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Abstract—The emergence of large-scale dynamic sets in net-
working applications attaches stringent requirements to approx-
imate set representation. The existing data structures (including
Bloom filter, Cuckoo filter, and their variants) preserve a tight
dependency between the cells or buckets for an element and
the lengths of the filters. This dependency, however, degrades
the capacity elasticity, space efficiency and design flexibility
of these data structures when representing dynamic sets. In
this paper, we first propose the Index-Independent Cuckoo
filter (I2CF), a probabilistic data structure that decouples the
dependency between the length of the filter and the indices of
buckets which store the information of elements. At its core,
an I2CF maintains a consistent hash ring to assign buckets
to the elements and generalizes the Cuckoo filter by providing
optional k candidate buckets to each element. By adding and
removing buckets adaptively, I2CF supports the bucket-level
capacity alteration for dynamic set representation. Moreover,
in case of a sudden increase or decrease of set cardinality, we
further organize multiple I2CFs as a Consistent Cuckoo filter
(CCF) to provide the filter-level capacity elasticity. By adding
untapped I2CFs or merging under-utilized I2CFs, CCF is capable
of resizing its capacity instantly. The trace-driven experiments
indicate that CCF outperforms its alternatives and realizes our
design rationales for dynamic set representation simultaneously,
at the cost of a little higher complexity.

Index Terms—Cuckoo filter, consistent hashing, elasticity

I. INTRODUCTION

Set representation while supporting membership queries is
a fundamental problem in databases, caches, routers, storage,
and networking applications. These systems often represent
set elements with a probabilistic data structure and support
constant-time approximate membership query with small false
positive probability. The most widely-used probabilistic data
structures for approximate membership query are Bloom filter
[1] [2] [3], Cuckoo filter [4] and their variants [5] [6] [7] [8].

Bloom filter and Cuckoo filter represent sets in diverse
ways. Bloom filter is a fixed-length array of bits which are
initialized as 0s. To insert an element, k independent hash
functions are employed to map the element into the bit vector.
Thereafter, the corresponding bits are set to 1s. When testing
the membership of any element x, Bloom filter just checks
the k corresponding bits are non-zero. If they are all ones,
Bloom filter concludes that x is a member of the set (possibly
implying a false positive); otherwise, it correctly indicates
that x is not a member (no false negatives). Unlike Bloom
filter, Cuckoo filter stores the fingerprints of the elements
with their candidate buckets directly. Cuckoo filter derives two
candidate buckets for each element with the partial cuckoo
hashing strategy [9] and tries to store the fingerprint into
one of the candidate buckets. An element is identified as a
member of the set if its fingerprint can be found in either of its
candidate buckets. Bloom filter and Cuckoo filter, however, fail

to represent dynamic set members because of their incapability
of resizing their capacities.

To this end, Dynamic Bloom filter (DBF) [5] and Dynamic
Cuckoo filter (DCF) [6] have been developed. Both DBF and
DCF attempt to add and merge homogenous Bloom filters
and Cuckoo filters to extend and downsize their capacities
on demand. In both DBF and DCF, the length of each filter
is predefined and cannot be altered since the indices of
cells or candidate buckets are determined by calculating the
modulus based on the length of the filter. As a consequence,
they can only resize their capacity by adding or merging
homogenous filters. In the worst case where one filter has
to be added to store only one additional element, the resultant
space utilization can be even less than 50%. Therefore, in
space-scarce scenarios, the bucket-level capacity alteration is
necessary to save space. Moreover, a major weakness of DBF
is that it fails to support reliable element deletion [6] since
there may be multiple BFs which satisfy the membership
query condition. Although DCF guarantees reliable element
deletion, it employs the XOR operation to derive the second
candidate bucket during reallocations. Therefore, the length of
each Cuckoo filter can only be of the form m=2γ (γ≥0). If
not, the XOR results may go out of range.

Consequently, we envision a design of probabilistic data
structure which properly concerns the following three design
rationales for dynamic set representation.

• Capacity elasticity (CE). The data structure’s capacity
is adaptively adjustable according to the set cardinality.
Despite the unpredictability of the number of elements to
represent, the offered capacity shows coincident changing
trends as the set cardinality adaptively.

• Space efficiency (SE). The space utilization remains at a
high level irrespective of the variation of set cardinality.
This is extremely important for space-scare scenarios,
e.g., wireless sensor networks.

• Design flexibility (DF). All the parameters are adjustable
so that users can customize their own configurations
according to their design goals. For example, the number
of hash functions may be increased for higher space
utilization or decreased for better query throughput.

These rationales, if realized, will bring unprecedented benefits
for set representation and membership query, in terms of
space-saving and quality of service. The design flexibility
further extends the applicability of the data structure to more
general scenarios with diverse requirements.

The existing probabilistic data structures, however, fail to
achieve the three rationales properly and simultaneously. As
shown in Table 1, Bloom filter and DBF achieve low space



TABLE I
THE FEATURES OF SET REPRESENTATION DATA STRUCTURES. THE

NUMBER OF “+” QUANTIFIES THAT FEATURE.

Name BF DBF CF DCF ACF SCF I2CF CCF
CE ++ ++ ++ +++
SE + + ++ ++ ++ ++ +++ +++
DF ++ ++ + + + + +++ +++

utilization. The reason is that they keep half of the bits as 0s, in
order to incur the least false positive rate. By contrast, Cuckoo
filter and its variants improve their space utilization with the
reallocation strategy during each insertion. DBF and DCF
offer capacity elasticity to some extent by adding and merging
filters dynamically. However, in reality, a more fine-grained
capacity scaling is needed to handle small-scale capacity
overflows and recycle space timely when a few elements are
removed. Furthermore, existing data structures are somehow
hindered by their limited design flexibility. In the framework
of Bloom filters, the parameters have to be carefully designed
to guarantee their target false positive rate. Meanwhile, current
proposals of Cuckoo filters must use a fixed number of hash
functions and a power of two number of buckets.

A common reason for the existing data structures’ deficiency
of achieving the three rationales is that they preserve a tight
dependency between the cells or buckets for an element and
the lengths of the filters. As a result, their capacities have
to be predefined and remain immutable irrespective of the
change of dynamic sets. Therefore, in this paper, we first
propose I2CF, a probabilistic data structure which decouples
the dependency between the length of the filter and the indices
of buckets which store the information of elements. At its core,
an I2CF maintains a consistent hash ring [10] [11] to assign
buckets to the elements and generalizes the Cuckoo filter
by providing optional k candidate buckets to each element.
By adding and removing buckets adaptively, I2CF supports
bucket-level capacity alteration for dynamic set representation.

Moreover, in case of a sudden increase or sharp decrease of
set cardinality, we further organize multiple I2CFs as a CCF
to provide filter-level capacity elasticity. By adding untapped
I2CFs or merging under-utilized I2CFs, CCF is capable of
resizing its capacity instantly. As shown in Table 1, both
I2CF and CCF offer elegant space efficiency and design
flexibility. CCF has better capacity elasticity than I2CF, since
I2CF only provides bucket-level capacity alteration, while
CCF additionally supports filter-level capacity adjustment for
dynamic sets. In fact, I2CF is a special case of CCF when
only one I2CF is maintained. To summarize, we achieve the
following contributions.

• We first design I2CF (Index Independent Cuckoo filter),
a probabilistic data structure which decouples the depen-
dency between the length of the filter and the indices
of buckets which store the information of elements. It
allows flexibility in the memory size without the need
for reallocating most elements. Thereafter, we organize
multiple I2CFs as a CCF and present the algorithms for
dynamic set representation and capacity resizing.

• For any I2CF with given parameters in a CCF, we present
a new threshold for the ratio between the number of repre-
sented elements and the number of buckets. Additionally,
we derive an upper bound for the probability that the

given number of elements can be successfully stored in
a given I2CF.

• Trace-driven evaluations are conducted to measure the
performance of our proposals. The results show that
CCF outperforms DCF and realizes the three design
rationales simultaneously at the cost of a little higher
time-complexity.

The rest of this paper is organized as follows. Section
II introduces the background and related work. Section III
presents the I2CF and CCF design and their operations.
Section IV presents the performance analysis for CCF the-
oretically. Section V reports the evaluation results and at last
Section VI concludes the whole paper.

II. BACKGROUND AND RELATED WORK

Cuckoo filter (CF) [4] is a light-weight probabilistic data
structure to support constant-time membership query. Unlike
Bloom filter, CF stores the fingerprint of each element directly.
Structurally, a CF consists of m buckets, each is capable of
residing b fingerprints. An element x is associated with a f -bit
fingerprint ηx which is derived out by a hash function h0. CF
offers 2 candidate buckets to each element, and the fingerprint
can be stored in each of the candidates. If both candidates
are occupied, Cuckoo filter randomly kicks out a fingerprint
in one of the candidates and reinserts the victim in its other
candidate bucket. This reallocation ends successfully when a
bucket has available space and fails when the number of such
reallocations reaches a given threshold max. During realloca-
tion, the alternative bucket can be derived out by executing an
XOR operation towards the current bucket and the fingerprint
of the victim. That is, the two bucket locations are derived as
h1(x)=hash(x) and pair-wisely h2(x)=h1(x)⊕hash(ηx).

To query whether an element y is a member of set A
or not, CF checks the two corresponding buckets of y. If
the fingerprint ηy is found in one of these two buckets, CF
judges y∈A; otherwise CF concludes y/∈A. Due to the potential
hash collisions of the fingerprints, CF may suffer from false
positive errors (referring to elements which do not belong to
A as members of A). The false positive rate of CF satisfies
ξCF≤1−(1− 1

2 f )
2b. Note that there are no false negative errors

for the stored elements.
Most recently, several CF variants have been proposed to

further improve its performance [6] [7] [8]. The Simplified
Cuckoo filter [7] (SCF) calculates the indices of buckets for an
element x as h1(x) and h1(x)⊕ηx. In this way, SCF provides a
theoretical guarantee to its performance. The Adaptive cuckoo
filter [8] (ACF) tries to remove false positive errors from the
CF vector by resetting the collided fingerprints with optional
hash functions. Inspired by the Dynamic Bloom filter [5],
Dynamic Cuckoo filter [6] (DCF) dynamically maintains mul-
tiple homogenous CFs to enable elastic capacity. Initially, only
one CF is maintained and marked as active. The subsequent
homogenous CFs will be introduced with an either active or
passive manner. A recycling mechanism is suggested to merge
under-loaded CFs, thereby improving the space utilization. The
upper bound of false positive rate in DCF is 1−(1−ξCF)

s,
where ξCF is the false positive rate of each CF vector (from
above) and s is the number CFs in DCF.

The above variants of CF, however, fail to realize our design
rationales properly. SCF and ACF leverage the employed hash



Fig. 1. An illustrative example of I2CF with k=1, b=2 and v=1. It represents a set with 4 elements, including x, y, z and w. Initially, the I2CF employs 3
buckets to store these elements. When a new bucket B3 is added as a successor of B2, the fingerprint of z is reallocated from B0 to B3, since the hash value
of ηz is mapped between B2 and B3. When B0 is removed, the fingerprint ηy is reallocated to B0’s successor B1.

functions only, but their capacities cannot be resized after
implementation. DCF supports filter level capacity alteration
but incurs limited design flexibility and untimely space re-
cycling. Consequently, we present CCF, a novel probabilistic
data structure which promises capacity elasticity, high space
utilization, and design flexibility simultaneously.

III. CONSISTENT CUCKOO FILTER

We describe the design of the CCF (Consistent Cuckoo
filter) in detail here, including its data structure, operations
for set representation and resizing strategies. Before that, we
introduce the I2CF (Index-Independent Cuckoo filter), which
is the basic component of CCF.

A. Design of Index-Independent Cuckoo Filter (I2CF)
To represent dynamic sets, the employed data structure

should offer elastic capacity. Although DBF and DCF are
capable of filter-level capacity elasticity, they fail to provide
the ability of fine-grained capacity alteration. The reason is
that their lengths of filters are predefined and immutable
throughout their lifetimes. The using of XOR operations to
compute hash values in Cuckoo filter further exacerbates the
capacity elasticity by restricting the filter length to be a power
of two. Therefore, we redesign the framework of Cuckoo filter
and propose the Index-Independent Cuckoo filter (I2CF) here.

Basically, I2CF consists of multiple buckets, each of which
has b slots. That is, each bucket can accommodate b finger-
prints at most. As shown in Fig. 1, the buckets are mapped
onto a consistent hash ring [10] [11] ranging from 1 to M−1.
To ensure better load balance in the consistent hash ring, each
bucket has v≥1 virtual nodes in the consistent hash ring. I2CF
also stores the fingerprints of elements instead of the actual
contents by offering each fingerprint k≥1 candidate buckets.
An element is successfully represented if its fingerprint is
stored in one of its candidate buckets. To determine the can-
didate buckets of an element x, k independent hash functions
are employed to map the fingerprint ηx onto the consistent
hash ring. Thereafter, the k nearest buckets (in a clockwise
order by default) of the k hash values are regarded as the
candidate buckets of ηx. In this way, the candidate buckets are
index-independent and decided by the consistent hashing. A
fingerprint can be stored in any one of these candidate buckets.
If all the candidate buckets are fully occupied, I2CF randomly
kicks out an existing fingerprint from one of these buckets to

store the fingerprint to insert. The victim will be reallocated
to one of the other candidate buckets. The reallocation ends
successfully when a bucket has available space and fails when
the number of such reallocations reaches a given threshold
max.

Compared with Cuckoo filter, I2CF has two major improve-
ments. First, I2CF organizes the buckets as a consistent hash
ring to decouple the dependency between candidate buckets
and the length of the filter. As a consequence, I2CF naturally
enables the capability of adding and removing buckets on
demand. A toy example of adding and removing buckets from
an I2CF is given in Fig. 1. Second, I2CF generalizes the
number of candidate buckets from the fixed two in Cuckoo
filter as a mutable variable k. This generalization further
improves its design flexibility. Moreover, as analyzed later,
larger k values also guarantee higher space utilization. With
these improvements, I2CF achieves the bucket-level capacity
elasticity and high space utilization to represent dynamic sets.

B. Overview of Consistent Cuckoo Filter (CCF)
I2CF provides bucket-level capacity elasticity, but when set

cardinality increases drastically, a single I2CF may fall short of
offering enough space timely. Therefore, we further generalize
I2CF as CCF which dynamically maintains multiple I2CFs.
Just like existing CF variants, CCF also leverages fingerprints
to represent elements in a set. The fingerprint for an element
x is generated by mapping x into a given range [0,2 f−1]
with a hash function h0. Basically, a CCF consists of s (s≥1
and initialized as 1) heterogeneous I2CFs. An arbitrary I2CFi
(i∈[0,s−1]) has mi≥1 buckets with bi≥1 slots. The employed
number of hash functions ki and the value of Mi in I2CFi are
also allowed to be different from other I2CFs. With such a
framework, CCF enables ultimate design flexibility. Note that
to multiplex the calculated hash values for each fingerprint
among the I2CFs, we prefer k0= · · ·=ki= · · ·=ks−1=k, and
M0= · · ·=Mi= · · ·=Ms−1=M by default. More importantly,
CCF provides capacity elasticity at both the bucket level and
filter level. That is, its capacity can be altered by adding or
removing buckets in any I2CF, as well as introducing untapped
or compacting under-utilized I2CFs. The details are given in
Section III-D. When an I2CF is extended or introduced, it will
be marked as active to store new elements.

Theorem 1: For an I2CFi (i∈[0,s−1]) in CCF, let bi and ki
denote the number of slots in each bucket and the number of



candidate buckets in the filter I2CFi, respectively. The false
positive rate for a CCF query can be calculated as:

ξCCF = 1−
s−1

∏
i=0

(1−ξi) = 1−
s−1

∏
i=0

(1− 1

2 f )
ki·bi . (1)

When k0= · · ·=ki= · · ·=ks−1=k, b0= · · ·=bi= · · ·=bs−1=b,

ξCCF == 1−
s−1

∏
i=0

(1−ξi) = 1−(1− 1

2 f )
s·k·b ≈ s·k·b

2 f . (2)

The false positive error of CCF stems from the hash
collisions of the fingerprints. If two elements x∈A and y/∈A
share the same fingerprint, i.e., ηx=ηy, the membership query
of y implies a false positive error due to the existence of x.
Within the CCF framework, a membership query may check
all of the s I2CF vectors. For I2CFi, the false positive rate
is ξi=1−(1− 1

2 f )
ki·bi . The global false positive rate is thus

derived out as ξCCF=1−∏s−1
i=0 (1−ξi). Note that, both DCF and

CCF have multiple filters and share the same false positive
rate. Generally, larger f leads to lower false positive rate,
while larger k, b and s result in higher false positive rate.
However, DCF fails to support runtime false positive rate
guarantee since the value of s will be increased continually
with the increase of set cardinality. As a consequence, the
false positive of DCF keeps increasing when more CFs are
launched. CCF, on the contrary, provides runtime false positive
rate guarantee by setting a threshold for s. If the value of
s reaches the threshold, on one hand, CCF can conduct the
compact operation to hopefully merge some I2CF vectors. On
the other hand, CCF only employs the bucket-level resizing
strategy to accommodate the coming elements, thereby the
value of s will not be increased any more. Thus, the false
positive rate can be reasonably bounded.

C. Dynamic Set Representation with CCF

In this subsection, we present the basic operations of CCF
for dynamic set representation, including insertion, query, and
deletion of elements. The associated resizing strategies are
detailed in later Section III-D.

Insertion. The CCF tracks the number of elements inserted
into each of its I2CF and thereafter marks the I2CF represents
the least elements as an active I2CF. To insert an element x,
CCF first generates its fingerprint by mapping x into the range
[0,2 f−1]. Then k independent hash functions map ηx onto the
consistent hash ring. Based on the generated hash values, the
consistent hashing determines the candidate buckets for ηx in
the active I2CF. After that, we try to insert ηx into the active
I2CF by following the strategy provided by the cuckoo hashing
[4]. If the active I2CF can successfully store fingerprint ηx,
the insertion algorithm will be terminated. Otherwise, CCF
capacity has to be extended at either the bucket level or filter
level. Thereafter, ηx will be inserted into the extended or added
I2CF. The pseudo-code is shown in Algorithm 1. Note that,
when extending, CCF marks the manipulated I2CF as active,
so that the coming elements will be stored by this I2CF vector.
We suggest choosing the I2CF with least buckets for better
balance when bucket level extension is performed. Sometimes
multiple buckets have to be added to successfully reside ηx. If
there are still many elements to be inserted after x, CCF will

Algorithm 1: CCF insertion(ηx)

Input: The fingerprint to insert ηx
1 Calculate the hash values h1(ηx), · · · ,hk(ηx);
2 Decide the candidate buckets for ηx in the active I2CF based

on h1(ηx), · · · ,h2(ηx);
3 if ηx can be successfully inserted into the active I2CF within

max reallocations then
4 return True;
5 else
6 Extend CCF with its resizing strategy;
7 Insert ηx into the extended or added I2CF;
8 return True;

Algorithm 2: CCF query(x)

Input: The element to query x
1 ηx=h0(x) mod 2 f ;
2 Calculate the hash values h1(ηx), · · · ,hk(ηx);
3 for i=0 to s−1 do
4 Determine candidate buckets B1

i (x), · · · ,Bk
i (x) in I2CFi;

5 for j=0 to k−1 do
6 if B j

i (x) has ηx then
7 return True;

8 return False;

introduce a new I2CF vector such that the coming elements
will be stored immediately.

Query. Membership query with CCF may check every I2CF
vector. Let s denote the number of I2CF vectors in CCF.
We need to check s·k buckets in the worst case. Algorithm
2 presents a membership query in detail. The fingerprint ηx is
hashed by k hash functions to determine the locations of ηx in
the hash ring for I2CFi (i∈[0,s−1]). Based on the hash values,
the consistent hashing tells CCF the candidate buckets for ηx
in I2CFi. Then, if any bucket holds ηx, the membership query
will be terminated and return true. By contrast, if ηx cannot be
found in all I2CFs, CCF judges x/∈A and returns false. There
may be a potential false positive error for any queried element,
but no false negative errors for the stored elements.

Deletion. The deletion of an element x needs to first perform
a membership query for finding its possible locations. If
a corresponding fingerprint ηx is found, then the matched
fingerprint will be removed from CCF. Algorithm 3 shows
the details of the delete operation. If the fingerprint ηx is
not found in CCF, the deletion algorithm returns fail. When a
sufficient number of elements have been deleted from CCF, the
resizing operations will be executed to downsize CCF capacity
and maintain high space utilization. CCF prefers filter-level
resizing since a smaller s ensures a lower false positive rate.

D. Resizing of I2CF and CCF

An essential challenge for dynamic set representation is the
unpredictable set cardinality n. This challenge puts forward
new requirement for the employed data structure, i.e., the
capability of capacity resizing. Moreover, the set cardinality
n may vary irregularly, i.e., n may increase or decrease
progressively or dramatically. To handle that, the data structure
must be resized in diverse granularity. Therefore, we propose
two options to extend the capacity of CCF, i.e., a scale-



Algorithm 3: CCF deletion(x)

Input: The element to delete x
1 ηx=h0(x) mod 2 f ;
2 Calculate the hash values h1(ηx), · · · ,hk(ηx);
3 for i=0 to s−1 do
4 Determine candidate buckets B1

i (x), · · · ,Bk
i (x) in I2CFi;

5 for j=0 to k−1 do
6 if B j

i (x) has ηx then
7 Remove ηx from B j

i (x);
8 Downsize the CCF when necessary;
9 return True;

10 return False;

Algorithm 4: CCF compact()

Input: The current CCF
1 success = True;
2 while success do
3 Select the least-loaded I2CF vector I2CFL in CCF;
4 Declare a new CCF named CCFT ;
5 Let CCFT = CCF.remove(I2CFL);
6 for all ηx stored in I2CFL do
7 if !CCFT .insertion(ηx) then
8 success = False;
9 break;

10 if success then
11 CCF = CCFT ;

up method which adds buckets into an I2CF, and a scale-
out method which adds an untapped I2CF into CCF. Pair-
wisely, the CCF capacity can be downsized by either removing
buckets from one specific I2CF or compacting sparse I2CFs.
Scale up and scale down support the bucket-level capacity al-
terations, meanwhile, scale out and compact achieve the filter-
level capacity adjustments. These methods generate ultimate
elasticity for CCF when representing dynamic sets.

Scale up. When a new bucket is added into an I2CF,
only the fingerprints stored in the bucket’s successor may
be affected. We consider that a new bucket Bnew is mapped
between two existing buckets Bi and B j (i, j∈[0,m−1]), and B j
is the successor of Bnew. In this case, only the fingerprints in B j
might have to be reallocated to bucket Bnew. Specifically, if a
fingerprint in B j is mapped between Bi and Bnew, it should
be moved to Bnew; otherwise, it should still remain in B j.
Especially, if B j is empty, Bnew will also be empty. A toy
example for adding bucket can be found in Fig. 1(b).

Scale down. Correspondingly, CCF can remove buckets
from an I2CF for higher space utilization. When an existing
bucket is removed from an I2CF, only the fingerprints in this
bucket should be reinserted into the CCF. We consider two
buckets Bi and B j in the hash ring such that B j is the successor
of Bi. CCF tries to store the fingerprints in Bi by pushing
them into bucket B j preferentially and then reallocating the
rest fingerprints to other buckets. If all the fingerprints are
successfully stored, Bi will be removed; otherwise, Bi cannot
be removed. An illustrative example for removing bucket is
shown in Fig. 1(c). When scaling down, CCF prefers removing
empty or under-utilized buckets for time-saving.

Scale out. Another method to increase the capacity of CCF
is to add untapped I2CFs. Initially, CCF maintains a single
I2CF and scale up or scale down this filter according to
the real demand. When the number of elements to represent
increases dramatically, the capacity of CCF can be extended
immediately by adding one or multiple untapped I2CFs into
the system. Note that, the added I2CFs are allowed to be
heterogeneous since they are totally independent. The number
of buckets and the number of slots are all mutable.

Compact. When an I2CF becomes sparse due to the re-
moval of elements from the set, CCF tries to remove this
I2CF through the compact operation. As shown in Algorithm
4, CCF first selects a least-loaded I2CF vector I2CFL and
removes it. The updated CCF is denoted as CCFT . Thereafter,
we try to reinsert the fingerprints in I2CFL into CCFT . If
all the fingerprints in I2CFL can be successfully inserted into
CCFT , the selected I2CFL is allowed to be removed; otherwise,
the CCF is already condensed enough and cannot be further
compressed. The compact algorithm keeps removing I2CF
vectors until an undeletable I2CF is reached.

In practice, the set cardinality n varies due to the join or
removal of elements. When the value of n increases (decreases)
gradually, CCF executes the scale up (scale down) algorithm to
adaptively adjust its capacity. In the case of dramatic growth
(reduction) of n, the scale out (compact) operation will be
employed to extend (downsize) the CCF instantly. With these
strategies, CCF ensures capacity elasticity and high space
utilization simultaneously.

IV. PERFORMANCE ANALYSIS OF CCF

In this section, we first theoretically analyze the time-
complexity of CCF. Then, we present a new method to
calculate the threshold of the ratio between the number of
elements to represent ni and the number of buckets mi for
a given I2CFi. Lastly, we offer an upper-bound probability of
successfully inserting a given number of elements with a given
I2CFi.

A. Time-complexities of CCF

Theorem 2: Consider a CCF with s I2CFs and
k0= · · ·=ki= · · ·=ks−1=k, b0= · · ·=bi= · · ·=bs−1=b. Let max
and m denote the allowed reallocation times and the lengths of
I2CFs. The I2CFs may have unequal lengths, for simplicity, we
treat them as a uniform m. Then the time-complexities for CCF
insertion, query and deletion are O(max· logm), O(s·k·b· logm)
and O(s·k·b· logm), respectively.

CCF introduces the consistent hashing to achieve capacity
elasticity. Therefore the time-complexity of query and deletion
is not constant anymore. Basically, whenever we need to
know the indices of candidate buckets for an element, CCF
has to refer to the underlying consistent hash ring. In a real
implementation, the hash values of these buckets are organized
as a binary search tree. Consequently, given a hash value of an
element, the corresponding candidate bucket will be searched
out in O(logm) time. To insert an element into the active I2CF,
at most max reallocations is allowed, thus the time-complexity
is O(max· logm). As for a query and deletion, CCF has to go
through all the I2CFs in the worst cases, therefore the resultant
time-complexity is O(s·k·b· logm).



Fig. 2. An instance of slot level random bigraph for an I2CFi with mi=4,
ki=2, bi=2 and ni=3. A “mapping conflict” happens to η2 since only bucket
1 is assigned to it. The three solid edges forms a complete matching, meaning
that the three fingerprints can stored successfully.

Compared with DCF, the time-complexities of CCF are a
little higher with an additional multiplicand of logm. Log-
arithm level complexity, in fact, is acceptable in practice
since the logarithmic function increases slowly when the value
of m grows drastically. Distributed systems that employ the
consistent hashing techniques all incur log level complexity.
They are proved to function well. Examples include Cassandra
[12], Akamai [13], Swift [14], Dynamo [15], etc.

B. Threshold for CCF Insertion

Each I2CF in CCF can be extended or downsized by adding
or removing buckets dynamically. But for a static I2CF with
given parameters, we need to explore how many fingerprints
can be successfully inserted. That is, given the number of the
elements to be represented ni, a derivative problem is to seek
a threshold Ti for the ratio between ni and mi. When ni

mi
≤Ti,

I2CFi can successfully store the ni elements with probability
1−o(1); otherwise, I2CFi may fail to record all the ni elements
with probability 1−o(1).

The mapping between elements and buckets in I2CFi can be
abstracted as a ki-uniform hypergraph with mi nodes and ni hy-
peredges each of which is of fixed size ki chosen independently
from the mi nodes. Based on the core theory of hypergraph,
Ti can be derived out as a function of ki and bi. The details
are given in literatures [16] and [17]. In fact, the resulted
hypergraph may not be ki-uniform since the ki independent
hash functions may select the same buckets from I2CFi for an
element x. We call this phenomenon “mapping conflict”. These
mapping conflicts violate the ki-uniform assumption towards
the hypergraph. However, [16] and [17] did not consider the
impact of the potential mapping conflicts. Therefore, in this
paper, we present a novel new abstraction to I2CF and other
Cuckoo filter-like data structures.

We notice that an I2CFi can be naturally represented as a
slot level random bipartite graph (or bigraph) G(V=(η ,S),E),
where η and S denote the fingerprints to be stored and the slots
in I2CFi, respectively. As shown in Fig. 2, each slot has two
subscripts which demonstrate its host bucket and its location in
that bucket. For example, S01 means the second slot of the first
bucket. In the bigraph, the edges demonstrate the assignment
between the fingerprints and slots. If a bucket is a candidate
bucket of a fingerprint, all slots of the bucket will have an edge
to that fingerprint, to explicitly indicate that these slots can be
employed to store that fingerprint. In the generated bigraph, a
matching indicates a possible way to store these fingerprints.

Besides, this abstraction naturally provides us the important
theorem in bigraphs, i.e., Hall’s Theorem [18].

Theorem 3: (Hall’s Theorem) Let G(V=(X ,Y ),E) be a
bigraph with bipartite sets X and Y . For a set of nodes W ⊆ X ,
let NG(W ) denote the set of neighbors of W in G, i.e., the set
of all nodes in Y which are adjacent to some element of W .
There is a matching that entirely covers X if and only if for
every subset W of X :

|W | ≤ |NG(W )|. (3)

Additionally, given the parameters of I2CFi as mi, ki, bi
and the number of fingerprints to be inserted ni, we have the
following observations.

Observation 1: For an insertion of an arbitrary element
x, let Θ (Θ∈[0,ki]) be a variable and denote the total times
that element x are mapped into a bucket. The value of Θ
follows a typical binomial distribution since the employed
hash functions are independent. Specifically, the probability
that Θ=θ can be calculated as:

p{Θ = θ}=
(

ki

θ

)(
1

mi

)θ (
1− 1

mi

)(ki−θ)
. (4)

Let p0 denote the probability that an element x is mapped into
the bucket. Since Θ ≥ 1 means x is mapped into the bucket,
the value of p0 can be derived out as:

p0 = 1− p{Θ = 0}= 1−
(

1− 1

mi

)ki

. (5)

Observation 2: Let Φ∈[0,ni] be a variable and denote the
total number of elements that mapped into a bucket. Then the
value of Φ also follows a typical binomial distribution since
the insertions of elements are independent. To be specific, the
probability that Φ=φ is:

p{Φ = φ}=
(

ni

φ

)
pφ

0 (1− p0)
(ni−φ). (6)

By jointly considering the observations and Hall’s Theorem,
we provide a new threshold T̂i for an I2CFi. When ni

mi
is less

than T̂i, the fingerprints can be stored successfully with high
probability; by contrast, when ni

mi
is larger than T̂i, I2CFi may

fail to store some fingerprints with high probability.
Theorem 4: If Φ < bi, it is impossible for I2CFi to store

any fingerprint with the remained bi−Φ slots. We consider the
situations where Φ < bi and derive out the fraction of space
that may be utilized for a bucket as:

û = 1−
bi−1

∑
φ=0

(
1− φ

bi

)
p{Φ = φ}, (7)

where 1− φ
bi

is the fraction of bucket space which will never
be utilized when Φ < bi. By contrast, if all the fingerprints are
successfully stored, then the space utilization of I2CFi is:

u =
ni

mi·bi
. (8)

Then, the threshold T̂i can be derived as the unique value of
ni
mi

such that:

û = u. (9)
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Fig. 3. The T̂i with diverse parameter settings. The value of T̂i can be derived
out by dividing the x-axis value of the crossover point with bi.

Theorem 4 can be proved by jointly considering observation
1, observation 2 and the Hall’s Theorem. Intuitively, when
ni
mi

is less than T̂i, û is larger than u, meaning there is
sufficient space for the ni fingerprints. As a result, when û≥ u,
I2CFi satisfies the requirement of Hall’s Theorem with high
probability. In contrast, if ni

mi
≥ T̂i, û ≤ u and the space that

can be utilized is not sufficient enough to accommodate the ni
fingerprints. In this situation, I2CFi will fail to satisfy Hall’s
Theorem with high probability. As shown in Fig. 3, given
mi=50 and bi=2, the value of T̂i grows significantly when
ki increases. Besides, with given mi and ki, the growth of bi
results in increasing of T̂i. Table II further presents the derived
T̂i when mi is taken as 230 while ki and bi varies. This threshold
provides a guide for the users of CCF and I2CF for their
parameter settings in practice. Intuitively, larger T̂i guarantees
higher space utilization. Therefore, given the same value of bi,
I2CF has the potentiality of realizing better space utilization
than DCF by increasing the value of ki.

C. Probability of Successful Representation
Theorem 4 and the literature [16] present the threshold of

ni
mi

for a given I2CF. When ni
mi

is less than the threshold, the ni
fingerprints can be successfully stored with high probability.
However, they fail to settle the derived question: what exactly
is the probability of successfully inserting ni fingerprints with
a given I2CF, or with concession, what is the upper bound
of that probability? We try to answer this question with the
following observation.

Observation 3: For ni given fingerprints, the num-
ber of edges in the maximum matching of the resultant
G(V=(η ,S),E) implies the maximum number of fingerprints
which can be successfully inserted into I2CFi. If the max-
imum matching is a complete matching, then all the given
fingerprints can be successfully stored by I2CFi.

Note that the maximum matching in a specific bigraph
can be solved by existing algorithms such as the Hungar-
ian algorithm [19], Ford-Fulkerson algorithm [20], Hopcroft-
Karp algorithm [21], etc. Let Ψ be a variable describing the
number of successful inserted fingerprints in an I2CFi with
the parameters of mi, ni, ki and bi. A brute force method
to calculate the probability distribution of Ψ is possible by
exploring the probability space of the G(V=(η ,S),E) and then
count those bigraphs in which the maximum matching contains
a number of Ψ=ψ edges. This method, however, suffers from
exponentially growing time complexity since it has to test all

TABLE II
THE THRESHOLD T̂i FOR I2CFi (WHEN mi = 230).

ki\bi 1 2 3 4
2 0.796812130 1.861790807 2.905683863 3.934728166
3 0.940479791 1.979049536 2.992264312 3.997079786
4 0.980172599 1.996604114 2.999390447 3.999888473
5 0.993022846 1.999453835 2.999955482 3.999996295
6 0.997483538 1.999913939 2.999996938 3.999999888
7 0.999082240 1.999986694 2.999999798 3.999999996

the mni·ki
i possible bigraphs. Therefore, alternatively, we derive

out an upper bound of p{Ψ=ni} (ni∈[1,mi·bi]) based on the
Hall’s Theorem [18] and observation 3.

Theorem 5: For a given I2CFi with mi, ki, bi and ni
(ni∈[1,mi·bi]) fingerprints to be inserted, the probability that
all the ni fingerprints can be successfully accommodated has
the following upper bound:

p{Ψ=ni} ≤
max{ni·ki,mi}

∑
j=	ni/bi


p{Ω = j}, (10)

where p{Ω= j} denotes the probability that the ni fingerprints
are mapped into exactly j buckets of I2CFi. And p{Ω = j}
can be calculated as:

p{Ω= j}=
(mi

j

)F( j,ni,ki)

∑
l=0

[
Dl ∏ j−1

r=0

(ni−∑r
q=0 Q[l][q]

Q[l][r]

)]

mni·ki
i

, (11)

where Q is an array of vectors each of which has j positive
integers and the sum of these integers is exactly ni·ki. The
number of vectors in Q is denoted as F( j,ni,ki) and can be
calculated with the input value of j, ni and ki. Dl is the number
of possible combinations of the j integers in Q[l]. The factor

∏ j−1
r=0

(ni−∑r
q=0 Q[l][q]

Q[l][r]

)
counts all possible cases when the ni·ki

mappings are distributed into the selected j buckets according
to the distribution given by Q[l].

Theorem 5 can be proved by considering both observation
3 and the Hall’s Theorem. Basically, p{Ω= j} only counts the
probability that the ni fingerprints are mapped into exactly j
buckets, but fails to consider the situation where a subset of
the ni fingerprints may not satisfy Hall’s Theorem. Therefore,
Equ (10) offers the upper bound of p{Ψ=ni}. Equ (11) can
be derived out by regarding each mapping as a ball then
formulating it as a typical balls and bins problem.

We give a walk-through example by calculating the
upper bound of p{Ψ=3} with mi=5, bi=2, ki=2 and
ni=3, respectively. According to Equ (10), we have
p{Ψ=3}≤p{Ω=2}+p{Ω=3}+p{Ω=4}+p{Ω=5}. Then,
according to Equ (11), p{Ω=2}=0.03968, p{Ω=3}=0.3456,
p{Ω=4}=0.4992, and p{Ω=5}=0.1152. Therefore, the
upper bound for p{Ψ=3} is 0.99968. When calculating
p{Ω=3}, we have niki=6=1+1+4=1+2+3=2+2+2. Thus
F( j,ni,ki)=3, Q={[1,1,4], [1,2,3], [2,2,2]}, D0=3 since
[1,1,4] has three permutations, i.e., {1, 1, 4}, {1, 4, 1}, and

{4, 1, 1}, D1=6, and D2=1. Consequently, p{Ω=3}=[
(

5
3

) ·
(3 · (6

1

)(
5
1

)
+6 · (6

1

)(
5
2

)
+
(

6
2

)(
4
2

)
)]/56=5400/15625=0.3456.

With the above analysis, we provide a better understanding
of the proposed data structures, as well as a guide to the
potential users about the parameter settings whenever CCF
or I2CF are within their considerations.



0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

C
D

F

(a) The CDF of mopt when b=3.

0 500 1000 1500 2000 2500

Number of buckets

0

0.2

0.4

0.6

0.8

1

C
D

F

DCF
CCF

B

CCF
F

(b) The CDF of # buckets.

0.90 0.92 0.94 0.96 0.98 1.00

Space utilization

0

0.2

0.4

0.6

0.8

1

C
D

F

DCF
CCF

B

CCF
F

(c) The CDF of space utilization.

0 500 1000 1500 2000 2500 3000

Number of empty slots

0

0.2

0.4

0.6

0.8

1

C
D

F

DCF
CCF

B

CCF
F

(d) The CDF of # empty slots.

Fig. 4. The comparison between CCF and DCF with Yahoo! trace.
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Fig. 5. The impact of different parameters in CCF.

V. EVALUATION

In this section, we compare the performance of CCF with
DCF for dynamic set representation and then quantify the
impact of the parameters. All of the experiments are conducted
on a host with 8 GB RAM and 3.4 GHz CPU. Especially,
we conduct the evaluations based on the real network flow
trace from Yahoo! [22]. The Yahoo! trace records the basic
information for each flow in its 6 distributed data centers,
including the IP addresses of both source and destination
servers, the arriving and terminating time of each flow, etc.
In this paper, we regard the combination of the source and
destination IP addresses as the content of an element, coupled
with the start and end time. Since there are millions of flows
in the trace, we only fetch the flows within 20 minutes. There
are in total 58,941 flows and Fig. 4(a) shows the CDF of the
optimal number of buckets mopt . We have mopt=	n/b
, since
each bucket can store b fingerprints at most.

A. Comparison with DCF

We implement two versions of CCF, i.e., CCF with only
bucket-level alteration CCFB and CCF with only filter-level
alteration CCFF . For fairness, the parameters for CCFF and
DCF are set as the same, i.e., mi=64, bi=3, ki=2, f=30.
For both CCFB and CCFF , the value of M and the number
of virtual nodes in the consistent hash ring v are given as
5×1010 and 10 respectively. Fig. 4(b), (c) and (d) depict the
CDF of the resultant number of buckets, space utilization and
the number of empty slots, respectively.

By jointly considering Fig. 4(a) and (b), we characterize
the capacity elasticity of DCF and CCF. Obviously, CCFB
achieves the best elasticity and keeps capacity up and down
whenever the number of elements increases or decreases.
The curve of CCFB in Fig. 4(b) matches the variation of
mopt in Fig. 4(a) perfectly. The CCFF also responds to
the changes of mopt rapidly by executing its compact and
scale out algorithms dynamically. The DCF, however, fails to

compact under-utilized CFs instantly when the value of mopt
decreases. The reason is that DCF moves any fingerprint in
the under-utilized CF into its corresponding buckets of other
CFs. Therefore, successful compaction is hard to achieve. Our
CCFF , in contrast, always tries to insert the fingerprints in
an under-utilized I2CF into other I2CFs, thereby releasing the
fingerprints from their locations in the under-utilized I2CF.
Thus, both CCFB and CCFF have better elasticity than DCF.

Moreover, the CDF of space utilization is depicted in Fig.
4(c). For DCF, about 37% percent of resultant space utilization
is less than 0.90. However, CCFB and CCFF have less than
10% percent of results which are below 0.90. Moreover,
the maximum space utilization for DCF is 0.970, which is
much lower than that of CCFB (1.0) and CCFF (0.999).
To be accurate, on average, the space utilization for DCF,
CCFB and CCFF are 0.8809, 0.9481 and 0.9425, respectively.
Correspondingly, the CDF of the number of empty slots is
shown in Fig. 4(d). For CCFB and CCFF , 93% and 97%
results have less than 500 empty slots, while that value for
DCF is 62% only. In the worst case, DCF remains 3,176
slots empty. And more than 16% DCF results incur more than
1,000 empty slots. The reason is that DCF can only compact
an under-utilized filter if all the stored fingerprints find their
corresponding unfilled buckets in other CFs. As a result, when
the value of n decreases but DCF may fail to recycle under-
utilized CFs timely. Notice that CCFB has more empty slots
than CCFF . The reason is that we only try to merge the buckets
which store less than 2 fingerprints in our experiments. At the
end of our tests, due to the removals of flows, the proportion of
buckets which accommodate 2 fingerprints gets higher, while
CCFB doesn’t recycle the empty slots immediately.

From the above experiments, we conclude that CCF
achieves better capacity elasticity and higher space utilization
than DCF. The feature of design flexibility, on the other hand,
may not be quantified directly. Intuitively, DCF only adds or
merges homogenous CFs, while the I2CFs in CCF is allowed



to have diverse parameter settings. This flexibility makes CCF
more suitable for dynamic set representation than DCF.

B. Impact of Parameter Settings
In this subsection, we quantify the impact of parameters for

CCF. Especially, we consider four main parameters, i.e., the
number of candidate buckets k, the number of slots in a bucket
b, the maximum reallocations max, and the number of virtual
nodes in the consistent hash ring v. Note that, we evaluate the
space utilization of CCFB when the above parameters vary.
The reference is set as a CCFB with k=2, b=3, max=1200,
and v=10. We then vary the four parameters separately and
show the results in Fig. 5.

As shown in Fig. 5(a), when k is increased from 2 to 16,
CCF achieves higher space utilization (rising from 0.9481 to
0.9599 on average). When k=16, nearly half of the results
have more than 0.98 space utilization. However, less than 12%
percent of the results achieve more than 0.98 space utilization
when k=2. An element has more candidate buckets implies
that a bucket may be assigned to more elements. Consequently,
the probability that a bucket is assigned to less than b elements
gets lower, which leads to higher space utilization. When b is
increased from 3 to 6, we can see from Fig. 5(b) that the
space utilization increases dramatically. To be specific, the
space utilization is 0.9481 for b=3, but 0.9986 for b=6 on
average. This phenomenon is reasonable since, with a larger
b, there are fewer buckets in the CCFB. In the Yahoo! trace,
the maximum number of flows to store is about 7,290. So
max=1,200 means the reallocations when inserting an element
may cover the whole filter to explore potential empty slots.
Also, with less number of buckets in the filter, the probability
of buckets which is assigned to less than b elements gets lower.
Accordingly, the resultant space utilization increases.

When the value of max is decreased from 1200 to 700, the
CDF of the resultant space utilization is recorded in Fig. 5(c).
Obviously, with more allowed reallocations, CCF achieves
higher space utilization. The reason is that, with larger max,
the insertion will search more buckets, and hopefully CCF
may find an empty slot to store the fingerprint. Moreover, as
depicted in Fig. 5(d), when the number of virtual nodes in
the consistent hash ring decreases from 10 to 1, the space
utilization experiences a significant drop (decreasing from
0.9481 to 0.9298 on average). When v=1, only about 16%
percent of the results realize more than 0.95 space utilization.
By contrast, when v=10, about 76% percent of the results
realize more than 0.95 space utilization. Basically, with more
virtual nodes, consistent hashing generates better load balance
among the buckets. Therefore, the probability that a bucket
is assigned with less than b elements gets lower and thereby
resulting in higher space utilization.

From the above results, we conclude that the parameters of
CCF have diverse impacts on its performance. The users can
customize their own configurations to achieve their goals by
leveraging these parameters.

VI. CONCLUSION

In this paper, we present the CCF design for dynamic
set representation and membership query, with the targets of
capacity elasticity, space efficiency, and design flexibility. CCF
is composed of an adjustable number of I2CFs. At its core,

each I2CF enables bucket-level capacity alteration with the
using of consistent hashing. At the filter level, CCF resizes
its capacity by adding untapped I2CFs or merging under-
utilized I2CFs adaptively. Without any inner dependency and
constraints, all the parameters of CCF are mutable and can be
customized by its users. Theoretical analysis and trace-driven
experiments show that CCF outperforms DCF and achieves the
design rationales simultaneously at the cost of a little higher
time-complexity.
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