
hop means the shortest path between two edge servers. More
precisely, for any query, the searching process usually involves
log(n) forwardings where n is the number of edge nodes
in the edge network [6]. That is, the ingress edge server
could forward each incoming packet to a series of intermediate
indirect edge servers before reaching the final indexing edge
server, as shown in Fig. 2(c). It is no doubt that the longer
path increases the query processing latency, server load and
consumes more internal link capacity in the edge network.

In this paper, our solution is a coordinate-based indexing

TABLE I
COMPARISON OF DIFFERENT INDEXING MECHANISMS.

Indexing
mechanism

Lookup
speed

Memory
Scalability

Request load
balancing

Bandwidth
cost

COIN Median Good Good Low
DHT

indexing
Slow Good Good Median

Centralized
indexing

Median Bad Bad Low

Full
indexing

Fast Bad Good High

(COIN) mechanism, which just takes one overlay hop to search
the data index as shown in Fig. 2(d). Furthermore, it achieves
the benefits of the distributed data indexing, and needs less
forwarding entries at each switch to support the data indexing
than the DHT indexing mechanism. The features of different
indexing mechanisms are concluded in Table I. Note that our
COIN mechanism fully utilizes the advantages of software-
defined networking (SDN) [10][11] where the control plane
can collect the network topology and state including switch,
port, link, and host information [12]. When we apply the
principle of SDN to the edge computing, the network is
called a Software-Defined Edge Network (SDEN). Fig 3 shows
the framework of the COIN mechanism, including the main
functions in the control plane and the switch plane. In SDN,
the network management is logically centralized in the control
plane consisting of one or multiple controllers, which generate
the forwading table entries for switches. The switches in the
switch plane only forward packets according to the installed
entries derived from the controller. Note that the performance
and scalability of the control plane is the key to the COIN
mechanism. At current, there have been much research on
improving the performance and scalability of the control plane
[13][14].

To achieve the COIN mechanism, the control plane main-
tains a virtual 2D space where each switch is associated with
a coordinate. The coordinates of switches are calculated in
Section III-A1. Then, the control plane constructs a Delaunay
Triangulation (DT) graph [15][16] in Section III-B1 to connect
those points, which indicate the switches’ coordinates in the
virtual space. Further, the control plane inserts the forwarding
entries into the forwarding tables of switches where each
forwarding entry indicates the coordinate of a neighboring

Control plane

Switch plane

Network
topology

Determine the
coordinates of

switches
(Section III-A1)

 Construct a
DT graph

(Section III-B1)

Calculate the
coordinate of
the data index

(Section III-A2)

Greedy
forwarding

(Section III-B2)

Forwarding
table

Querying a
data index Forwarding the

data index

Insert
forwarding
entries

Collect
network
topology

Fig. 3. The framework of the COIN mechanism over a software-defined edge
network.

switch. More precisely, the index of each shared data is also
assigned to a coordinate in the virtual space based on its
identifier in Section III-A2. Then, the data index is greedily
forwarded to the switch whose coordinate is the nearest to that
of the data index in the virtual space in Section III-B2. Finally,
the switch forwards the data index to the only indexing edge
server among all directly connected edge servers.

III. COORDINATE-BASED INDEXING

In this section, we introduce the details of COIN include
the main functions shown in Fig. 3.

A. Determining coordinates

1) Determining the coordinates of switches: The control
plane can obtain the network topology and state by collecting
switch, port, link, and host information [12][11]. Then, the
shortest path matrix between switches can be firstly calculated
by the control plane. However, the key challenge is how to
calculate the coordinate matrix of n points where the shortest
path lengths between n switches can be indirectly reflected
by the distances between points in the virtual space. In other
words, we need to solve the problem of finding a point
configuration that represents a given scalar-product matrix
[17]. In matrix notation, this amounts to solving the equation

B = XX ′ (1)

where X is the n×m coordinate matrix of n points in m-
dimensional space.

Every n×n matrix B of real numbers can be decomposed
into a product of several matrices. The eigendecomposition can
be constructed for most matrices, but always for symmetric
ones. Formally,

B = QΛQ′ (2)

where Q is orthonormal (i.e., QQ′=Q′Q=I) and Λ is diago-
nal.

Every n×m matrix X can be decomposed into

X = PΦQ′ (3)

where P is an n×m orthogonal matrix, (i.e., P ′P=I), Φ is an
m×m diagonal matrix, and Q is an m×m orthogonal matrix,
(i.e., Q′Q=I).

Algorithm 1 Calculate the coordinates of switches in the
virtual space while achieving the distance embedding.
Require: The shortest path matrix L.
Ensure: The coordinates of the switches U .

1: Compute the squared ditance matrix L(2)=[l2ij].
2: Construct the scalar product matrix B by multiplying the

squared ditance matrix L(2) with the matrix J=I− 1
n
A. That

is B=− 1
2
JL(2)J , where n is the number of switches, and A

is the squared matrix with all elements are 1. This procedure is
called double centering.

3: Determine the m largest eigenvalues λ1, λ2, ..., λm and corre-
sponding eigenvectors e1, e2, ..., em of the matrix B (where m
is the number of dimensions).

4: The coordinates of the switches U=QmΛ
1/2
m , where Qm is the

matrix of m eigenvectors and Λm is the diagonal matrix of m
eigenvalues of the matrix B, respectively.

Assume that we know the decompositions of X as given in
Formula (3). Then,

XX ′ = PΦQ′QΦP ′ = PΦΦP ′ = PΦ2P ′ (4)

which is just the eigendecomposition of XX ′ based on
Equation (2). This proves that the eigenvalues of XX ′ are all
nonnegative because they consist of ϕ2

i and squared numbers
are always nonnegative.

Furthermore, suppose that we do an eigendecomposition of
B=QΛQ′. We know that scalar product matrices are symmet-
ric and have nonnegative eigenvalues based on Equations (2)
and (4). Therefore, we may write B=(QΛ1/2)(QΛ1/2)′=UU ′,
where Λ1/2 is a diagonal matrix with diagonal elements λ

1/2
i .

Thus, U=QΛ1/2 gives coordinates that reconstruct B. The
coordinates in U may differ from those of X in Equation
(1). This simply means that they are expressed relative to two
different coordinate systems, which, however, can be rotated
into each other [17].

Based on the above analysis, we design the embedding
algorithm of path lengths to calculate the coordinates of
switches in the virtual space as shown in Algorithm 1, which
can preserve the network distances between switches as well
as possible. First, Algorithm 1 takes an input matrix giving
network distances between pairs of switches, which is known
to the control plane of the network [12]. Then, Algorithm
1 utilizes the fact that the coordinate matrix can be derived
by eigenvalue decomposition from B=UU ′ where the scalar
product matrix B can be computed from the distance matrix
L by using the double centering in Step 2 of Algorithm 1.
Last, the coordinates of the switches U in the virtual space are
obtained by multiplying eigenvalues and eigenvectors in Step
4 of Algorithm 1. Based on the Algorithm 1, the coordinates
of switches in the virtual space can be determined.

2) Determining coordinates for data indexes: The coordi-
nate of a data index is achieved by the hash value H(d) of the
identifier of the data index d. In this paper, we adopt the hash
function, SHA-256 [18], which outputs a 32-byte binary value.
Note that other hash functions can also be used. Meanwhile,
in the case of a hash collision, it just means that two or more
data indexes are assigned to the same coordinate and stored
in the same indexing edge server. Furthermore, the hash value

H(d) is reduced to the scope of the 2D virtual space. We only
use the last 8 bytes of H(d) and convert them to two 4-byte
binary numbers, x and y. We limit that the coordinate value
ranges from 0 to 1 in each dimension. Then, the coordinate of a
data index in 2D is a two-tuple (x

232−1 ,
y

232−1). The coordinate
can be stored in decimal format, using 4 bytes per dimension.
Hereafter, for any data identifier, d, we use H(d) to represent
its coordinate.

B. Publishing a data index

Under the COIN mechanism, each switch greedily forwards
a data index to its neighbor, whose coordinate is closest to
the coordinate of the data index. Recall that greedy routing
on a DT graph provides the property of guaranteed delivery
[15][19], which is based on a rigorous theoretical foundation.
Therefore, to achieve the guaranteed delivery, the control plane
first constructs a DT graph, which connects all switches’
coordinates in the virtual space.

1) DT construction: Given a set of switches and their
coordinates in a set of points P , we adopt the randomized
incremental algorithm [20] to construct the DT DT (P) in
the 2D virtual space. After constructing a DT, note that a
DT neighbor of a switch may not be its physical neighbor.
Therefore, to achieve the guaranteed delivery, each switch
maintains two kinds of forwarding entries. The first one makes
it forward packets to its physical neighbors, while the other
one makes it forward requests to its DT neighbors. Note that
a DT neighbor could also be a physical neighbor. But, here,
those DT neighbors are the neighbors except for the physical
neighbors. The switches that are not directly connected to an
indexing edge server would not participate in the construction
of the DT. Those switches are just used as the intermediate
switches to transfer data indexes to the DT neighbors.

For a switch u, the forwarding table Fu is used to forward
packets to DT neighbors. Each entry in Fu is a 4-tuple
<src, pred, succ, des>, which is a sequence of switches with
src and des being the source and destination switches of a
path, and pred and succ being the predecessor and successor
switches of switch u in the path. A tuple in Fu is used by
u for message forwarding from src to des. For a specific
tuple t, we use t.src, t.pred, t.succ, and t.des to denote the
corresponding switches in the tuple t.

2) Forwarding the data index: The switches are associated
with their coordinates in a virtual space. A switch knows
the coordinates of itself, its physical neighbors and its DT
neighbors. The switch can obtain the coordinates of such
switches based on its forwarding table entries where we
utilize the P4 switch [21][22]. Multiple match-action tables are
declared in the P4 switch where the standard table includes
two properties: key and action [22]. Meanwhile, the action
could include some parameters, which are provided by the
control plane. Recall that the coordinates of switches are
calculated by the control plane in Section III-A1. Then, the
control plane converts the coordinates of the switches into the
forwarding entries and inserts those forwarding entries into
the corresponding switches. More precisely, the control plane
inserts the parameters of an action that include x and y values

of a coordinate into a match-action table through a table add
command. After that, in each match-action stage, the switch
can calculate the distance between a pair of coordinates of a
neighboring switch and the data index in the virtual space.

When a data item is cached by an storing edge server.
The edge server will publish the data index to an indexing
edge server. The data index is firstly sent to a switch. The
switch, say u, uses the virtual coordinates of its physical and
DT neighbors and the coordinate p=H(d) of the data index
to compute estimated distances. For each physical neighbor
v, switch u computes the estimated distance Rv=Dis(v, d),
which is the Euclidean distance from v to d in the virtual
space. For every DT neighbor ṽ, switch u computes the
estimated distance from ṽ to d by Rṽ=Dis(ṽ, d). Switch u
selects the neighbor switch v∗ that makes Rv∗=min{Rv, Rṽ}.
If Rv∗<Dis(u, d), u sends the packet to v∗ directly if v∗ is
a physical neighbor or by the virtual link to v∗ if v∗ is a
DT neighbor. If Rv∗<Dis(u, d) is not satisfied, switch u is
closest to the coordinate of the data index. Then, switch u
directly forwards the data index to its indexing edge server.

Forwarding to a DT neighbor. When switch u receives a
packet that is being forwarded in a virtual link, the packet is
processed as follows. Assume that a switch u has received a
data index d to forward. Switch u stores it with the format:
d=<d.des, d.src, d.relay, d.index> in a local data structure,
where d.des is the DT neighboring switch of the source switch
d.src, d.relay is the relay switch, and d.index is the payload
of the data index. When d.relay ̸=null, the data index d is
traversing a virtual link.

The forwarding at switch u is specified by two condi-
tions and the corresponding actions. When the first condition
u=d.des is found to be true, switch u is the DT neighboring
switch, which is the endpoint of the virtual link. Then, switch
u will continue to forward the data index d to its neighbor,
which is closest to the coordinate of the data index in the
virtual space. In particular, the second condition is for handling
messages traversing a virtual link. When u=d.relay, switch
u first finds tuple t from the forwarding table Fu with
t.des=d.des where Fu is defined in Section III-B1. Then,
switch u revises d.relay=t.succ based on the matched tuple
t. The last step in switch u is to transmit the data index to
d.relay. Based on this setting, messages can be forwarded
to the DT neighbor of a switch. Last, the data index will be
forwarded to the switch whose coordinate is closest to the
coordinate of the data index in the virtual space, and then, the
switch forwards the data index to its indexing edge server.

C. Querying a data index

So far, we have introduced the procedure of publishing a
data index. Under the COIN mechanism, querying a data index
is similar to the publishing procedure. The querying procedure
is also to use the identifier of the data index, and each switch
greedily forwards the querying request to the switch whose
coordinate is closest to the coordinate of the data index in the
virtual space. That is, the switch uses the same method shown
in Section III-B2 to determine the indexing edge server, which
will respond to the querying request. Then, the indexing edge

server returns the data index that indicates the data location
in the edge network. Last, the data requester can retrieve the
data using the shortest path routing or other routing schemes,
which is orthogonal to this work.

D. The optimization design for multiple index copies

At current, we only consider one data index for each shared
data. However, for the fault tolerance or the load balance, the
edge network could store multiple data indexes for each shared
data. That is, the data indexes of a shared data can be stored
in multiple different indexing edge servers. To enable this, we
further optimize the COIN mechanism under multiple index
copies. We have described that the indexing edge server for a
data index is determined by the hash value H(d) of the data
index where d is the identifier of the data index. Now, to enable
multiple index copies, the indexing edge server for the ith
index copy is determined by the hash value H(d+i−1). Note
that the data identifier is a string. The serial number i of the
index copy is converted to a character, and then, the string of
the data identifier and the character are concatenated. Last, the
hash value of the new string uniquely determines the indexing
edge server that will store the index copy. Furthermore, when
there are α index copies, the indexing edge server that stores
the αth index copy is uniquely determined by the hash value
H(d+α−1).

The key challenge is how to quickly obtain the optimal
index copy that is closest to the ingress edge server when
multiple index copies are available. It means that the path of
retrieving the index is shortest. However, achieving this goal is
hard because we just know the identifier of the data index, and
we do not require the ingress edge server to store other more
information. Recall that the coordinate of the data index is
calculated based on the hash value of each index copy. Then,
the data index is forwarded to the switch whose coordinate
is closest to the coordinate of the data index in the virtual
space, and the indexing edge server directly connected to the
switch will store the data index. In this case, to select the
optimal index copy without probing all index copies, the key
enabler is to reflect the path length between two switches by
the distance between the corresponding points in the virtual
space, which has been achieved in Section III-A1. After that,
the switch can forward the querying request of a data index to
the nearest index copy based on the coordinates of the switch
and the index copies. Therefore, under the COIN mechanism,
the ingress edge server can quickly select the index copy that
achieves the shortest path length to retrieve the data index.

IV. PERFORMANCE EVALUATION

A. Implementation and prototype-based experiments

We have built a testbed, which consists of 6 P4 switches
and 12 edge servers as shown in Fig. 4. We implement the
centralized indexing (C-index), the DHT indexing (D-index)
[6] and our COIN mechanisms on our testbed, and further
compare the performances of the three different indexing
mechanisms. We implement the COIN mechanism, including
all switch plane and control plane features described in Section
II-B, where the switch plane is written in P4 [21], and the

h2

h10h9h6h5

h1 h11

h12

P4 switch Edge server

Fig. 4. The network topology consists of 6 P4 switches and 12 edge servers.

function in the control plane is written in Java. The P4
compiler generates Thrift APIs for the controller to insert the
forwarding entries into the switches. The P4 switch supports
a programmable parser to allow new headers to be defined
where multiple match+action stages [22] are designed in series
to achieve the neighboring switch whose coordinate is closest
to the coordinate of the data index. The P4 switch calculates
the distance from a neighboring switch to the data index in
the virtual space in a match+action stage.

We first compare the path lengths and the number of
forwarding table entries under different indexing mechanisms.
The path lengths from all edge servers to the indexing edge
server are calculated, and then, the average path lengths under
different indexing mechanisms are obtained. In the following
figures, each error bar is constructed using a 95% confidence
interval of the mean. As shown in Fig. 5(a), the average
path length achieved by our COIN mechanism is close to the
average path length achieved by the C-index mechanism and
is obviously shorter than the average path length achieved by
the D-index mechanism. Note that the C-index mechanism
uses the shortest path between an ingress edge server and
the indexing edge server to retrieve a data index. The D-
index mechanism retrieves a data index while employing
multiple overlay hops where one overlay hop is related to the
shortest path between two edge servers. However, our COIN
mechanism only employs one overlay hop to retrieve the data
index.

Furthermore, we compare the number of forwarding table
entries for the data indexing under different indexing mecha-
nisms where the C-index and D-index mechanisms forward the
packets by matching the source and destination addresses. Fig.

C-index D-index COIN0

2

4

6

8

A
ve
ra
ge
 p
at
h
le
ng

th

3.28

4.83

3.28

(a) The path lengths of retrieving indexes.

C-index D-index COIN0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

A
ve
ra
ge

 n
um

be
r o

f e
nt
rie

s

9.67

15.33

5.67

(b) The number of forwarding entries.

Fig. 5. The path lengths and the numbers of forwarding entries under different
indexing mechanisms in a small-scale testbed.

20 30 40 50 60 70 80 90 100
The number of switches

5

10

15

20

25

30

35

A
ve
ra
ge
 p
at
h
le
ng

th

D-index
COIN
C-index

(a) A single index copy for each shared data.

20 30 40 50 60 70 80 90 100
The number of switches

2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0
22.5

A
ve
ra
ge
 p
at
h
le
ng

th

D-index
C-index
COIN

(b) Three index copies for each shared data.

C-index D-index COIN
0

5

10

15

20

25

A
ve
ra
ge

 p
at
h
le
ng

th

5.20

16.66

5.264.45

10.05

4.09

Single index copy
Three index copies

(c) There are 100 switches in the edge network.

Fig. 6. The average path lengths for retrieving data indexes under different indexing mechanisms.

C-index D-index COIN0.0

0.2

0.4

0.6

0.8

A
ve
ra
ge
 la
te
nc
y
(m

s)

0.33

0.47

0.30

Fig. 7. The latency of retrieving indexes under different indexing mechanisms
in a small-scale testbed.

5(b) shows the average number of forwarding table entries per
switch under different indexing mechanisms. As shown in Fig.
5(b), our COIN mechanism achieves fewer forwarding table
entries in switches than the other two indexing mechanisms.
It is because that under our COIN mechanism, the number
of forwarding table entries in each switch is just related to
the number of its neighboring switches. However, under the
C-index and D-index mechanisms, the number of forwarding
table entries increases as the increase of the number of flows
in the edge network.

We evaluate the impact of multiple index copies on the
performance of the COIN mechanism. We have stored 10, 000
data items, and two index copies are maintained for each
shared data. Then, we randomly generate some data requests
and test the latencies of retrieving the data indexes under
different indexing mechanisms. Fig. 7 shows that the COIN
mechanism achieves the least average latency to retrieve the
index copy among the three indexing mechanisms since the
COIN mechanism can quickly select the optimal index copy
based on the coordinates of switches and index copies in
the virtual space. We can find that the gap between the C-
index mechanism and the COIN mechanism is small in Fig.
7. It is mainly because that the scale of our testbed is small.
Furthermore, we will conduct large-scale simulations in the
next section.

B. Setting of large-scale simulations

In simulations, we use BRITE [23] with the Waxman model
to generate synthetic topologies at the switch level where each
switch connects to 10 edge servers. We vary the number of
switches from 20 to 100. Note that our COIN mechanism can
be scaled to larger networks. At current, there have been much

research on improving the performance and scalability of
the control plane [12][11][13]. Meanwhile, it is worth noting
that the advantage of the COIN mechanism will be more
obvious when the network size increases. We compare the
centralized indexing (C-index), the DHT indexing (D-index)
[6] with our COIN mechanism. We adopt two performance
metrics to evaluate different indexing mechanisms including
the path lengths and the number of forwarding table entries
for retrieving data indexes. In the following figures, each error
bar is constructed using a 95% confidence interval of the mean.
Meanwhile, we evaluate the impact of multiple index copies
on the path lengths of retrieving data indexes.

C. The path lengths for retrieving data indexes

In this section, we evaluate the path lengths for retrieving
data indexes under different indexing mechanisms. The path
lengths from all edge servers to the indexing edge server are
calculated, and then, the average path length is obtained.

Fig. 6(a) shows that the average path length of retrieving
data indexes are almost the same for COIN and C-index
mechanisms. Note that C-index mechanism uses the shortest
path from an ingress edge server to the dedicated indexing
server to retrieve the data index. Meanwhile, we can see that
COIN and C-index mechanisms achieve significantly shorter
path lengths than the D-index mechanism from Fig. 6(a). The
average path length under the D-index mechanism has an
obvious increase as the increase in the number of switches
in Fig. 6(a). However, the increase is slow for COIN and C-
index mechanisms when the number of switches changes.

Note that the results are achieved in Fig. 6(a) where only one
index copy is maintained for each shared data. Furthermore,
we evaluate the change of the average path length when there
are three index copies for each shared data. In this case, we test
the path length for each index copy, and the path length of the
shortest path is recorded for each indexing mechanism under
each network setting. The experiment results are shown in Fig.
6(b), which shows almost the same trend as Fig. 6(a). That is,
the average path length for retrieving data indexes under COIN
mechanism is close to the average path length achieved by C-
index mechanism and is obviously shorter than the average
path length under D-index mechanism. It is worth noting that
C-index mechanism is a centralized indexing mechanism and
suffers from the performance drawbacks in the fault tolerance
and the scalability.

20 30 40 50 60 70 80 90 100
The number of switches

20

40

60

80

100

A
vg

 n
um

be
r o

f e
nt

rie
s D-index

COIN
C-index

(a) A single index copy for each shared data.

20 30 40 50 60 70 80 90 100
The number of switches

20

40

60

80

100

120

A
vg

 n
um

be
r o

f e
nt

rie
s D-index

C-index
COIN

(b) Three index copies for each shared data.

C-index D-index COIN
0

20

40

60

80

100

120

A
vg

 n
um

be
r o

f e
nt
rie

s

18.84

33.13
22.72

31.25 33.13
22.72

Single index copy
Three index copies

(c) There are 100 switches in the edge network.

Fig. 8. The number of forwarding table entries under different indexing mechanisms.

Fig. 6(c) shows that more index copies result in shorter path
lengths for retrieving data indexes under the three indexing
mechanisms. Meanwhile, we can see that the impact of index
copies on the path length under D-index mechanism is more
obvious than the other two mechanisms. However, D-index
mechanism still needs a longer path to retrieve a data index
than COIN and C-index mechanisms. As shown in Fig. 6(c),
our COIN mechanism employs the shortest paths to retrieve
data indexes than D-index and C-index mechanisms when
three index copies are available for each shared data. More
precisely, our COIN mechanism employs the average 68% and
59% shorter path lengths than D-index mechanism when there
are only one index copy and three index copies, respectively.

D. Forwarding entries for retrieving data indexes

In this section, we evaluate the number of forwarding table
entries for searching data indexes under different indexing
mechanisms. For C-index and D-index mechanisms, we use
the wildcard forwarding entries to significantly reduce the
number of forwarding table entries.

Fig. 8(a) shows the change trend of the number of forward-
ing table entries as the increase of the number of switches
under different indexing mechanisms. Each point in Fig. 8(a)
indicates the average number of forwarding table entries over
all switches under each network setting. We can see that,
for C-index and D-index mechanisms, the average number of
forwarding table entries increases as the increase in the number
of switches from Fig. 8(a). However, the average number
forwarding table entries of our COIN mechanism is almost
independent of the network size since it is only related to the
number of neighboring switches for each switch. Meanwhile,
we can see that the upper error bars for the C-index mechanism
are significantly higher than our COIN mechanism from Fig.
8(a). It is because that the C-index mechanism employs the
shortest path routing where some switches are frequently
used in most of shortest paths, and then, a large amount of
forwarding table entries are inserted into those switches.

The result of Fig. 8(a) is achieved when there is only one
index copy for each shared data. Furthermore, Fig. 8(b) shows
the average number of forwarding table entries for different
indexing mechanisms when three index copies are stored for
each shared data. In this scenario, we can see that the average
number of forwarding entries for our COIN mechanism is
the least among the three indexing mechanisms. Note that
the average number of forwarding entries decreases when

20 30 40 50 60 70 80 90 100
The number of switches

5

10

15

20

25

30

A
ve
ra
ge
 p
at
h
le
ng
th

D-index
C-index
Co-random
COIN

Fig. 9. The impact of multiple index copies on the average path lengths.

the number of switches varies from 90 to 100. The reason
is that the network topologies are generated independently
under different network sizes. We can see that, for the C-
index mechanism, the increase of the number of index copies
causes the increase in the number of forwarding table entries
from Fig. 8(c). However, more index copies have no impact
on the number of forwarding table entries for D-index and
COIN mechanisms. Furthermore, our COIN mechanism uses
30% less forwarding table entries compared to the well-known
distributed D-index mechanism.

E. The impact of multiple index copies

First, we test the impact of multiple index copies. Here,
three index copies are maintained for each shared data. C-
index and D-index mechanisms randomly select one index
copy to retrieve the data index. The Co-random mechanism
also employs the coordinate-based indexing mechanism, but
randomly select an index copy to retrieve the data index. In
Fig. 9, the path lengths of retrieving data indexes under Co-
random and C-index mechanisms are very close, and they
are obviously shorter than the path lengths under D-index
mechanism. Meanwhile, we can see that our COIN mechanism
employs the shortest paths to retrieve data indexes than the
other three indexing mechanisms under any network size from
Fig. 9. That is, the experiment results show that retrieving the
data index from the nearest index copy in the virtual space
incurs obviously shorter path length than retrieving the data
index from a randomly selected index copy without sampling
all index copies.

V. RELATED WORK

Data sharing in other computing environments. Although
there are some researches about the data sharing in P2P

networks and Web Proxies, we present why those researches
are not enough to solve the corresponding problems in edge
computing. The sharing of caches among Web proxies is
an important technique to reduce Web traffic and alleviate
network bottlenecks. Fan et al. proposed a new protocol called
”summary cache” [4], where each proxy keeps a summary of
the cache directory, and checks these summaries for potential
hits before sending any queries. Iyer et al. presented a decen-
tralized, peer-to-peer web cache called Squirrel [24]. Bo et
al. proposed reference architecture for P2P systems [8] that
focuses on the data indexing technology required to support
resource locating. A P2P index can be local [25], centralized
[5] or distributed [6]. With distributed index-based search
scheme, pointers towards the target reside at several nodes, and
distributed indexes are used in most P2P designs nowadays.
We have compared those indexing schemes in Section II-B.

Peer data sharing among edge devices. At current, there
are some researches about the peer data sharing in edge
devices (e.g., smartphones). Song et al. proposed Peer Data
Sharing (PDS) that enables mobile devices to quickly discover
what data exist in nearby peers and retrieve desired data from
possibly multiple edge devices [26]. Furthermore, Huang et al.
considered caching fairness for peer data sharing among edge
devices [27]. However, there is still a lack of researches about
the data sharing among edge servers, which can provide more
opportunities for peer data sharing among edge devices.

VI. CONCLUSION

In edge computing, edge servers need to cache the data to
provide services for edge users and many emerging applica-
tions. The data sharing among edge servers can effectively
shorten the latency of retrieving the data and further reduce
the network bandwidth consumption. A key challenge to
achieve this goal is to provide an efficient data indexing
mechanism no matter how the data is cached in the edge
computing environment. The COIN solves this challenging
problem, and attractive features of COIN include its routing
simplicity, provable correctness, shorter path length, and less
forwarding table entries. Our experimental results confirm that
the effectiveness and efficiency of the COIN mechanism. We
believe that COIN will be a valuable component of edge
computing.

ACKNOWLEDGMENT

This work is partially supported by the National Natural
Science Foundation for Outstanding Excellent young scholars
of China under Grant No.61422214, National Natural Sci-
ence Foundation of China under Grant Nos.61772544 and
U1536202, the Hunan Provincial Natural Science Fund for
Distinguished Young Scholars under Grant No.2016JJ1002,
and the Guangxi Cooperative Innovation Center of cloud
computing and Big Data under Grant Nos.YD16507 and
YD17X11.

REFERENCES

[1] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile
Edge Computing A key technology towards 5G,” European Telecommu-
nications Standards Institute White Paper, 2015.

[2] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp.
637–646, 2016.

[3] E. Bastug, M. Bennis, and M. Debbah, “Living on the edge: The role
of proactive caching in 5g wireless networks,” IEEE Communications
Magazine, vol. 52, no. 8, pp. 82–89, 2014.

[4] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache: A
scalable wide-area web cache sharing protocol,” IEEE/ACM Trans.
Netw., vol. 8, no. 3, pp. 281–293, 2000.

[5] B. Yang and H. Garcia-Molina, “Comparing hybrid peer-to-peer sys-
tems,” in Proc. 27th Intl. Conf. on Very Large Data Bases, 2001.

[6] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applications,”
in Proc. ACM SIGCOMM, 2001, pp. 149–160.

[7] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE
Communications Surveys Tutorials, vol. 19, no. 4, pp. 2322–2358, 2017.

[8] J. Bo and J. Zhao, “Index-based search scheme in peer-to-peer net-
works,” in Computer Science for Environmental Engineering and EcoIn-
formatics. Springer, 2011, pp. 102–106.

[9] C. Dannewitz, M. DAmbrosio, and V. Vercellone, “Hierarchical dht-
based name resolution for information-centric networks,” Computer
Communications, vol. 36, no. 7, pp. 736 – 749, 2013.

[10] B. A. A. Nunes, M. Mendonca, X. N. Nguyen, K. Obraczka, and
T. Turletti, “A survey of software-defined networking: Past, present,
and future of programmable networks,” IEEE Communications Surveys
Tutorials, vol. 16, no. 3, pp. 1617–1634, 2014.

[11] J. Xie, D. Guo, Z. Hu, T. Qu, and P. Lv, “Control plane of software
defined networks: A survey,” Computer Communications, vol. 67, pp.
1–10, Aug. 2015.

[12] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,
B. Lantz, B. O’Connor, P. Radoslavov, W. Snow, and G. Parulkar, “Onos:
Towards an open, distributed sdn os,” in Proc. 3th ACM SIGCOMM
HotSDN, August 2014.

[13] A. Panda, W. Zheng, X. Hu, A. Krishnamurthy, and S. Shenker, “Scl:
Simplifying distributed sdn control planes.” in NSDI, 2017, pp. 329–345.

[14] J. Xie, D. Guo, X. Zhu, B. Ren, and H. Chen, “Minimal fault-tolerant
coverage of controllers in iaas datacenters,” IEEE Transactions on
Services Computing, 2017.

[15] S. S. Lam and C. Qian, “Geographic routing in d-dimensional spaces
with guaranteed delivery and low stretch,” IEEE/ACM Trans. Netw.,
vol. 21, no. 2, pp. 663–677, 2013.

[16] P. Bose and P. Morin, “Online routing in triangulations,” SIAM journal
on computing, vol. 33, no. 4, pp. 937–951, 2004.

[17] I. Borg and P. J. Groenen, Modern multidimensional scaling: Theory
and applications. Springer Science & Business Media, 2005.

[18] A. Biryukov, M. Lamberger, F. Mendel, and I. Nikolić, “Second-order
differential collisions for reduced sha-256,” in Advances in Cryptology
– ASIACRYPT 2011, pp. 270–287.

[19] C. Qian and S. S. Lam, “Greedy routing by network distance embed-
ding,” IEEE/ACM Trans. Netw., vol. 24, no. 4, pp. 2100–2113, 2016.

[20] L. J. Guibas, D. E. Knuth, and M. Sharir, “Randomized incremental
construction of delaunay and voronoi diagrams,” Algorithmica, vol. 7,
no. 1, pp. 381–413, 1992.

[21] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming protocol-independent packet processors,” SIGCOMM
Comput. Commun. Rev., vol. 44, no. 3, pp. 87–95, Jul. 2014.

[22] “P416 language specification,” [Online]. Available: https://p4.org/
p4-spec/docs/P4-16-v1.0.0-spec.pdf, accessed June 2018.

[23] A. Medina, A. Lakhina, I. Matta, and J. Byers, “Brite: An approach to
universal topology generation,” in Proc. 9th International Symposium in
MASCOTS, Washington, DC, USA, 2001.

[24] S. Iyer, A. Rowstron, and P. Druschel, “Squirrel: A decentralized peer-
to-peer web cache,” in Proc. 21th annual symposium on Principles of
distributed computing. ACM, 2002, pp. 213–222.

[25] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, “Search and replication
in unstructured peer-to-peer networks,” in Proc. 16th international
conference on Supercomputing. ACM, 2002, pp. 84–95.

[26] X. Song, Y. Huang, Q. Zhou, F. Ye, Y. Yang, and X. Li, “Content centric
peer data sharing in pervasive edge computing environments,” in Proc.
37th IEEE ICDCS, June 2017, pp. 287–297.

[27] Y. Huang, X. Song, F. Ye, Y. Yang, and X. Li, “Fair caching algorithms
for peer data sharing in pervasive edge computing environments,” in
Proc. 37th IEEE ICDCS, June 2017, pp. 605–614.

https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.pdf
https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.pdf

	Introduction
	Motivation and overview
	Motivation
	Design Overview

	Coordinate-based indexing
	Determining coordinates
	Determining the coordinates of switches
	Determining coordinates for data indexes

	Publishing a data index
	DT construction
	Forwarding the data index

	Querying a data index
	The optimization design for multiple index copies

	Performance Evaluation
	Implementation and prototype-based experiments
	Setting of large-scale simulations
	The path lengths for retrieving data indexes
	Forwarding entries for retrieving data indexes
	The impact of multiple index copies

	Related work
	Conclusion
	References

