
1

Cutting Long-tail Latency of Routing Response in
Software Defined Networks

Junjie Xie, Student Member, IEEE, Deke Guo, Member, IEEE, Xiaozhou Li, Member, IEEE,
Yulong Shen, Member, IEEE, and Xiaohong Jiang, Senior Member, IEEE

Abstract—To enable the network softwarization, network func-
tion virtualization (NFV) and software defined networking (SDN)
are integrated to jointly manage and utilize the network resource
and virtualized network functions (VNFs). For a network flow
resulting from any NFV application, an associated switch would
send a routing request to the controller in SDN. The controller
then generates and configures a routing path to dynamically
steer the flow across appropriate VNFs or service function
chains. This process, however, exhibits a skew distribution of
response latency with a long tail. Cutting the long-tail latency
of response is critical to enable the network softwarization, yet
difficult to achieve due to many factors, such as the limited
capacities and the load imbalance among controllers. In this
paper, we reveal that such flow requests still experience the
long-tail response latency, even using the newest controller-to-
switch assignment mechanism. To tackle this essential problem,
we propose an adaptive and light-weight switch-to-controller
selection mechanism. Thus, each switch actively selects the best
controller from available controllers, so as to cut the long-tail
response latency. More precisely, we design an efficient load-aware
selection method for homogeneous controllers to dynamically
balance the load among controllers, at the cost of randomly
probing two controllers. To conquer the performance fluctuations
of heterogeneous controllers, we further design a general delay-
aware scheme to fundamentally cut the long-tail response latency.
The comprehensive evaluations indicate that our two adaptive
selection methods of controllers can significantly reduce the long-
tail latency and provide higher system throughput.

Index Terms—Network softwarization, software defined net-
works, controller selection, long-tail latency

I. INTRODUCTION

NETWORK softwarization is a transformation trend for
designing, implementing, and managing the next gener-

ation networks. It exploits the benefits of software to enable
the redesign of network and service architectures, optimize
the expenditure and operational costs, and bring added values.
The key enablers consist of the network function virtualiza-
tion (NFV), software-defined networking (SDN) and cloud
computing, etc [1]. Moreover, 5G systems will also rely
on these technologies to attain system’s flexibility and true

J. Xie and D. Guo are with the Science and Technology on Information
Systems Engineering Laboratory, National University of Defense Technology,
Changsha Hunan 410073, China e-mail: {xiejunjie06,guodeke}@gmail.com.

X. Li is with the Department of Computer Science, Princeton University,
USA. Email: xl@cs.princeton.edu.

Y. Shen is with the School of Computer Science and Technology, Xidian
University, Shaanxi, China. Email:ylshen@mail.xidian.edu.cn.

X. Jiang is with the School of Systems Information Science, Future
University Hakodate, Hakodate, Hokkaido, Japan, and the School of Com-
puter Science and Technology, Xidian University, Shaanxi, China. E-mail:
jiang@fun.ac.jp.

elasticity [2]. Network functions (NFs) are crucial for improv-
ing network security by examining and modifying network
flows using special-purpose hardware. Recently, NFV has been
proposed to execute virtual network functions (VNFs) on
generic compute resources [3], [4], such as commodity servers
and VMs. Normally, a flow goes through specific VNFs in a
particular order to meet its required processing, following the
service function chain (SFC) [5], [6], [7] along a routing path.

Additionally, SDN centralizes the network control plane to
a programmable software component, i.e., a controller running
on a generic server, such as NOX [8]. The controller maintains
a global network view and optimizes the forwarding decisions
of network flows. SDN offers the freedom to refactor the
control plane and flexibly enables the network softwarization.
More precisely, NFV and SDN can jointly manage the network
resource and VNFs, and dynamically steer network flows
across appropriate VNFs or SFCs. For a flow from any
NFV application, an associated switch would send a routing
request to the controller. It is the controller that generates
and configures a routing path to a specific VNF instance or
to traverse a SFC on demand. The above process between
a pair of switch and controller brings the response latency.
Many factors would skew the tail of the latency distribution.
For example, a single controller that lacks sufficient capacity
to tackle received routing requests quickly and inevitably
becomes a performance bottleneck [9]. Thus, such routing
requests experience long-tail latency of response, as evaluated
in Section II. Cutting the long-tail latency of routing response
is critical to enable the network softwarization, yet difficult to
achieve due to many factors.

To improve the scalability of SDN, the distributed control
plane consisting of multiple controllers has been proposed
recently [10], such as ONOS and OpenDaylight. To reduce
the long-tail latency of response, they resort to the controller-
to-switch assignment mechanism. That is, the control plane
proactively assigns a controller to each switch such that each
controller manages the same amount of switches. In reality,
the quantities of routing requests coming from switches per
unit time are different and dynamic. Consequently, controllers
still differ in the amount of received routing requests per time
unit. This load imbalance among controllers leads to the long-
tail latency of response. Additionally, the controller-to-switch
assignment requires coordination among controllers, which
further aggravates the loads of controllers.

In this paper, to cut the long-tail latency of response and
lighten the load of controllers, we propose conducting the
selection of controllers at the side of each switch instead of the

2

controller-to-switch assignment. This means that each switch
actively chooses one controller from multiple available ones,
decoupling the static binding between switches and controllers.
More precisely, each switch prefers to adaptively select the
controller with low response latency for routing requests. This
would move the partial intelligences of the network to switches
and efficiently reduces the loads of controllers.

Despite those potential benefits, the selection of controllers
still faces many challenges. First, the switches need to probe
the state of controllers via the secure channel between them.
The secure channel is one kind of rare resource and affects the
performance of the whole network. To save the bandwidth of
the secure channel, the selection process of controllers should
be light-weight and use a few of the feedbacks from the
controllers. Second, the selection scheme needs to be scalable,
irrespective of the network size and the number of controllers.
Third, the selection scheme needs to accommodate the bursty
and skew routing requests from switches. Last, the selection
scheme should adapt to the heterogeneous controllers and the
performance fluctuation across controllers.

To tackle such challenges, we design a load-aware selec-
tion scheme of controllers, which is simple but effective to
achieve the load balance among controllers. The load of a
controller refers to the number of routing requests waited
to be processed. The basic idea of our scheme is that each
switch sends routing requests to the controller with the lowest
load. In this way, all controllers process the similar number
of routing requests per time slot. This is very helpful to cut
the long-tail latency of routing response, when all controllers
have the same processing capabilities. This method alone,
however, is insufficient to deal with more general settings
of heterogenous controllers and the performance fluctuation.
Those controllers with lower processing capabilities still incur
the long-tail latency of response for routing requests, when all
controllers achieve the load balance. For this reason, we further
present a general delay-aware selection scheme of controllers
to fundamentally cut the long-tail latency of routing response.

Our delay-aware selection scheme includes two key com-
ponents. The first one is the controller selection model of each
switch, which uses simple and inexpensive probing feedbacks
from a few controllers. It is still effective if each switch just
randomly probes two controllers and sends upcoming routing
requests to the controller with the shorter response delay. This
model is scalable and light-weight since it is not affected by
the network scale and the number of controllers. The second
component is the queue management mechanism of each
controller. It could estimate the response delay of a routing
request and hence improve the performance predictability of
controllers. The evaluation results reveal that our delay-aware
selection scheme can efficiently reduce the long-tail latency of
routing responses and improve the system throughput.

In summary, the major contributions of this paper are as
follows.

1) We reveal that the routing requests experience the long-
tail response latency, even using the newest controller-to-
switch assignment mechanism in SDNs. Consequently,
we propose an adaptive selection mechanism of con-
trollers for switches to cut the long-tail response latency.

0 10 20 30 40 50
0

1000

2000

3000

4000

5000

Request response time (ms)T
he

 n
um

be
r

of
 r

es
po

nd
ed

 r
eq

ue
st

s

(a) A single controller with 12,000 routing
requests.

0 5 10 15 20
0

2

4

6

8
x 10

4

Request response time (ms)T
he

 n
um

be
r o

f r
es

po
nd

ed
 re

qu
es

ts

(b) Multiple controllers with 150,000 routing
requests.

Fig. 1. Long-tail distributions of routing responses under a single controller
as well as multiple controllers.

2) We first design an efficient load-aware selection method
of homogeneous controllers for each switch. For more
general scenarios, we further propose a general delay-
aware selection method, which is adaptive to the bursty
routing requests, the heterogenous controllers and the
performance fluctuations. Our two methods are light-
weight as they limit the additional overhead caused by
probing two controllers.

3) We further develop a queue management mechanism
for each controller, which can efficiently manage the
queue length and estimate the response delay of routing
requests. The evaluation results reveal that our controller
selection methods can accommodate system environ-
ment variations and efficiently reduce long-tail latency
of routing response.

The paper is organized as follows. In Section II, we
present the observation of long-tail latency of routing response.
Section III depicts the framework of our controller selection
mechanism and the load-aware selection scheme of controllers.
We present the delay-aware selection scheme of controllers in
Section IV. We conduct massive experiments to evaluate the
performance of our controller selection schemes under various
system environment in Section V. Section VI introduces the
related work. In Section VII, we conclude this paper.

II. LONG TAIL OF RESPONSE LATENCIES

In a SDN, when a switch receives a new flow, the switch
sends a routing request to its controller. The controller then
computes a route for the flow and inserts flow rules to related
switches in the route. Thus, the new flow would be forwarded
according to the flow rules in switches [11], [12]. Such an
interaction between the switch and the controller causes the
response latency. For a routing request, the latency of routing
response denotes the time interval from sending the routing
request to receiving the flow rules generated by the controller.

A. Long-tail observations of response latencies

Fig. 1(a) plots an observation about the long-tail distribution
under a single instance of ONOS controller. We build a SDN
testbed with one controller, running in a virtual machine with
2 CPU cores and 2G RAM. Note that the testbed forms
a typical Fat-tree datacenter topology [13]. We record the
response latencies of 12,000 routing requests. As shown in

3

Fig. 1(a), the response latencies of 50% of routing requests
are lower than 5ms, and 90% of routing requests are served
within 30ms. However, there still exist some routing requests
whose response latencies are more than 50ms. That is, the
response latencies exhibit a long-tail distribution.

Furthermore, we observe the response latencies of routing
requests under multiple controllers [14]. We employ 300
switches and 40 controllers where each controller manages
7 or 8 switches. Each switch generates routing requests
according to a Poisson arrival process with λ=0.5 during
1ms. The processing time of each request in each controller
is drawn from an exponential distribution where µ−1=2ms.
Each controller can process 10 requests in parallel. We run the
system 1000ms and record the response latencies of routing
requests. The number of arrival routing requests is about
150, 000. In Fig. 1(b), 89% of routing requests can be served
in 5ms, and the response latencies of 96% of routing requests
are lower than 10ms. However, some response latencies are
still larger than 20ms. That is, Fig. 1(b) shows that there still
exists a long-tail distribution under multiple ONOS controllers.

B. Analysis about the long-tail latencies

Fig. 1(a) results from that the network only employs one
controller. Due to the limited capability of the single controller,
a large amount of requests have to queue in the controller.
Therefore, there is a long-tail latency of routig response caused
by the long queueing delays. In Fig. 1(b), the number of
routing requests that each switch generates is different, even
though they obey the same Poisson distribution. The skew-
flow requests will make that some controllers are overload, but
other controllers would be underutilized. As a consequence,
there will be a long-tail latency. We illustrate the problem
in Fig. 2. Two controllers are assigned to four switches and
have the same processing time of 4ms. Assume switch1 and
switch2 receive 4 requests each and that switch3 and switch4
receive 2 requests each. The requests received by switch1
and switch2 can only be processed by controller1, which is
assigned to manage them. This leads to a maximum latency of
32ms, but a load-aware selection obtains a maximum latency
of 24ms. Fig. 2 shows that a quantity-based assignment strat-
egy leads to long-tail latencies because it fails to accommodate
the skew-flow requests.

Quantity-based allocation strategy is commonly employed
by many controllers to balance the loads of controllers, such as
ONOS [14]. That is a controller-to-switch assignment mech-
anism, which is abbreviated as the assignment mechanism
of controllers. In this case, controllers coordinate to manage
switches, and each controller manages an approximately equal
quantity of switches. When deploying multiple instances of
ONOS in a SDN, the bursty flows from a switch are sent to the
same controller. Consequentially, a large number of requests
have to queue in the controller. These queueing requests tend
to incur long response latencies. However, those controllers,
which do not receive bursty routing requests, may even be
underloaded. In conclusion, the assignment mechanism fails
to efficiently reduce the tail latencies of responses.

Switch 1

Controller A
1 𝑢 = 4 ms

Queuing requests

Controller B
1 𝑢 = 4 ms

Queuing requests

Switch 2

Switch 3

 (Max Latency = 32 ms)

Switch 4

Controller A
1 𝑢 = 4 ms

Queuing requests

Controller B
1 𝑢 = 4 ms

Queuing requests

Switch 1

Switch 2

Switch 3

Switch 4

 (Max Latency = 24 ms)

4

4

2

2

2

2

2

2

1

1

1

1

(a) Quantity-based controller allocation.

Switch 1

Controller A
1 𝑢 = 4 ms

Queuing requests

Controller B
1 𝑢 = 4 ms

Queuing requests

Switch 2

Switch 3

 (Max Latency = 32 ms)

Switch 4

Controller A
1 𝑢 = 4 ms

Queuing requests

Controller B
1 𝑢 = 4 ms

Queuing requests

Switch 1

Switch 2

Switch 3

Switch 4

 (Max Latency = 24 ms)

4

4

2

2

2

2

2

2

1

1

1

1

(b) Load-aware controller selection.

Fig. 2. The performances of quantity-based controller allocation and load-
aware controller selection.

III. FRAMEWORK OF CONTROLLER SELECTION
MECHANISM

To overcome the drawback of assignment mechanism, we
design a switch-to-controller selection scheme, which is ab-
breviated as the selection scheme of controllers. The selection
scheme moves partial intelligences of the network to switches
and relieves the loads of controllers. Meanwhile, the selection
scheme can efficiently reduce tail latencies of responses.

A. Overview of controller selection mechanism

For existing designs of control plane, the assignment mech-
anism of controllers is a static binding between switches and
controllers, which fails to deal with the bursty and skew
routing requests, and further incurs long response delays. To
reduce the tail latencies of responses, routing requests from the
same switch need to be processed by appropriate controllers.
This means that the static binding between switches and
controllers needs to be decoupled. A better mechanism is to
enable switches to select controllers for routing requests.

For the assignment mechanism, the load balance among
controllers means that each controller manages the same
amount of switches. The load is denoted by the number
of switches. Moreover, the load balance among controllers
requires the coordination of controllers. The coordination
will further aggravate the computing and communication
overhead. However, in this paper, the selection scheme of
controllers achieves the mapping between switches and con-
trollers through switches conduct simple and actively probing.
Therefore, the selection scheme relieves the overhead of
coordination and assignment in controllers.

We design the controller selection mechanism keeping in
mind these four goals:

1) Light-weight: A light-weight probing method is needed
to save the bandwidth of the secure channel. The probing
for the controller selection uses the secure channel,
which is the communication channel between the control
plane and the data plane. The bandwidth of the channel
can affect the performance of the whole network.

2) Scalable: The selection scheme of controllers should be
irrelevant to the increasing number of controllers. The
expansion of network size is common. The method of
probing controller should accommodate the increase of
deployed controllers and avoid to incur the communica-
tion overhead and the computing overhead.

4

3) Burst-immunity: The selection scheme should be burst-
immune. There are bursty and skew-flow requests, which
can lead to long response delays. To shorten the tail
latency of responses, the selection scheme needs to
accommodate the bursty and skew-flow requests.

4) Adaptive: The selection scheme of controllers should
be adaptive. The capabilities of controllers may be het-
erogeneous and time-varying. To deal with the general
situation, the selection scheme must cope and quickly
react to heterogeneous and time-varying processing ca-
pabilities across controllers.

B. Load-aware selection scheme of controllers

Accommodating skew-flow requests across controllers ne-
cessitates a selection strategy of controllers. The strategy can
make switches select faster controllers for routing requests.
The controller with fewer unfinished requests can respond to
routing requests faster when controllers have the same pro-
cessing capability. In this paper, we first present a load-aware
selection scheme. To realize this framework, the selection
strategy needs to take into account the loads across multiple
controllers in the network. The load means the number of
unfinished requests. Our load-aware selection scheme is to
select a controller with the fewest unfinished requests for
newly generated requests.

Under the load-aware selection scheme of controllers, the
switch needs to send a probing request to each controller after
a switch receives a new flow. When the controller receives
the probing request, it will return the number of unfinished
requests to the switch. After the switch receives all probing
results, it then sends the new routing request to the controller
with the lightest load since that controller can respond the
routing request fastest. The load-aware selection scheme aims
to reduce tail latencies of responses by selecting the controller
with the lightest load.

In Fig. 2, the load-aware selection scheme will work as
follows. When a switch receives a new flow, it first probes
the loads of controllers A and B. Based on the loads of
controllers A and B, the switch sends the routing request to
the controller with lightest load. This scheme can balance the
loads of controllers A and B and can achieve better selection.
When the controller finishes processing the routing request, it
inserts the flow rules to related switches. Lastly, those switches
will deal with the flow according to the actions of matched
flow rules. In addition, the new arrival routing requests need
to queue in controllers, when controllers are busy. However,
the infinite length of queue will incur infinite response delays
of routing requests. To cut the tail latency of response, it is
necessary to ensure that the length of queue is finite in each
controller.

C. The condition to finite queue length

We give the condition to achieve that the expected number
of requests in per controller remains finite for all time. Con-
sider the following model: requests arrive as a Poisson stream
of rate λ at each switch. Requests are processed according
to the first-in first-out (FIFO) protocol by controllers. The

TABLE I
FOUR TYPES OF EVOLUTION PROCESS

Type state in time t come departure state in time (t+△t)
(A) k 0 0 k
(B) k+1 0 1 k
(C) k−1 1 0 k
(D) k 1 1 k

processing time for a request is exponentially distributed with
mean µ. When there are m switches and n controllers in a
network, requests arrive as a Poisson stream of rate λm

n at
each controller. We obtain the following theorem. Note that
λm
n <µ, and then the system will be stable, which means that

the expected number of requests per controller remains finite
in equilibrium. Theorem 1 shows that the system is stable for
every λm

µn<1; that is, the expected number of requests in each
controller remains finite for all time.

Theorem 1: The system is stable for every λm
µn<1; that is,

the expected number of requests in each controller remains
finite for all time.

Proof: When we treat all controllers as a whole and
all switches as a whole, then the system can be seen as
a M/M/1 system with Poisson arrival rate λm and average
service rate µn. Let Pk(t) denote the probability of that there
are k requests in the whole system in time t. Accordingly,
Pk+1(t) denotes the probability where k+1 requests exist in
the system in time t, and Pk(t+△t) denotes the probability of
that there are k requests in the whole system in time t+△t.
Now we consider the evolution of the system. In the time
[t, t+△t], the process of evolution has some attributes just as
follows:

• One request comes with the probability λm△t, and the
probability of no request comes is 1−λm△t.

• One request departures with the probability µn△t, and
the probability of no request departure is 1−µn△t.

• The situation of more than one request comes and de-
partures in △t is a small probability event, and it can be
ignored.

There are 4 types of evolution process, and we list them
in Table I. Take type B for an example. Since k is the
number of requests in the whole system, so k+1 means
that there are k+1 requests in the system in time t. After
that, when a request departs during △t, there would be k
requests in the system in time t+△t. Accordingly, we can
get the possibility of type A is Pk(t)(1−λm△t)(1−µn△t),
possibility of type B is Pk+1(t)(1−λm△t)µn△t, possibility
of type C is Pk−1(t)λm△t(1−µn△t) and possibility of type
D is Pk(t)λm△tµn△t. Then, Pk(t+△t) should be the sum
of all 4 types, shown in Equation (1).

Pk(t+△t) = Pk(t)(1− λm△t− µn△t)+
Pk+1(t)µn△t+ Pk−1(t)λm△t+ o(△t)

(1)

And let △t→ 0, we can get a differential equation, shown
in Equation (2).

dPk(t)

dt
= λmPk−1(t) + µnPk+1(t)− (λm+ µn)Pk(t)

k = 1, 2, . . .
(2)

5

0 5 10 15 20
Response latencies of flow requests (ms)

0

0.2

0.4

0.6

0.8

1

C
D

F quantity-based
load-based

Fig. 3. Response latencies of routing requests under different schemes.

Noted that if k=0, there will exist only type A and type B,
shown in Equations (3) and (4).

P0(t+△t) = P0(t)(1− λm△t)+
P1(t)(1− λm△t)µn△t

(3)

dP0(t)

dt
= −λmP0(t) + µnP1(t) (4)

We just have interest in the equilibrium point, and the
derivative is 0 in fixed point. Thus, we get Equation (5).{

−λmP0 + µnP1 = 0

λmPk−1 + µnPk+1 − (λm+ µn)Pk = 0 k ≥ 1
(5)

Resolve equation (5), we can get Pk=(λm/µn)kP0. If
λm
µn<1, then the sequence Pk will be decrease. And we know
probability is non-negative, that means Pk≥0. If a sequence
is bounded and monotone, it converges [15]. So there exist
K, when k>K, Pk=0. Then the expected total number of
requests in all controllers remains finite.

Theorem 1 shows that the expected total number of requests
in each controller remains finite, when λm

µn<1. Therefore, to
achieve the finite queue length, it is essential to ensure that
λm
µn<1. When the network size m increases, if λm

µn ≥1, it is
necessary to increase the number of deployed controllers n,
otherwise, the queue length of some controllers will be infinite,
and that will incur infinite response delays. Another method
to limit the queue length of controllers is to drop some routing
requests, which can limit the value of λ and achieve λm

µn<1.

D. Limitations of load-aware selection scheme

Fig. 3 shows the Cumulative Distribution Function (CDF) of
response latencies of routing requests under different schemes.
In Fig. 3, the response latencies of 94% of routing requests
are lower than 5ms after adopting the load-aware selection
scheme. However, for the quantity-based assignment, only
86% of routing requests can be responded in 5ms. In Fig. 3,
all routing requests can be responded in 10ms under the load-
aware scheme. Therefore, Fig. 3 indicates that our load-aware
selection scheme can reduce the tail latency of responses than
the prior quantity-based allocation method when controllers
are homogeneous and exhibit the same processing capabilities.
However, we can see that both curves (Quantity-based and
Load-aware) are very close to each other, which means that
the load-aware selection strategy narrowly reduce the long-tail
latency. Furthermore, the load-aware selection scheme faces
three challenges. First, controllers are heterogeneous. Second,

Switch 1
Controller A
1 𝑢 = 5 ms

Queuing requests

Controller B
1 𝑢 = 12 ms

Queuing requests

Switch 2

Switch 3

Load-based scheme

(Max Latency = 72 ms)

Switch 4

Controller A
1 𝑢 = 5 ms

Queuing requests

Controller B
1 𝑢 = 12 ms

Queuing requests

Switch 1

Switch 2

Switch 3

Switch 4

Ideal allocation

(Max Latency = 45 ms)

Fig. 4. Distinct selection schemes incur different response latencies.

the processing capabilities of controllers are dynamically
changing. Third, the cost of probing is too huge. Therefore, the
load-aware selection scheme is still insufficient to completely
cut the tail latency.

Fig. 4 plots an illustrative example of the limitation. For
two controllers, the processing time per request in controller
A and controller B are 5ms and 12ms, respectively. Assume all
four switches receive a burst of 3 requests each. Each request
needs to be forwarded to a single controller. If every switch
selects a controller using the load-aware scheme, it will result
in each controller receiving an equal share of the requests.
This leads to a maximum latency of 72ms, whereas an ideal
selection in this case obtains a maximum latency of 45ms. We
note that the load-aware scheme will prefer faster controllers
over time, but purely relies on the load information. Therefore,
when controllers are heterogeneous, the load-aware selection
scheme can not efficiently shorten the tail latency.

Controllers are commonly heterogeneous for primarily three
reasons. First, the hardware is heterogeneous. Controllers run
in commercial servers. These servers can be heterogeneous
due to different hardware configurations, such as CPU and
memory. Second, the software is heterogenous. There are mul-
tiple different controllers developed by different organizations
[10], such as NOX, Beacon, Floodlight, Ryu, ONOS and
OpenDaylight, etc. Those controllers themselves have different
performances. Third, the function is heterogeneous. There
are some management applications running in controllers for
achieving different functions [12], [16], and these applications
will consume some resources of controllers. Consequentially,
controllers have different remaining capabilities for processing
routing requests, even if the controllers run in servers with
the same setting. In this case, queueing routing requests in
controllers with low processing capabilities will lead to long
response latencies.

Additionally, the load-aware scheme probes the loads of all
controllers, and then selects the controller that has the lightest
load. However, this probing will incur the overhead of com-
munication and aggravate the loads of controllers when there
are a large number of controllers in a large-scale network. For
example, there are m switches and n controllers in a network.
Suppose that each switch receives λ routing requests in 1ms.
There are 2λ×m×n times communications between switches
and controllers during 1ms. Meanwhile, each controller needs
to evaluate its own load λm times in 1ms. The cost of probing
is too huge for the load-aware selection scheme.

The load-aware controller selection scheme can only reduce
tail latencies of responses under the homogeneous controllers.

6

Controller A

Controller B

Feedback

CS

Flow

Action

Switches

QM

QM

Fig. 5. Overview of controller selection scheme. CS: Controller Selection
scheduler, QM: Queue Management of controller.

However, the network environment is time-varying in real
situations, not only in the processing capabilities of controllers
but also in the number of routing requests from switches. We
further propose a delay-aware selection scheme of controllers,
which can adapt to the variations of the network environment.

IV. DELAY-AWARE SELECTION SCHEME OF CONTROLLERS

We design the delay-aware selection scheme of controllers
while keeping the design goals of controller selection mecha-
nism in mind. We first show an overview of the delay-aware
selection scheme. Then, we present two major components of
the delay-aware selection scheme, the selection models of con-
trollers and the queue management mechanism of controller.

A. Overview of delay-aware selection scheme

To address those problems faced by the load-aware selection
scheme, we further design the delay-aware selection scheme of
controllers, which is adaptive to the heterogeneous controllers
as well as to the dynamic behaviours of flows. The delay-
aware selection scheme needs to probe the response delays of
controllers for routing requests and send the routing requests
to the controller with the smallest response delay. The latency
of routing response denotes the time interval from sending
the routing request to receiving the flow rules generated by
the controller and is composed of the queueing delay and
the processing delay, as shown in Definition 1. The response
delay is an approximate evaluation of response time. Through
probing response delays, the delay-aware selection scheme
can accommodate the heterogeneous controllers, while fewer
routing requests will be sent to the controllers with low
processing capabilities.

Definition 1: The latency of routing response denotes the
time interval from sending the routing request to receiving the
flow rules generated by the controller.

Furthermore, the capabilities of controllers are time-varying.
With the development of SDN, there are more and more
applications running in controllers. When switches send vast
requests to the controller that has fast capability of response
at before, a large number of requests have to queue in
controllers if the capabilities of controllers decrease due to
other applications’ overconsumption of resources.

Our delay-aware selection scheme includes two major com-
ponents, controller selection (CS) and queue management
(QM). Recall the design goal of the selection scheme in
Section III-A, CS can achieve that the selection scheme is
light-weight, scalable and burst-immune, and QM achieves
the goal of adaptivity. First, we design a selection scheme

Algorithm 1 The Selection of Controllers.
Require: Controller set C, d.

1: randomly probe d controllers from C;
2: send estimating request to the d controllers;
3: ψ ← response delays of d controllers;
4: if there exists ψx ≥ 0 then
5: id← arg min{ψx ≥ 0};
6: else
7: for i=1 to C.length do
8: send estimating request to controllers C[i];
9: ψ0 ← response time of C[i];

10: if ψ0 >= 0 then
11: id = i;
12: break;
13: send the routing request to controller C[id].

Algorithm 2 Queue Management of Controller.
Require: the max response delay, RDmax.

1: receive an estimating request from switch s;
2: calculate the average processing time of requests ν̄;
3: if ri < γi then
4: ψi ← ri

γi
ν̄;

5: else
6: ψi ← C[qimodγi] + (⌊qi/γi⌋+ 1)× ν̄;
7: if ψi > RDmax then
8: ψi = −1;
9: send ψi to switch s.

of controllers, which can select the controller based on a
little feedback from the controllers, and thus, is light-weight.
Second, instead of probing all controllers, the switch randomly
probes d controllers where d≥1. The probing is scalable and
independent of the network size. Third, the selection scheme
can make switches conduct once controller selection for each
flow or a batch of flows. It can make those requests be
processed by different controllers, and thus can avoid the
influence of the bursty and skew-flow requests. Last, through
estimating response delays of routing requests, switches can
send routing requests to the controller that has the smallest
response delay. Based on this estimation, the selection of
controllers can be adapted to the heterogeneous and time-
varying processing capabilities.

Fig. 5 depicts the framework of the adaptive switch-to-
controller selection scheme. When a request is issued at a
switch, the switch will work based on Algorithm 1. The switch
randomly probes d controllers, where d≥1. The d controllers
then estimate their response delays for the routing request
based on Algorithm 2 and return the response delays ψ to
the switch. If ψi of controller i exceeds the max response
delay RDmax limit, then controller i will return the response
delay ψi= − 1. When the switch receives response delays of
d controllers, it will select the controller that has the smallest
response delay. If all response delays are lower than 0, the
switch will reselect a controller whose queue length does not
exceed limit for the routing request. Last, the switch will send
the request to the selected controller.

B. The selection models of controllers

When there are only a few controllers in the network, it is
feasible to probe all controllers. Considering that this probing

7

could occupy extra bandwidth of the secure link, it is essential
to design a per-flow light-weight probing method.

Active per-flow selection of controllers. To deal with
the skew-flow requests and reduce response tail latencies, the
switches need to select controllers for each flow. Instead of the
controller-to-switch assignment, the active per-flow selection
of controllers makes that the routing requests from the same
switch can be processed by different controllers. This selection
scheme can fully exploit the capabilities of controllers and
efficiently reduce response tail latencies.

To reduce the bandwidth consumption of probing con-
trollers, one method is to reduce the number of probed
controllers. There is a tradeoff between response tail latencies
and the number of probed controllers. Probing more controllers
can achieve fewer response tail latencies. However, that also
means more bandwidth consumption and computing overhead
in controllers. The number of controllers increases as the
network scale grows. In this case, checking all controllers has
a huge cost. To achieve the light-weight probing, we randomly
probe d controllers instead of checking all controllers, where
d≥1. Furthermore, Azar et al. [17] have shown that having
just two random choices (i.e., d=2) yields a large reduction in
the maximum load over having one choice . This method has
been widely studied and applied [18]. Inspired by this fact,
our active per-flow selection is to probe two controllers and
is thus scalable. Meanwhile, the active per-flow selection of
controllers can efficiently reduce the bandwidth consumption
of the secure link and the computing load of controllers.

Instead of probing the loads of the controllers, probing
response delays of controllers can better reduce response tail
latencies. The probing of response delays requires that these
controllers evaluate their own response delays for routing
requests. Since the selection of controllers only needs to get a
numerical value of response delay, the selection of controllers
is light-weight. Moreover, the heterogeneous and time-varying
processing capabilities of controllers increase the complexity
of evaluation for response delays of controllers. The response
delay estimate model will be introduced in Section IV-C.

Active selection of controllers for a batch of flows. When
switches meet bursty-flow requests or when the arrival of
routing requests is frequent, conducting a controller selection
for each request still aggravates the bandwidth consumption
and the loads of controllers even if only two controllers
need to be probed in one controller selection. Conducting the
controller selection for a batch of arrival routing requests is
needed to increase the scalability of the controller selection
mechanism, when switches suffer bursty flows.

For active selection of controllers for a batch of flows,
the switch conducts one controller selection after it receives
the first flow request. When we set the batch size as δ, it
means that the following δ−1 requests will be sent to the
same controller with the first request. That is, the result of
controller selection for the first request will be shared by δ
requests. In addition, the batch selection is irrelevant to the
rate of requests because δ denotes the number of requests.
Therefore, although there would be the high rate of requests
in the beginning when the switch changes its controller, those
requests would not be sent to the same controller. Given that

the request arrival process at each switch is a Poisson process
with rate λ, the arrival duration for a flow is exponentially
distributed with mean 1/λ. Therefore, the arrival duration of
δ flows is also exponentially distributed with mean δ/λ.

There is a tradeoff between the rounds of controller selec-
tion and the performance of controller selection. If δ is too
small, it is obvious that controller selection should be fre-
quently conducted. However, it will decrease the performance
of controller selection when δ is too large. It is worth noting
that it is unnecessary to adopt the batch selection when the
arrival of flows is scattered.

C. Queue management mechanism of controller

The queue management of controller makes it so that the
selection of controllers can cope and quickly react to heteroge-
neous and time-varying processing time across controllers. Our
queue management mechanism of controller includes response
delay estimate and queue length bound.

Response delay estimate model. As depicted in Section
III-D, the load-aware selection scheme of controllers can not
accommodate the heterogeneity of controller. To efficiently
reduce the long-tail latency of routing response, switches
should select controllers with lower response delays for each
routing request.

Request response time consists of the queueing time and
the processing time. Furthermore, the queueing time is related
to the length of queue, which is equal to the number of
queueing requests. Meanwhile, to estimate the queueing time,
it is essential to estimate the processing time of each request.
In our design, the controller records νj , which is the processing
time of the latest responded jth requests. Given the number of
the latest finished requests s, we calculate ν̄, which denotes
the average processing time of s requests in controller i. Thus,
ν̄= 1

s

∑s
j=1 νj . We use ν̄ to estimate the processing time of

requests.
Consider that the controller can process multiple routing

requests simultaneously. We use γi to denote the number of
requests that controlleri can simultaneously process. qi and ri
are the number of queueing and running requests in controller
i, respectively. To improve the system utilization, the controller
that has idle running slots should have a lower estimated re-
sponse delay. Therefore, the estimated response delay ψi=

ri
γi
ν̄

when ri<γi. When there are requests queueing in a controller,
the controller records the running duration A[k] of the running
request in the kth slot where 1≤k≤γi. The controller then
estimates that the queueing request will run in which slot. To
achieve this goal, we use B[k]=|ν̄−A[k]| and then sort B[k]
as non-decreasing order. Then, the controller estimates that
the request will run in [(qi mod γi)+1]th slot. We can get the
queueing time wti=B[(qi mod γi)+1]+(⌊qi/γi⌋)×ν̄. At last,
ψi=wti+ν̄ when ri=γi.

In summary, controlleri uses the following estimation
function for response delay:

ψi =

{
B[(qimodγi) + 1] + (⌊qi/γi⌋+ 1)× ν̄ : ri = γi

ri
γi
ν̄ : ri < γi

(6)

8

When a switch sends an estimating request to controlleri,
the controlleri adopts the formula (6) to estimate the response
delay. In general, γi=1 means that the controller only can
process one request once. In this case, ψi=B[1]+(qi+1)×ν̄.
We suppose that the controller is empty at the beginning. After
that, ν̄ is equal to the average processing time of finished
requests when the number of finished messages is lower than
the given threshold s.

Cutting tail latencies. Since switches conduct controller se-
lection simultaneously, there may be ”herd behaviors,” wherein
multiple switches are coaxed to direct requests towards the best
controller. There are many requests queueing in a controller
under herd behavior that could leads to long-tail latencies of
routing responses. Moreover, it is possible that the probed
controllers all have low processing capabilities or long queues.
In this case, it is not suitable to select a controller from those
probed controllers.

To cut long-tail latencies and reduce the influence of herd
behavior, the controller necessitates to bound its queue length.
Determining the length of queues at controllers is crucial.
Queues that are too short lead to lower controller utilization,
as resources may remain idle between allocations. Queues that
are too long may incur excessive queuing delays.

When fewer requests are sent to a controller, this may incur
under-utilization of its resources, whereas significant delays
may occur when requests need longer processing time. Hence,
after estimating request response delay, we further design
a delay-aware bounding mechanism to bound queue length,
which can accommodate the heterogeneous and time-varying
capabilities of controllers. Meanwhile, bounding queue length
can efficiently weaken the influence of herd behaviors. At one
point, a controller receives a burst of flows, and that exceeds
the limit of queue length. After that, the following flows will
not queue in the controller until the queue length is lower than
the limit. This delay-aware bounding mechanism relies on the
response delay estimation of request, which is reported by the
controller.

In particular, we specify the maximum response delay
RDmax that a request is allowed to wait in a queue. When
we are about to place a request at the queue of controlleri,
we first check the estimated response delay ψi reported by
controlleri. Only if ψi<RDmax is the request queued at
that controller. We sample d controllers while conducting the
controller selection. If the d selected controllers all do not
satisfy the maximum response delay constraint. The switch
needs to reselect a new controller. Using this method, the
number of requests in each controller gets dynamically adapted
based on the current capability of the controller.
RDmax is set to make requests prefer faster controllers.

Furthermore, RDmax can be dynamically regulated to fit the
variation of controllers’ capabilities. For controllers that have
low processing capabilities, RDmax can limit the number
of queueing requests in these controllers. After that, these
requests can be sent to faster controllers. However, if RDmax

is too small, most of controllers refuse to receive new requests
because their response delays exceed the limit of RDmax. In
this case, it is necessary to extend the value of RDmax.

V. PERFORMANCE EVALUATION

We start with the evaluation methodology and scenarios. In
this section, we evaluate the selection schemes of controller
and the assignment mechanism of controller under the general
settings of controllers, the queue length bound RDmax, the
heavy request-skews, the time-varying service rates and the
batch selection.

A. Experimental setup

We build a discrete-event simulator wherein workload
generators create flow requests at a set of switches. These
switches then employ the controller selection scheme to select
a controller for each request. Unless otherwise specified,
the network consists of 300 switches and 40 controllers.
The workload generators create flow requests according to
a Poisson arrival process to mimic arrival of user requests
at web servers [19]. Unless otherwise specified, the Poisson
arrival process is with λ=0.5 during 1ms. At the beginning,
the system is empty, and there are no requests. With the
system running, the switches start to produce flow requests
and select controllers for flow requests. We run the system
1000ms, and the number of arrival flow requests is about
150, 000. Each controller maintains a FIFO request queue.
Moreover, in the settings of controllers, each controller can
service a tunable number of requests in parallel (10 in our
settings). The processing time each request experiences is
drawn from an exponential distribution (as in [20]) with a
mean processing time µ−1=2ms. Furthermore, we incorporate
controller heterogeneity into the network as follows: each
controller, independently and with a uniform probability, sets
its service rate to a different µ, where µ=0.5 or µ=0.1 in our
settings. To estimate the response delay of each request, we set
s=100, That is, ν̄ denotes the average processing time of the
latest finished 100 requests. We repeat every experiment 20
times using different random seeds, and then get the average
result.

We compare our design against three strategies:
1) Quantity-based allocation: Controllers achieve load

balance through balancing the number of switches,
which each controller manages. Currently, ONOS con-
troller utilizes this strategy to balance the loads of
distributed controllers.

2) Load-aware selection: The switch probes two con-
trollers for each request and sends the request to the
controller with fewer number of requests because prob-
ing all controllers is not scalable.

3) Delay-aware selection: The switch probes two con-
trollers for each request and gets request response de-
lays, which rely on the feedbacks of probed controllers.
Then, the switch sends the request to the controller with
smaller response delay.

B. The impact of d

In this section, we evaluate the impact of d on the mean
response time under heterogeneous controllers where d de-
notes the number of probed controllers. Azar et al. [17] have

9

2 4 6 8 10
Number of probed controllers (d)

0

5

10

15

20

25

30

35

M
ea

n
re

sp
on

se
 ti

m
e

(m
s)

Fig. 6. The impact of d on the performance of the delay-aware selection
strategy.

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Request response time (ms)

C
D

F quantity−based
load−aware
delay−aware

(a) Request response time with different
schemes.

200 400 600 800 1000
0

0.5

1

1.5

2
x 10

5

System running time (ms)

T
he

 n
um

be
r

of
 r

es
po

ns
e

re
qu

es
ts

quantity−based
load−aware
delay−aware

(b) Throughput under different schemes.

Fig. 7. The performances of different schemes where controllers are hetero-
geneous.

shown that the situation of d=2 yields a large reduction in
the maximum load over d=1, while each additional choice
beyond two decreases the maximum load by just a constant
factor . Further, to verify the theory and determine the value
of d, we do more experiments to evaluate the impact of d
on the performance of the delay-aware selection strategy. The
processing time of each request in each controller is drawn
from an exponential distribution where µ was randomly set as
0.5 or 0.1. Other parameters are the same as Section V-A.

Fig. 6 shows that the obviously lower mean response time
is achieved by the delay-aware selection strategy when d=2
than that of d=1. However, more samples only incur a little
of reduction when d>2. In addition, more random samples
make it more likely for more switches to simultaneously select
the same controller which in turn aggravates the load of the
controller. Thus, we set d=2 in the next experiments.

C. General settings of controllers

We evaluate the performances of different schemes with
heterogeneous controllers. We employ 60 controllers where the
bound of maximal response delay RDmax=20ms. The other
settings of experiments are consistent with that of Section V-B.

Fig. 7(a) shows that our delay-aware scheme can signifi-
cantly reduce the response tail latencies. Basically, all requests
can be finished in 50ms while adopting our delay-aware
scheme. The load-aware scheme achieves better performance
than the quantity-based scheme in Fig. 7(a). Over 90% of re-
quests can be processed during 150ms based on the load-aware
scheme. The quantity-based scheme leads to long response
delays, and there are over 20% of requests whose response
delays are more than 200ms in Fig. 7(a). This is because a
large of requests queue in controllers that have lower process-
ing capabilities. Meanwhile, the load-aware scheme also failed

Request response time (ms)
0 50 100 150 200

C
D

F

0

0.2

0.4

0.6

0.8

1

delay-aware (RD
max

=20ms)

delay-aware (RD
max

=100ms)

delay-aware (RD
max

=1)

(a) The performance of delay-aware
scheme under different RDmax settings.

System running time (ms)
200 400 600 800 1000

T
he

 d
if

fe
re

nc
e

of
 r

es
po

nd
ed

 r
eq

ue
st

s

0

1000

2000

3000

4000

5000

6000
(RD

max
=20ms)-(RD

max
=100ms)

(RD
max

=20ms)-(RD
max

=1)

(b) The difference of responded requests un-
der different RDmax settings.

Fig. 8. The impact of RDmax on the performance and throughput of the
delay-aware scheme.

to respond to requests quickly. The processing delays of flow
requests in different controllers are different when controllers
are heterogeneous. As a consequence, selecting a controller
by the number of requests is not efficient. Fig. 7(a) reveals
that our delay-aware scheme achieved the lowest response
duration due to not only estimating response delay but also
cutting tail latencies. Fig. 7(a) also reveals that our delay-
aware scheme can be adapted to the system where controllers
have heterogeneous capabilities.

Fig. 7(b) shows that our delay-aware scheme can respond to
more requests than the load-aware scheme and the quantity-
based scheme can in the same time period. Meanwhile, the
throughput difference among schemes grows as the system
runs. In summary, with heterogeneous controllers, our delay-
aware scheme can efficiently reduce response tail latencies and
improve the throughput of controllers.

D. Impact of queue length bound RDmax

We evaluate the impact of RDmax on the perfor-
mance of the delay-aware scheme. We set RDmax=20ms,
RDmax=100ms and RDmax=∞ respectively. RDmax=∞
means that there is no limit on the queue length of controllers.
Other parameters are the same with Section V-C.

Fig. 8(a) reveals that our delay-aware scheme has bet-
ter performance when RDmax has a smaller value. Under
RDmax=20ms, all requests can be finished in 20ms. However,
The maximal response delay is 40ms under RDmax=100ms.
Therefore, the performance of delay-aware scheme under
RDmax=20ms is better than that of RDmax=100ms. Com-
paring with RDmax=∞, delay-aware scheme can signifi-
cantly reduce response tail latencies when RDmax=20ms.
Furthermore, we compare the throughput of controllers under
different RDmax settings. Fig. 8(b) shows that the system
can respond to 300 more requests under RDmax=20ms than
RDmax=100ms. It was obvious that controllers have higher
throughput when RDmax=20ms than when RDmax=100ms
and RDmax=∞. The difference of responded requests be-
tween RDmax=20ms and RDmax=100ms remains stable.
However, the difference of responded requests between
RDmax=20ms and RDmax=∞ grows as the system runs.

Fig. 8 reveals that the setting of RDmax can make flow
requests prefer the controllers that have faster processing
capabilities. Additionally, it is noteworthy that RDmax can not
be set too small, otherwise, there are no available controllers
while conducting the controller selection.

10

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Request response time (ms)

C
D

F

quantity−based
load−aware
delay−aware

(a) Request-skew=20%.

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Request response time (ms)

C
D

F

quantity−based
load−aware
delay−aware

(b) Request-skew=50%.

Fig. 9. Request response time with different schemes under the heavy request-
skews.

E. Performance under heavy request-skews

In this section, we study the effect of heavy demand skews
on the observed latencies where controllers are homogeneous
with average server rate µ=0.5. We set request-skew=20%
and request-skew=50%. That is, 20% and 50% of switches
generated 80% of the total requests towards the controllers.
Most of parameters are inherited from Section V-A. To enable
20% of switches to generate 80% of the total requests, we
randomly select 60 switches and set the arrival rate of flow
requests λ=2. Other switches set λ=0.125. Under request-
skew=50%, half of the switches set λ=0.8, and the other half
of the switches set λ=0.2. We set RDmax=150ms because
there are too many requests in a short time and these requests
have to queue in controllers.

Fig. 9(a) shows that over 5% requests have response delays
of more than 200ms for the quantity-based scheme. The
quantity-based scheme suffers decreased performance due to
the request-skews. However, the load-aware and delay-aware
schemes can significantly reduce response tail latencies. Based
on the load-aware and delay-aware schemes, all requests can
be finished in 10ms in Fig. 9(a). Fig. 9 reveals that the
load-aware and delay-aware schemes achieve very similar
performances since controllers are homogeneous in this sec-
tion. Meanwhile, the quantity-based scheme suffers decreased
performance due to the request-skews. Under request-skews, a
part of switches generate a large number of the requests, which
incur long queues in some controllers for the quantity-based
scheme.

Comparing Fig. 9(a) and Fig. 9(b), we can find that the
quantity-based scheme under request-skew=50% achieves a
lower response latency than under request-skew=20%. It is
because the load balance among controllers where request-
skew=50% is better than that of request-skew=20%. More-
over, Fig. 9 also reveals that our delay-aware scheme can
accommodate the heavy request-skews.

F. Impact of time-varying service rates

In this section, we study the effect of the service rate
fluctuation on the tail latency of response. We change the
average service rates of controllers in the system every 50ms,
and all controllers randomly set µ=0.5 or µ=0.1. Other
parameters are inherited from Section V-C.

Fig. 10(a) reveals that our delay-aware scheme can respond
to all requests in 60ms, the load-aware scheme can respond
to all requests during 80ms, and the response tail latency of

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Request response time (ms)

C
D

F

quantity−based
load−aware
delay−aware

(a) Request response time with different
schemes.

200 400 600 800 1000
0

2000

4000

6000

8000

10000

System running time (ms)T
he

 d
iff

er
en

ce
 o

f r
es

po
ns

e
re

qu
es

ts

(delay−aware) − (quantity−based)
(delay−aware) − (load−aware)

(b) The difference of responded requests be-
tween different schemes.

Fig. 10. The performances of different schemes under the time-varying service
rates.

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Request response time (ms)
C

D
F

quantity−based
load−aware
delay−aware

(a) Request response time with different
schemes.

0 50 100 150 200
0

0.5

1

1.5

2

2.5

3
x 10

5

System running time (ms)T
he

 n
um

be
r

of
 r

es
po

nd
ed

 r
eq

ue
st

s

quantity−based
load−aware
delay−aware

(b) Throughput under different schemes.

Fig. 11. The performances of different schemes under the batch selection.

the quantity-based scheme is more than 200ms. Therefore,
our delay-aware scheme can efficiently reduce response tail
latencies. For the quantity-based scheme, it could not exploit
the feedbacks of controllers to select the controller and further
suffers lower system utilization. The load-based scheme also
suffers lower performance because it fails to consider the time-
varying service rate. Fig. 10(a) reveals that our delay-based
scheme can accommodate time-varying service rate.

Fig. 10(b) shows that our delay-aware scheme can respond
to more requests than the quantity-based scheme and the load-
aware scheme. With the increase of system running time,
the advantage of the delay-aware scheme is more obvious
than the quantity-based scheme in Fig. 10(b). Meanwhile,
the difference of responded requests between the delay-aware
scheme and the load-aware scheme cyclically fluctuates be-
cause the service rates of controllers are periodically changed.
In summary, our delay-aware scheme can be better adapted
to the time-varying service rate and can efficiently reduce tail
latencies of responses.

G. Evaluation for batch selection

In this section, we evaluate the performance of different
schemes for batch arrival requests. We set the arrival rate
of flow requests λ=5. There are about 300, 000 requests
during 200ms. To deal with the burst requests, we employ
150 controllers, and each controller can process 40 requests
in parallel. We set the batch size δ=10 and RDmax=15ms,
and other parameters are set as Section V-C.

Fig. 11(a) reveals that our delay-aware scheme can still
reduce tail latencies of responses under the batch selection.
Our delay-aware scheme can respond to all requests in 40ms,
and the load-aware scheme can respond to all requests during

11

0 5 10 15
0

0.2

0.4

0.6

0.8

1

Request response time (ms)

C
D

F

delay−aware(δ=1)
delay−aware(δ=5)
delay−aware(δ=10)

(a) The performance of delay-aware
scheme.

0 50 100 150 200
0

0.5

1

1.5

2

2.5

3
x 10

5

System running time (ms)

N
um

be
r

of
 C

S
 o

pe
ra

tio
ns

delay−aware (δ=1)
delay−aware (δ=5)
delay−aware (δ=10)

(b) The number of CS operations. CS: the
selection of controller.

Fig. 12. The impact of the batch size δ.

60ms. However, the response tail latency of the quantity-
based scheme is more than 130ms. The performance of the
quantity-based scheme is mainly affected by controllers that
have lower processing capabilities. The tail latency of response
under the load-aware scheme is generated because it fails to
accommodate the heterogeneous controllers. Meanwhile, Fig.
11(b) shows that our delay-aware scheme can respond to more
flow requests than either of the other two schemes. This means
that our delay-aware scheme can not only reduce the tail
latency, but can also improve the throughput of controllers
under the batch selection.

Impact of batch size δ. Furthermore, we evaluate the
impact of the batch size δ on the performance of the delay-
aware scheme. Fig. 12(a) depicts the performances of the
delay-aware scheme under different batch sizes. Fig. 12(a)
shows that the performance of the delay-aware scheme has
a modest decrease with the increase of the batch size δ. When
the batch size δ increases, it means that more requests will
be sent to the same controller, even though the controller
has a low processing capacity. As a consequence, the delay-
aware scheme suffers a little of decreased performance. we
can find that experiments show a similar performance under
the different settings of δ in Fig. 12(a). Although more requests
would be directed to the controller with a low processing
capacity at some time when the value of δ is larger, after that,
the following requests would have less chance to select the
controller. Therefore, the decrease of performance is modest.
Furthermore, Fig. 12(b) reveals that the number of controller
selection operations dramatically decreases when the batch
size δ goes up. The fewer controller selection operations in
switch end will incur less bandwidth consumption in the secure
links between switches and controllers and less computing
load in controllers. In conclusion, active selection of con-
trollers for a batch of flows can efficiently reduce the resourse
consumption of communication and computing with a little bit
of performance reduction.

VI. RELATED WORK

A. Network softwarization

Network softwarization is a transformation trend for design-
ing, implementing, and managing the 5G and next generation
networks. It exploits the benefits of software to enable the
redesign of network and service architectures, optimize the
expenditure and operational costs, and bring new values in

the infrastructures. The key enablers consist of the network
function virtualization (NFV), software-defined networking
(SDN) and cloud computing, etc. Meanwhile, 5G systems will
also rely on these technologies to attain the systems flexibility
and elasticity [2].

Cloud computing for network softwarization. Along
with recent and ongoing advances in cloud computing, it has
become promising to design flexible, scalable, and elastic 5G
systems benefiting from advanced virtualization techniques of
cloud computing [1]. Taleb et al. introduces the Follow-Me
Cloud concept and proposes its framework [21]. The proposed
framework focuses on smooth migration of an ongoing IP ser-
vice between a data center and user equipment of a 3GPP mo-
bile network to another optimal DC with no service disruption.
Although cloud computing offers advanced services, it faces
challenges to support emerging applications that require ultra-
short latency. Mobile edge computing (MEC), interchangeably
known as fog computing, is proposed as a vital solution to
tackle those limitations of cloud computing. Indeed, it reforms
the cloud hierarchy by pushing computing resources in the
proximity of mobile users (i.e., at the mobile network edge).
There has been research on the possibility of extending cloud
computing beyond data centers toward the mobile end user,
providing end-to-end mobile connectivity as a cloud service
[22].

SDN for network softwarization. Software defined net-
working (SDN) acts as a promising enabler for network soft-
warization and plays a crucial role in the design of 5G wireless
networks [1]. SDN has been also utilized in the virtualization
of mobile network functions [23]. Many efforts have been done
to virtualize the control plane of a mobile network on the cloud
using SDN technologies. Kempf et al. describe an evolution
of the mobile Evolved Packet Core (EPC) utilizing SDN that
allows the EPC control plane to be moved into a data center
[24]. Some EPC network functions (e.g., MME, P-GW, and S-
GW) are instantiated on top of a virtualized platform, running
in data centers, and are interworked by using a suitable SDN
technology.

NFV for network softwarization. Taleb et al. introduce
the concept of ”Anything as a Service” (ANYaaS) [1], which
relies on the reference ETSI NFV architecture to orchestrate
and manage important services. Network functions (NFs) are
crucial for improving the network security by examining
and modifying network flows using special-purpose hardware.
Recently, network functions virtualization (NFV) has been
proposed to execute virtual network functions (VNFs) on
generic compute resources [3], [4], such as commodity servers
and VMs. NFV aims at offering network services using
network functions implemented in software and deployed in an
on-demand and elastic manner on the cloud [25]. Normally,
a flow goes through specific VNFs in a particular order to
meet its required processing, following the service function
chain (SFC) [6], [7], [26] along a routing path. Medhat et al.
introduce a service function chaining taxonomy as the basis
for the subsequent state-of-the-art analysis [5].

12

B. SDN scalability

To reduce the response delay of routing requests, researchers
mainly focus on improving the performance of a specific
controller like NOX [8] and Maestro [27]. Some other attempts
are meant to tackle the problem of scaling SDNs. A first
class of solutions, such as DIFANE [28] and DevoFlow [29],
address this problem by extending the data plane mechanisms
of switches. Their goal is to reduce the loads of the controllers.
Furthermore, Kandoo [30] is a distributed control plane con-
structed of two-level hierarchical controllers. Aissioui et al.
propose a two-level hierarchical controller platform to address
these scalability and performance issues in the context of 5G
mobile networks [31]. These techniques are orthogonal to the
selection of controllers. A second class of solutions propose
designing the distributed controllers. HyperFlow [32], Onix
[33] and ONOS [14] try to distribute the control plane while
maintaining a logically centralized management. These ap-
proaches balance the load of controllers based on the number
of switches, which can not efficiently reduce the tail latencies
of responses.

One key limitation of the distributed controllers is that
the mapping between a switch and a controller is statically
configured. The static configuration results in the uneven
load distribution among the controllers. Bari et al. propose
a management framework, which periodically evaluates the
current controller-to-switch assignment [34]. After that, it
needs to decide whether to perform a reassignment. If a
reassignment is performed, the management framework also
changes the controller-to-switch assignment in the network.
Dixit et al. propose ElastiCon [35], an elastic distributed
controller architecture in which the controller pool is dynam-
ically grown or shrunk according to traffic conditions. In this
case, the load is dynamically shifted across controllers, which
similarly relieves the static mapping between a switch and
a controller. Zhou et al. propose a dynamic and adaptive
algorithm (DALB) [36], which is running as a module of
SDN controller. The controllers in distributed environment can
cooperate with each other to keep load balancing. Overloaded
controller can be detected, and high-load switches mapped to
this controller can be smoothly migrated to the under-load
controllers. However, these dynamic frameworks require that
the control plane monitors the state of the whole network and
conducts the reassignments, which aggravate the computing
load of the control plane.

In contrast to these works, our approach relies on simple
and inexpensive feedback of controllers and efficiently relieve
the load of the control plane. Mao et al. use the principles of
SDN to achieve the server load balancing by setting the SDN
flow table [37], which does not aim to solve the load balance
of the distributed controllers of SDN. Palma et al. develop the
QueuePusher [38], which is a queue management extension to
OpenFlow controllers supporting the Open vSwitch Database
Management Protocol (OVSDB) standard. QueuePusher can
generate the appropriate queue configuration messages for
switches. In addition, the distributed controllers need to ensure
the consistency among controllers, and that is out of the scope
of this paper. Moreover, there have been many researches on

how to achieve the consistency among distributed controllers
[39]. These techniques are complementary to our approach.

VII. CONCLUSION

NFV and SDN can dynamically redistribute the flow across
appropriate VNFs or service function chains if the controller
configures a desired routing path for each network flow result-
ing from NFV applications. In this paper, we present the long-
tail observations of the routing response latencies while using
the newest controller-to-switch assignment mechanism. To
tackle this essential problem, we propose an adaptive switch-
to-controller selection mechanism, where each switch actively
selects the best controller from all available controllers. More
specifically, we first design a load-aware selection method
for homogeneous controllers to embody this mechanism. To
conquer the performance fluctuations across heterogeneous
controllers, we further design a delay-aware selection method.
Through comprehensive performance evaluation, we demon-
strate that our adaptive controller selection mechanism can
efficiently reduce response tail latencies and accommodate
various system environments including the request-skews, the
fluctuation of service rates and so on. We leave the fault-
tolerant of the controller selection as our future work.

REFERENCES

[1] T. Taleb, A. Ksentini, and R. Jantti, “”anything as a service” for 5g
mobile systems,” IEEE Network, vol. 30, no. 6, pp. 84–91, 2016.

[2] T. Taleb, S. Dutta, A. Ksentini, M. Iqbal, and H. Flinck, “Mobile edge
computing potential in making cities smarter,” IEEE Communications
Magazine, vol. 55, no. 3, pp. 38–43, 2017.

[3] A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl, J. Khalid,
S. Das, and A. Akella, “Opennf: enabling innovation in network function
control,” in Proc. of ACM SIGCOMM, Chicago, IL, USA, 2014, pp.
163–174.

[4] M. Kablan, A. Alsudais, E. Keller, and F. Le, “Stateless network
functions: Breaking the tight coupling of state and processing,” in Proc.
of 14th USENIX NSDI, Boston, MA, USA, March, 2017, pp. 97–112.

[5] A. M. Medhat, T. Taleb, A. Elmangoush, G. A. Carella, S. Covaci, and
T. Magedanz, “Service function chaining in next generation networks:
State of the art and research challenges,” IEEE Communications Mag-
azine, vol. 55, no. 2, pp. 216–223, 2017.

[6] A. A. Mohammed, M. Gharbaoui, B. Martini, F. Paganelli, and P. Cas-
toldi, “SDN controller for network-aware adaptive orchestration in
dynamic service chaining,” in Proc. of IEEE NetSoft Conference and
Workshops, Seoul, South Korea, 2016, pp. 126–130.

[7] P. Zave, R. A. Ferreira, X. K. Zou, M. Morimoto, and J. Rexford,
“Dynamic service chaining with dysco,” in Proc. of ACM SIGCOMM,
CA, USA, 2017.

[8] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown,
and S. Shenker, “Nox: towards an operating system for networks,” Acm
Sigcomm Computer Communication Review, vol. 38, no. 3, pp. 105–110,
2008.

[9] A. Ksentini, M. Bagaa, T. Taleb, and I. Balasingham, “On using
bargaining game for optimal placement of sdn controllers,” in 2016 IEEE
International Conference on Communications (ICC), May 2016, pp. 1–
6.

[10] J. Xie, D. Guo, Z. Hu, T. Qu, and P. Lv, “Control plane of software
defined networks: A survey,” Computer Communications, vol. 67, pp.
1–10, 2015.

[11] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodol-
molky, and S. Uhlig, “Software-defined networking: A comprehensive
survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76, 2015.

[12] A. Ksentini, M. Bagaa, and T. Taleb, “On using sdn in 5g: The controller
placement problem,” in 2016 IEEE Global Communications Conference
(GLOBECOM), Dec 2016, pp. 1–6.

[13] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” Acm Sigcomm Computer Communication
Review, vol. 38, no. 4, pp. 63–74, 2008.

13

[14] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,
B. Lantz, B. O’Connor, P. Radoslavov, and W. Snow, “Onos: towards
an open, distributed sdn os,” in ACM HotSDN, 2014, pp. 1–6.

[15] D. Hugheshallett, A. M. Gleason, W. G. Mccallum, and et al., “Calculus:
Single and multivariable, student solutions manual , 6th edition,” 2013.

[16] A. Bremler-Barr, Y. Harchol, and D. Hay, “Openbox: A software-defined
framework for developing, deploying, and managing network functions,”
in Proceedings of the ACM SIGCOMM, Salvador, Brazil, August 2016,
pp. 511–524.

[17] Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal, “Balanced alloca-
tions,” Siam Journal on Computing, vol. 29, no. 1, pp. 180–200, 2001.

[18] M. Mitzenmacher, A. W. Richa, and R. Sitaraman, “The power of two
random choices: A survey of techniques and results,” Handbook of
Randomized Computing, vol. 11, pp. 255–312, 2001.

[19] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li,
R. Mcelroy, M. Paleczny, D. Peek, and P. Saab, “Scaling memcache at
facebook,” in Usenix NSDI, 2013, pp. 385–398.

[20] A. Vulimiri, P. B. Godfrey, R. Mittal, J. Sherry, S. Ratnasamy, and
S. Shenker, “Low latency via redundancy,” in ACM Conference on
Emerging NETWORKING Experiments & Technologies, 2013, pp. 283–
294.

[21] T. Taleb and A. Ksentini, “Follow me cloud: interworking federated
clouds and distributed mobile networks,” IEEE Network, vol. 27, no. 5,
pp. 12–19, 2013.

[22] T. Taleb, “Toward carrier cloud: Potential, challenges, and solutions,”
IEEE Wireless Communications, vol. 21, no. 3, pp. 80–91, 2014.

[23] T. Taleb, A. Ksentini, and A. Kobbane, “Lightweight mobile core
networks for machine type communications,” IEEE Access, vol. 2, pp.
1128–1137, 2014.

[24] J. Kempf, B. Johansson, S. Pettersson, H. Lning, and T. Nilsson,
“Moving the mobile evolved packet core to the cloud,” in 2012 IEEE
8th International Conference on Wireless and Mobile Computing, Net-
working and Communications (WiMob), Oct 2012, pp. 784–791.

[25] T. Taleb, M. Corici, C. Parada, A. Jamakovic, S. Ruffino, G. Karagiannis,
and T. Magedanz, “Ease: Epc as a service to ease mobile core network
deployment over cloud,” IEEE Network, vol. 29, no. 2, pp. 78–88, 2015.

[26] L. Guo, J. Pang, and A. Walid, “Dynamic service function chaining
in sdn-enabled networks with middleboxes,” in Proc. of 24th IEEE
International Conference on Network Protocols, Singapore, 2016.

[27] Z. Cai, A. L. Cox, and T. S. E. Ng, “Maestro: A system for scalable
openflow control,” Tech. Rep. TR10-08, 2010.

[28] M. Yu, J. Rexford, M. J. Freedman, and J. Wang, “Scalable flow-based
networking with difane,” ACM SIGCOMM Computer Communication
Review, vol. 40, no. 4, pp. 351–362, 2010.

[29] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and
S. Banerjee, “Devoflow: Scaling flow management for high-performance
networks,” ACM SIGCOMM Computer Communication Review, vol. 41,
no. 4, pp. 254–265, August 2011.

[30] S. H. Yeganeh and Y. Ganjali, “Kandoo: a framework for efficient and
scalable offloading of control applications,” in Proc. ACM HotSDN,
Helsinki, Finland, August 2012.

[31] A. Aissioui, A. Ksentini, A. M. Gueroui, and T. Taleb, “Toward elastic
distributed sdn/nfv controller for 5g mobile cloud management systems,”
IEEE Access, vol. 3, pp. 2055–2064, 2015.

[32] A. Tootoonchian and Y. Ganjali, “Hyperflow: A distributed control plane
for openflow,” in Proc. USENIX INM/WREN, SAN JOSE,CA, April
2010.

[33] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,
R. Ramanathan, Y. Iwata, H. Inoue, and T. Hama, “Onix: a distributed
control platform for large-scale production networks,” in Usenix OSDI,
2010, pp. 351–364.

[34] M. F. Bari, A. R. Roy, S. R. Chowdhury, Q. Zhang, M. F. Zhani,
R. Ahmed, and R. Boutaba, “Dynamic controller provisioning in soft-
ware defined networks,” in International Conference on Network and
Service Management, 2013, pp. 18–25.

[35] A. Dixit, F. Hao, S. Mukherjee, T. Lakshman, and R. Kompella,
“Towards an elastic distributed sdn controller,” in Proc. ACM HotSDN,
Hong Kong, China, August 2013.

[36] Y. Zhou, M. Zhu, L. Xiao, L. Ruan, W. Duan, D. Li, R. Liu, and
M. Zhu, “A load balancing strategy of sdn controller based on distributed
decision,” in 2014 IEEE 13th International Conference on Trust, Security
and Privacy in Computing and Communications, Sept 2014, pp. 851–
856.

[37] Q. Mao and W. Shen, “A load balancing method based on sdn,” in
2015 Seventh International Conference on Measuring Technology and
Mechatronics Automation, June 2015, pp. 18–21.

[38] D. Palma, J. Gonalves, B. Sousa, L. Cordeiro, P. Simoes, S. Sharma,
and D. Staessens, “The queuepusher: Enabling queue management in
openflow,” in 2014 Third European Workshop on Software Defined
Networks, Sept 2014, pp. 125–126.

[39] A. Panda, W. Zheng, X. Hu, A. Krishnamurthy, and S. Shenker, “Scl:
Simplifying distributed sdn control planes,” in Proceedings of 14th
USENIX NSDI, March 2017.

