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Abstract—The topological properties of peer-to-peer overlay networks are critical factors that dominate the performance of these
systems. Several nonconstant and constant degree interconnection networks have been used as topologies of many peer-to-peer
networks. The Kautz digraph is one of these topologies that have many desirable properties. Unlike interconnection networks, peer-to-
peer networks need a topology with an arbitrary order and degree, but the Kautz digraph does not possess these properties. In this paper,
we propose MOORE: the first effective and practical peer-to-peer network based on the quasi-Kautz digraph with O(log, n) diameter and
constant degree under a dynamic environment. The diameter and average routing path length, respectively, are shorter than that of CAN,
butterfly, and cube-connected cycle, and are close to that of the de Bruijn and Kautz digraphs. The message cost of node joining and
departing operations are at most 2.5d log, n and (2.5d + 1) log, n, and only d and 2d nodes need to update their routing tables. MOORE can
achieve optimal diameter, high performance, good connectivity, and low congestion, evaluated by formal proofs and simulations.

Index Terms—Constant degree networks, Kautz digraphs, peer-to-peer networks.

1 INTRODUCTION

STRUCTURED peer-to-peer (P2P) networks have emerged as
a good candidate infrastructure for building novel large-
scale and robust network applications [1], [2], [3], [4], [5], [6]
in which participating peers share resources as equals. They
impose a certain topology structure on the overlay network
and control the placement of data, thus exhibiting several
unique properties that unstructured P2P networks lack. In
general, the topological properties of structured P2P net-
works are critical factors that dominate the performance of
these systems. The most common concerns about topologi-
cal properties are peer degree and network diameter. The
degree of a peer denotes the number of overlay connections
attached to it. The diameter indicates the largest number of
hops that must be traversed in order to transmit a message
between any two peers in the worst case.

Several nonconstant and constant degree interconnection

networks have been used as the ideal topology of structured
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P2P networks. The degree and diameter increase logarith-
mically with respect to the order of the network for
nonconstant degree interconnection networks, such as
hypercube [7] and ring digraph. The diameter increases
logarithmically with respect to the order of the network,
whereas the degree of each node remains fixed, regardless of
the order of the network, for constant degree interconnection
networks, such as cube-connected cycle [8] (CCC), butterfly
[5], d-dimensional torus [7], de Bruijn [9], and Kautz digraph
[10]. Among existing structured P2P networks, Chord [2],
Pastry [3], Tapestry [11], and Kademlia [4] are based on the
hypercube topology; Viceroy [5] and Ulysses [12] are based
on the butterfly topology [13]; Cycloid [14] is based on the
CCC topology; CAN [1] is based on the d-dimensional torus
topology; Koorde [6], Distance Halving [15], D2B [16], ODRI
[17], and Broose [18] are based on the de Bruijn topology; and
FissionE [19] is based on the Kautz topology.

The degree of a node in the Butterfly network is four,
whereas that in Ulysses is O(logn). The degree of a node in
Viceroy or Cycloid is seven and cannot be a general
constant integer. The expected degree of a node in D2B is
constant, but its high probability bound is O(logn), ie.,
some peers would be of degree O(logn). Koorde and
distance-halving embed a de Bruijn network on a ring and
employ equivalent connection rules. The only difference is
that the node degree of distance-halving must be two,
whereas that of Koorde can be an arbitrary integer. ODRI is
another scheme based on the de Bruijn network, whereas
the details are still under investigation. Broose is a de Bruijn
version of Kademlia that was proposed to increase the
reliability of de-Bruijn-based structured P2P networks.
Among the known structured P2P networks, only the
degree of a node in CAN and Koorde definitely remains
fixed and can be an arbitrary integer.

In the design of structured P2P networks, there are two
important requirements. First, P2P networks always pursue a
topology with arbitrary order and degree in order to deal with
the uncontrolled dynamic operations of nodes, such as
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joining, departing, and failing. Second, P2P networks attempt
to design a topology with the smallest diameter given nnodes
and fixed degree d since reducing the diameter can improve
the performance of structured P2P networks due to the
following fact. The P2P networks are overlay networks in
which one hop transmission usually traverses many links and
devices in the underlying physical networks, and conse-
quently, has nontrivial overhead of delay and traffic.

It is well known that constant degree interconnection
networks can satisfy the second requirement, and the Kautz
digraph obtains the smallest diameter compared to others.
The reason is that the Kautz digraph almost achieves the
Moore bound [20], the order n of a digraph with maximum
out-degree d and diameter D meets the constraint: n <
(dP*1 —1)/(d — 1) (with more details in Section 2). Un-
fortunately, constant degree interconnection networks im-
pose an inherent constraint on the number of vertices they
can support. For example, the order of a Kautz digraph
must be d?~!(d + 1) for a given degree d and any value of
diameter D. In other words, it can be one of a series of
discrete integers, but cannot cover all possible integers. The
Kautz digraph, therefore, cannot satisfy the first require-
ment and cannot be directly used to design a structured P2P
network. Although the generalized Kautz digraph extends
the Kautz digraph for a general number of vertices, it is
required to reconstruct the whole topology once the number
of vertices changes [21], [22]. Due to the frequent changes of
peers in P2P networks, the generalized Kautz digraph is
also not suitable for structured P2P networks.

In this paper, we design a quasi-Kautz digraph with an
arbitrary network order and node degree which can satisfy
the above two requirements and still retain the key
properties of a Kautz digraph. We then propose MOORE:
the first effective and practical P2P network based on the
quasi-Kautz digraph with O(log,n) diameter and constant
degree under a dynamic environment. The diameter and
average routing path are [log, /5 + 1] and log,n, respec-
tively. They are shorter than that of CAN, butterfly, and
CCC, but close to that of the de Bruijn and Kautz digraphs.
The message costs of node joining and departing operations
are at most 2.5dlog;n and (2.5d+ 1)log,n, respectively.
MOORE can achieve optimal diameter, high performance,
good connectivity, and low congestion.

The main contributions of this paper are as follows:

1. We present the definition, construction procedure,
and theoretical results of a quasi-Kautz digraph with
arbitrary order and node degree. It satisfies the two
important requirements and retains desirable prop-
erties of a Kautz digraph, such as optimal diameter,
constant out-degree, simple routing scheme, and
low congestion.

2. We design a novel structured peer-to-peer network
based on the quasi-Kautz digraph, and a suitable
resource distribution policy, production methods of
resource and node identifier, and a shortest path
routing scheme.

3. We propose some essential algorithms to handle the
dynamic operations of nodes, such as node joining
and departing and network expanding and shrink-
ing. These algorithms can preserve the desirable
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Fig. 1. 1-factorization of a Kautz digraph K(2,2).

structure of the backbone subnetwork and guarantee
the correctness and performance of MOORE.

4. We evaluate the performance and cost of MOORE
through formal analysis and simulation, and com-
pare it with mainstream structured peer-to-peer
networks based on other constant degree topologies.

The rest of this paper is organized as follows: Section 2

surveys the definition and emulation methods of the Kautz
digraph. Section 3 proposes the theory of a quasi-Kautz
digraph and its construction procedure. Section 4 describes
the detailed design of MOORE. Section 5 presents strategies
to expand and shrink the entire topology. Section 6 analyzes
and evaluates the characteristics of MOORE. The conclu-
sions and future work are discussed in Section 7.

2 RELATED WORK
2.1 Kautz Digraph

The topology of a structured P2P network is usually
modeled by a graph or digraph in which vertices stand
for nodes, while edges represent overlay connections. Many
efforts have been made to address the degree/diameter
problem, which determines the largest graphs or digraphs
of given maximum degree and given diameter. The order n
of a digraph with maximum out-degree d and diameter D is
not larger than a general Moore bound [20], [23] as follows:

n<d?+dP ' P Hd+1=(dPT -1)/(d-1). (1)

Many research activities related to the degree/diameter
problem have proved that nonexistence of digraphs
achieves the general upper bound for the parameters d >
3 and D > 3 [24]. The best lower bound on the order of
digraphs of maximum out-degree d and diameter D is as
follows: For maximum out-degree d=2 and diameter
D >4,n>25x2P7% For the remaining values of max-
imum d and diameter D, a general lower bound is n >
dP + dP~1 [20]. Among existing nontrivial digraphs, this
best lower bound is only obtained by Kautz digraphs
defined using an alphabet as follows:

Definition using an alphabet. Let Z; = {0,1,...,d} bean
alphabet of d + 1 letters, and Z? = {z,... zp_12p |; € Z4,
x; # xi41 and 1 <4 < D} is a Kautz identifier space consist-
ing of all Kautz identifiers with length D and base d. The
vertex set and arc set of the Kautz digraph are Z? and

E(K(d,D)) = {{(z122...2p,T2,...Tpa) | @ € Zg, 0 # zp}.

Fig. 1 plots an example of Kautz (2,2).
Besides the degree/diameter problem, structured P2P
networks also focus on the order/degree problem, which
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determines the smallest diameter in a digraph of order n
and maximum out-degree d. Based on the Moore bound of
the degree/diameter problem, a lower bound of the order/
degree problem can be derived as

D > [log; (n(d—1)+1)] — 1.

In practice, all existing digraphs cannot achieve this
lower bound for the parameters d > 3 and D > 3 [24]. The
best upper bound on the diameter of digraphs of maximum
out-degree d and order n is [log;z%7+1]. Among all
existing nontrivial digraphs, the best upper bound is only
possessed by the Kautz digraph.

2.2 Emulation of Kautz Digraph

The topology is incrementally extendable if its definition
allows graphs of arbitrary order and degree. According to
the above definition, the Kautz digraph is not incrementally
extendable.

The most related research work revolves around
FISSIONE, which uses a Kautz graph K (2, D) as its static
topology and proposes some emulation methods of K (2, D)
to deal with the dynamic operations of nodes. It, however,
cannot support Kautz digraphs with arbitrary degree,
except degree 2, and suffers from poor lookup performance
and weak connectivity since the degree of each peer is too
small. Furthermore, the emulation methods of K (2, D) are
not suitable to a general Kautz graph K(d, D), where d > 2.
Thus, FISSIONE is not incrementally extendable.

MOORE attains the best upper bound of the order/degree
problem mentioned above. Even the order is an arbitrary
value. However, it only works well under a relative static or
moderately dynamic environment and suffers from low
robustness in highly dynamic environments due to maintain-
ing topology. To address these issues, we improved MOORE
by introducing another structured P2P network based on a
balanced Kautz tree and Kautz ring in [26]. Recently, Zhang et
al. reconsidered the design problem of structured P2P
networks mentioned in this work, and also employed a linear
digraph to emulate the Kautz digraph [27]. They adopted a
fully distributed manner to maintain the node identifier space
at the cost of high overhead, while MOORE prefers
centralized servers.

3 Quasil-KAautz DIGRAPH

3.1 Definition of Quasi-Kautz Digraph

Let G = (V, E) be a strongly connected digraph. The vertex
set and arc set are denoted as V =V(G) and E = E(G),
respectively. An arc from vertex u to v is denoted as (u, v).
The arc is said to be incident from vertex u and incident on
vertex v. The set of vertices incident on vertex u is denoted
as I'g(u) ={ve V(G) | (v,u) € E(G)}, and 6, (u) = [T (u)]
is the in-degree of vertex w. Similarly, the set of vertices
incident from u is denoted as T'(u)={ve V(G)]|
(u,v) € E(G)}, and &f5(u) = [T5(uw)| is the out-degree of
vertex u.

Given a Kautz digraph K(d, D), we construct an arc set
E' € E(K(d, D)) such that each vertex of K(d, D) appears as
the head and tail of at least one arc of E’, where |E’'| = n and
dP +dP~t < n < dPtt 4 dP.

Definition 1. A digraph of fixed out-degree d and order
n, [K(d,n), is a quasi-Kautz digraph if:
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1. IK(d,n) has arcs of E' as vertices.

2. For each arc (u,v) in E', check the following: For each
win (v,w) in E, if (v,w) € E', then add an a-arc from
vertex (u,v) to vertex (v,w) in IK(d,n); otherwise,
select z such that (z,w) € E', then add an (3-arc from
vertex (u,v) to vertex (z,w) in IK(d,n).

The Kautz digraphs K(d, D) and K(d, D + 1) are called
the predecessor and successor Kautz digraph of IK(d,n),
respectively. According to Definition 1, each arc (u,v) in E'
can be denoted as a vertex labeled as wv = ujusupvp of
IK(d,n), where upus...up equals to vjvy...vp_q. In this
paper, we will not distinguish strictly between an arc of
K(d, D) and its corresponding vertex in IK(d,n). In other
words, we may use (u,v) to denote a vertex of IK(d,n). Itis
clear that the out-degree of any vertex of /K (d,n) is d. Note
that the method used to choose z from multiple candidates
will be discussed in Section 4.1.

According to Definition 1, it is straightforward to design
a quasi-Kautz digraph IK(d,n) through the following
general construction procedure:

1. Discover the largest Kautz digraph K(d, D) satisfy-
ing that d” + d”™! < n.

2. Construct a subset £’ of E(K(d, D)) such that E' = n

and the constraint on £’ mentioned above is satisfied.

3. Produce all vertices of IK(d,n) by presenting each

arc of E' as a vertex. Then, establish links among
vertices according to the constraint mentioned in
Definition 1.

The general procedure can result in different quasi-
Kautz digraphs, with the same number of vertices, due to a
different arc set E’. The procedure ensures that the
minimum in-degree of nodes in the resulting quasi-Kautz
digraph is not less than one. It alone, however, is not
enough to ensure that the quasi-Kautz digraph can inherit
desirable properties of the Kautz digraph. Therefore, a
method for careful selection of the arc set E’ is necessary.

3.2 Construction of Quasi-Kautz Digraph

Let G = (V, E) be a strongly connected digraph. An arc a
covers a vertex z if a is incident from z. An arc set E'CFE is
an arc-covering of G if every vertex of G is covered by at least
one arc of E'. If |E'| =|V|,E is called a I-arc-covering. If
Vu € Vb (u) =64 (u) =1for G' = (V,E'), then E' is called
a I-factor of G. Hence, a 1-factor is a spanning 1-regular
subdigraph and consists of cycles and possibly loops. A
digraph G has a 1-factorization if its arc set can be
partitioned into some arc-disjoint 1-factors. Theorem 1
proves that the Kautz digraph has a 1-factorization, which
will be used to derive a special construction procedure of
the quasi-Kautz digraph. Before in-depth analysis, we first
introduce several definitions as follows:

Definition 2. Let Lshift denote a binary operation such that
LShift(f] .. .{L‘D,](L‘D,Z') =T .. .$D,]$ID, where 0 < 7 <
d—1. If ($D71+’L’*d71) <zxp_1<xp OFr Tp_1 >
xp and xp_1 > xp +1, then )= (xp+i)mod (d+1).
Otherwise, «', = (xp +i+ 1) mod (d + 1) [25].

Definition 3. Let Rshift denote a binary operation such that
RShift(l‘ll‘g ... TpD1Tp, Z) = .Tl1$2 ... Ip1Tp, where 0 <1 <
d—l.Ifl'g—l—i—d— 1<x <x90rmy > x0and xy — i > @,
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then x) = (21 — i) mod (d+ 1). Otherwise, x) = (x1 —i —
1) mod (d + 1) [25].

Definition 4. For any vertex © = x1x2...xp in K(d,D) and
0<i<d —1, the left k-shift operation and right k-shift
operation, denoted as o, and o', respectively, are defined as
follows:

L( B {Lshift(:r2 ... ZDT1,1),

o1(T

if I 7& D,
Lshift(xs ... xpxe, i), if 1 = xp,

‘72 = 0—};71 (UD (3)

i R,Shift(ZEDZE1 ...ID,],Z'), 1fx1 7é£L'D,
o '(z) = e e (4)
Rshift(zp_121 ... 2p-1,1), if 21 = zp,
op' = oily(o7"). (5)

For any vertex z, vertices oi(z) and o7'(x) are its
(¢ + 1)th successor and predecessor, respectively. Further-
more, (z,0%(x)) and {o7'(z),x) denote its (i + 1)th out-arc
and in-arc. In fact, the (i + 1)th out-arc and in-arc of each
vertex are unique under the ¢} and o]’ operations.

Theorem 1. The arc set E(K(d, D)) can be partitioned into d
arc-disjoint 1-factors F°,..., F4~' under the corresponding
left 1-shift operation o%(0 < i < d —1). That is, K(d, D) has
a 1-factorization.

Proof. Let any vertex, as the beginning point, take a walk
through K (d, D). For each vertex z under this walk, it
always walks along the (i + 1)th out-arc (z, 0% (x)) under
the left 1-shift operation o}. The walk will meet a covered
vertex after at most d” + dP~! steps. This walk will not
meet any inner vertex because the (i + 1)th in-arc of each
inner vertex in the walk is unique and has been used by
its predecessor in this walk. Therefore, this walk will get
back to the beginning vertex along its (¢ + 1)th in-arc, and
finally, form a cycle.

As discussed above, each vertex of K(d, D) is covered
by at least one cycle under the operation oi. Let us
suppose that there is a common vertex y covered by a
pair of cycles under operation o%. It is easy to conclude
that the two cycles must also cover the vertex satisfying
the fact that its (¢ + 1)th out-arc is incident on vertex y.
From the point of recursive operation, we can conclude
that the two cycles are identical. Therefore, each vertex is
covered by only one cycle under operation o}, and cycles
are mutually vertex disjointed. The cycles under opera-
tion of form a spanning 1l-regular subdigraph and
produce a 1-factor F' of K(d, D). Furthermore, for any
vertex = of K(d, D), the arc covering it is different in
different 1-factors. Therefore, these 1-factors are mu-
tually arc-disjoint, and K(d,D) has a factorization.
Therefore, Theorem 1 holds. a

As shown in Fig. 1, all arcs of a Kautz digraph K (2,2)
can be partitioned into two arc-disjoint 1-factors. The Kautz
digraph K(2,2), therefore, has a 1-factorization. According
to Definition 1, the corresponding arc of each vertex z =
z1...xpxps1 of a IK(d,n) is contained by a unique 1-factor
in the predecessor Kautz digraph of the IK(d,n). The
identifier or label of that 1-factor can be calculated by
F(x) = Distance (0V(z122...2p), 223 ... Tps1), wWhere the
function Distance is given by Algorithm 1.
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Algorithm 1. Distance(y, 2)
Require: y and z are different d-ary Kautz identifiers with
length D + 1.
1: if D =0 then

2. j<—(2ps1—ypy) mod (d+1)—1
3: else
4:  if min(yp+1,2p+1) < yp < max(yp1,2p+1) then
5: if ZD+1 > YD+1 then
6: J< 2py1 —Yps1 — 1
7: else
8: Jje—zpy1 —ypy +d+1
9: else
10: if zp11 > Yo
11: J+ Zpy1 — YD1
12: else
13: J< Zpt1 —Yp+1 +d

14: return j

According to the Definition 1 and Theorem 1, we obtain
the following theorem:

Theorem 2. The quasi-Kautz digraph 1K (d, n) induced by any k
1-factors of Kautz(d,D) is a d-reqular digraph for all
1 <k <d, where n = k(d” 4 dP71).

The general construction method of IK(d,n) does not
propose any method for the selection of the arc set E'.
Random selection cannot ensure that the connectivity of a
quasi-Kautz digraph is close to that of its predecessive
Kautz digraph. We will use the results of Theorems 1 and 2
to construct the arc set E' and enable the resulting /K (d, n)
to achieve better connectivity. Specifically speaking, the
ideal arc set E' and IK(d,n) can be achieved by a special
construction procedure based on the 1-factorization of
K(d, D) as follows:

1. In order to construct an IK(d,n), where k(d” +
dP=1) <n < (k+1)(dP 4+ dP1), we start with a d-
regular quasi-Kautz digraph IK(d,d” + d°7') in-
duced by the 1-factor F° of K(d,D) through
Algorithm 5. The K(d, D) can be achieved from an
initial Kautz digraph by invoking this procedure
repeatedly.

2. We add vertices corresponding to all arcs of k — 1 1-
factors F',F?,...,F*! to the d-regular digraph
produced in the first step, and then, achieve a new
d-regular digraph IK(d, k(d” +dP~')) by using
Algorithm 3 recursively.

3. We then add vertices corresponding to n — k(d” +
dP~1) arcs, denoted as F¥, of another 1-factor F* to
the new d-regular digraph by using Algorithm 3
recursively.

Note that Theorem 2 guarantees the correctness of the first
step. The last step is based on proper choice of the added arcs
as discussed in Section 4. In order to achieve higher
connectivity, the arc selection polices must make the
minimum in-degree of the final digraph as large as possible.
Theorem 3 shows the low and upper bounds on the minimum
in-degree of a resulting /K (d,n).

Theorem 3. Given any value of n, any quasi-Kautz digraph

IK(d,n) always holds that k<6 (IK(d,n)) <d, where

k(dP +dP )y <n < (k+1)(d°+d° Yand 1 < k< d.
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Fig. 2. Two different shapes of a quasi-Kautz digraph 1K(2,9).

Proof. We know that the number of 1-factors of K(d, D) used
to produce the 1K (d, n) is k + 1. For the sake of generality,
we select the first k+ 1 1-factors F°, F'..., F* but the
result is the same for any k+ 1 1-factors. The special
construction procedure can produce the needed quasi-
Kautz digraph mentioned in this theorem. Theorem 2 can
also guarantee that the quasi-Kautz digraph induced by
any k 1-factors of K(d, D) is a d-regular digraph.

Adding any vertex = induced by F* has an effect on
one out-arc of at most d existing nodes. Node z needs to
inform its (i 4+ 1)th predecessor to update the (i + 1)th
out-arc (a [ arc) with a new a-out-arc incident on node z
where 0 <i < k — 1. As aresult, the in-degree of the node
at the other end of the original (i + 1)th out-arc of
the (i + 1)th predecessor of vertex = decreases by one. If
the arc corresponding to its (k 4 1)th predecessor has been
added previously, node z also informs this predecessor to
add an a-arctoitself. Fork+1<:<d—1,otherd —k—1
predecessors of node z are induced by 1-factors F' and do
not existin K (d, n). There, however, exists a § arc from a
node corresponding to an arc (o7%(o7%(z2...7py1)),
07" (2...xps1)) to the node x if that arc is in F¥.

According to the above analysis, the in-degree of
vertices induced by F¥ is at least k, but less than d,
except when k = d — 1 and arcs of F' form cycles. The in-
degree of vertices induced by previous k 1-factors should
not be less than d — 1 and can reach d in some scenarios
such as in Fig. 2b. Thus, k< ¢ (IK(d,n)) <d, and
Theorem 3 holds.

a

4 MooRE DESIGN

We propose the following strategies to organize peers into
an efficient overlay network which can guarantee the
logarithmic network diameter and constant out-degree of
each peer. First, each peer obtains a logical identifier from
an identifier space and uses its IP address as a physical
identifier. Second, each peer maintains d neighbor peers
according to a topology rule. Third, any resource gets an
identifier from an identifier space which contains the
identifier space of peers. Resources are distributed to given
peers based on the longest prefix matching rule. Based on
the above three strategies, we propose a routing scheme to
support different operations effectively, such as resource
distribution, resource querying, and topology maintenance.
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MOORE uses the quasi-Kautz digraph as its topology
structure, which evolves from an initial Kautz digraph in a
distributed manner. The Kautz digraph can be constructed
through many mature centralized methods, so we do not
consider related details in this paper. In practice, MOORE
needs to deal with the following dynamic operations:
topology expanding, topology shrinking, and node joining
and departing. It is these operations that drive the evolution
of MOORE. We will first propose essential algorithms to
implement the two dynamic operations of peers in this
section, and then, explain how to expand and shrink the
MOORE topology corresponding to a Kautz digraph in
Section 5.

4.1 Overview

The quasi-Kautz digraph inherits many desirable character-
istics of the Kautz digraph and is more practical than the
Kautz digraph because its order can be of an arbitrary
order. Therefore, MOORE selects the quasi-Kautz digraph
as its topology in a dynamic environment. There is an
injection mapping from nodes in MOORE to vertices in a
corresponding quasi-Kautz digraph. The topology of
MOORE evolves from an initial Kautz digraph through
dynamic operations of nodes and must always satisfy the
constraints mentioned in Definition 1.

As mentioned in the latter, the ith out-neighbor of an
existing node © = 123 ... 2p is (T223 ... 2p, 0 (X223 ... Tp)).
In practice, the ith desired out-neighbor might not appear in
MOORE. In this situation, node x must select a substitute for
its ith desired out-neighbor from at most d existing nodes
labeled as (o,’(c%(z9z3...2p)), 0% (za23...2p)), where
0 < j < d. Recall that Definition 1 does not point out a
method to choose the substitute from multiple existing
candidates. To deal with this issue, MOORE chooses the
node as a substitute labeled as o, " (0 (za3...2p)),
o' (v ... xp)) if it exists. Otherwise, MOORE chooses one
randomly from those candidates.

For any resource to be distributed in MOORE, it is
assigned a long d-ary identifier « = x5 ... 2; according to
its value of single- or multiple-dimension attributes. We
use two Kautz identifier spaces 7, = {z;...x 17/ |v; €
{0,1,...,d—1}} and Z}' as the resources identifier space
and nodes identifier space of MOORE. The length of a
resource identifier should be larger than that of a node
identifier. If we fix the out-degree of each node in MOORE,
we can infer that m = [log}" —logy“/ d>1 and [ = [log} —
10gf,1+1/ 9 1, where n,, and n, denote the maximum number of
nodes and resources in MOORE, respectively.

Assume that the successor Kautz digraph of IK(d,n) is
K(d, D), a resource labeled as z1x2...zp ...z is stored and
maintained by its preferred host labeled as xz; ... zp if this
node exists in IK(d,n). Otherwise, the resource will be
taken over by its second host labeled as (zizs...zp_1,
o (zxy...xp_1)) in IK(d,n). In the remainder of this
paper, let s denote the identifier of the 1-factor that was
selected to induce the quasi-Kautz digraph with the same
order as K(d,D —1). MOORE can ensure that at least the
second host of each resource appears in MOORE. In
general, the default value of s is 0, and the second host of
resource z is labeled as zyzy...xp 171 (if 71#xp_1) or
212y ... xp_x1+1 (if 21 = 2p_1). For example, it is the node
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210 that stores a resource labeled as 212120212 when the
node 212 does not appear in MOORE, as shown in Fig. 2.

4.2 Mapping Resources onto Resources’ Identifier
Space

Each resource accessible through MOORE will receive an
identifier from the identifier space Z!. Different resources
are allowed to receive the same identifier. The mapping of
resources onto Z, can be implemented in several ways.
Literature [19] proposed a determinate algorithm to gen-
erate an identifier with two as a base for each resource. In
reality, the base of a quasi-Kautz digraph used by MOORE
is often larger than two for the sake of decreasing its
diameter and improving its connectivity. Therefore, this
paper considers another Kautz_hash algorithm to generate
an identifier with any base for each resource. The
Kautz_hash uses three parameters: key denotes the original
identifier of the resource, such as name or keyword; d and [
denote the base and length of expected Kautz strings,
respectively. Kautz_hash is detailed below.

First of all, it produces a long binary string by hashing
the key according to a given consistent hash function, for
example, SHA — 1. Then, it converts the resulting binary
string to a new string S) with base d and substitutes all
substrings consisting of any identical number with a single
one. If the length of .S is less than [, it appends ¢ = 1 to key
and achieves a new Kautz string S; with base d, and then,
appends S; to Sp. If the length of S is still less than [, it
appends the value of ¢ 4+ 1 to key and repeats the procedure
again until the length of Sy becomes larger than I. Finally,
the substring consisting of the first / numbers of S; from left
to right is returned as the identifier.

4.3 Mapping Nodes onto Nodes’ Identifier Space
In practice, MOORE starts with d™ + d™~1 initial nodes
and forms a structured P2P network according to a Kautz
digraph K(d,my), then enlarges or shortens its scale
through a series of dynamic operations at runtime. Thus,
the nodes’ identifier space should not be a static one
compared to the resources’ identifier space. It will be better
if we start with an initial identifier space, and then, enlarge
or shorten it with the increase or decrease of the number of
nodes, respectively. Let Z;° denote the initial identifier
space, where my < m. Each identifier of this space will be
allocated to a unique node. If all identifiers of Z" were
allocated and new nodes apply to participate in MOORE,
the initial identifier space should be extended to Z]“*" so as
to allocate free identifiers to new nodes. Note that the new
identifier space is a d multiple of the old one and can be
achieved according to Definition 1.

As a direct result of this operation, the original identifiers
of initial nodes also need to be updated by the first d"™ +
d™~! new identifiers induced by the 1-factor F* of K(d,my),
then the initial nodes form another d-regular quasi-Kautz
digraph IK(d,d™ + d™~1) according to Algorithm 5. As
discussed later, this process does not cause additional
overhead except d™ + d™~! messages to start the process.
In order to maintain better topological properties under a
dynamic environment, we must focus on the policy used to
allocate identifiers to new nodes, and this policy is
equivalent to the arc choice policy used by the special

1047

construction procedure of the quasi-Kautz digraph men-
tioned above. Any arc choice policy first takes the arcs of the
second 1-factor F', then takes the arcs of the third 1-factor
F?, and so on. But, existing policies are different in the
selection order of arcs in each 1-factor.

The arc choice policy proposed in literature [25] suggests
to take arcs of one cycle in each 1-factor, then arcs of another
cycle, and so on. The random choice policy, denoted as
factor Random, selects arcs randomly from a given 1-factor.
The difference between these two policies is that the former
can make the in-degree of more new vertices reach k + 1. The
n denotes the number of existing nodes in MOORE, and &
satisfies that k(d™ 4 d™™1) <n < (k+ 1)(d™ +d™"1). We
propose an enhanced policy, denoted as cycleSequence, which
takes arcs of one cycle along its direction continuously, then
the second cycle, and so on. Our new policy can make more
vertices reach k+ 1 in-degree than the policy proposed in
literature [25]. The reason is that the (k + 1)th predecessor of
anewly added arc has been added previously unless it is the
first selected arc of a cycle.

Algorithm 2. Route (y, message, scheme)
Require: Identifier y is not less than «

1 z—y

2: if the length of y is larger than D then

3 y—yiy2..-Yp

4: if x=yorxzxs...Tp 1 = Y1¥y2...yp_1 then

5:  Process the message locally, and return success.
6: 2’ — forward_ orientation(y)

7. if 2/ # null then

8: return z/.Route(z, message, scheme)

9: else

10: return failure to the source node.
forward_orientation(y)
1: Let u be the largest integer such that zp_,4; = y;
for 1 < i < u, and result «— null

2: fori=0to d do
3:  w « routingtalbeli].identi fier
4: if u =0 and w =y then
5: return w
6: else if wp_, 1. =y; for 1 <i<u-+1 then
7: result «— w
8: if result = null and scheme = resource then
9: return <mll‘2...$D71,0i($11‘2...$D71)>
: else

— =
_ O

return result

Recall that the in-degree of at most k£ nodes induced by
previous k 1-factors decreases by one once a new node z joins
MOORE. Here, the (k + 1)th out-arc of existing peer o7%(z)
incidents on one of those k nodes, where 0 <7 <k — 1. As
shown in Fig. 2a, the original S-out-arc from vertex 012 to 021
will be updated with an a-out-arc from vertex 012 to 121 once
a vertex 121 participates 1K (d,n). Thus, the in-degree of
vertex 021 decreases by one. No existing arc choice policies
focus on this problem. Therefore, we propose a different
policy denoted as inDegreePreserved to deal with it. The basic
idea is to allocate the identifier of the (k + 1)th predecessor of
existing nodes, once their (k + 1)th in-arc is canceled by the
previous node’s adding operation, and reestablish its
(k+ 1)th in-arc with an a-arc incident from its (k+ 1)th
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predecessor. This policy tries to preserve the in-degree
regularity of nodes induced by previous k 1-factors and is
very efficientif k = d — 1 or d = 2. Thus, MOORE can achieve
the best topological properties if it combines the policies
inDegreePreserved and cycleSequence.

On the other hand, an identifier allocated to a node may
become free if the node failed or departed from the
network and did not recover during a given time interval.
All arc choice policies should give these kinds of identifiers
priority when they allocate an identifier to a new node. If
this identifier is induced by previous Fifor0<i<k-1,
this operation is helpful to preserve the desirable structure
of the backbone subnetwork consisting of nodes induced
by previous k 1-factors. Otherwise, this operation can
make the in-degree of more nodes reach k+1 for the
cycleSequence policy.

4.4 Routing Scheme

In order to route messages to destinations correctly, each
node x must establish links with selected neighbors and
construct a routing table when it joins MOORE using
Algorithm 3. In addition, each node should update its links
and routing table when other nodes join, depart, or fail. The
routing table consists of d entries, and each entry includes
the identifier and address (such as IP and port number) of
one neighbor node. Furthermore, node z may initiate a
lookup message to find a given resource or node with
identifier y or initiate an insert message to distribute its
resource with identifier y to a responsible node. We propose
Algorithm 2 to route these kinds of messages to their
destinations along the shortest paths.

Algorithm 3. Node joins (z,y,k)

1: k— F(x)

2: fori=0tod

3: if i <k then

4: Node y finds the address of node labeled z. Then
node = adds (z, address,a) as its (i + 1) routing
entry, and establishes a link to this node, where
2= {mam3...Tps1,0 (223 ... Tp11)),

5: else
6: Node z asks node y to find the address of node
z labeled <Jfk((7§(x2.’1;3 . xD-%—l))’ O’Zi (.1:2.1:3 . :L‘D+1)>
7: if node z does not exist then
8: Node x asks node y to find the address of a node z

labeled (o,? (0% (zozs ... 2p+1)), 0 (T2 ... Tp11)).
The random integer j satisfies that 0 < j < k and
node z exists.
9: Node = adds (z, address, 3) as the (i + 1) entry of
its routing table, and establishes a link to node .
10: fori=0to d do
11: if : < k then

12: w +— (o7 (x122 ... Tp), T1%2 . .. TD)

13: else

14: w— (o7 (o7 (22 ... xpi1)), 07 (T2 . .. Tp11)

15: Node w updates one original /3 link with an o or 3
link incident on node z, then updates its routing
table.

16: Node x gets resources satisfied that x is their prefix of
identifier from node (z12s...zp, 05 (2122 ... 2p)).
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Fiol proposed a method to achieve a short path from z to
y in [28]: find the largest suffix v of x that coincides with a
prefix of y, then walk toward a neighbor z of x such that its
largest suffix v coincides with a prefix of y and the length of
v is larger than that of u. Note that the exhibited path does
not necessarily have the shortest length due to the existence
of (-out-arcs. As an example, node 021 needs to route to
node 012 along the short path 021 — 210 — 101 — 012, as
shown in Fig. 2a. The shortest path, however, should be
021 — 012, resulting from a (-out-arc incident from node
021. In order to deal with this problem, Algorithm 2 will
check whether there is a routing entry corresponding to
node y if the length of u is zero. As shown in our simulation
results, Algorithm 2 can achieve low congestion as the long-
path routing scheme does [10], [19].

Algorithm 2 uses three parameters: y denotes the
identifier of a aimed resource or node; message denotes
the real message needed to be routed; and scheme denotes
the type of message and can be resource (lookup or insert
resource) or node (find the address of node). Recall that the
resource distribution policy of the quasi-Kautz digraph is
different from that of the Kautz digraph because any
resource has two possible exclusive destination nodes.
Therefore, if scheme = resource and the method forward_or-
ientation in Algorithm 2 does not find the node whose
identifier is a prefix of the identifier of an aimed resource, it
will forward the message to another destination node
defined by the resource distribution policy mentioned above.

4.5 Node Joining

To ensure that our routing scheme executes correctly after a
new peer participates MOORE, all routing entries of each
peer must keep up to date. MOORE handles this issue by a
series of local operations that each new peer runs when it
joins. The joining procedure includes receiving a node
identifier, redistributing resources, and updating routing
tables. These operations can be implemented by Algorithm 3.

As for most P2P networks, we assume that there are some
existing nodes as entry points of MOORE, which can receive
and process the node joining message. Let y = y1y2 ... yp+1
denote an entry point of MOORE. Before participating
MOORE, a new peer consults node y for its logical identifier
T =212y ...2pr1 and the identifier k& of a current 1-factor
according to the management policy of nodes” identifier
space. In reality, there exist at least two cases of node joining
operations. The first case is F'(z) = k, which means that
the new node belongs to the current 1-factor F*. The second
case is F'(z) < k, which means that the new node belongs to
the previous 1-factor and a node with the same identifier has
joined MOORE, but failed or departed.

In both cases, node x needs to find its successors for
establishing out-links and a routing table, then inform at
most d existing predecessors to update their links and
routing tables, and finally, take over its responsible
resources from an existing node. The details have been
proposed when proving Theorem 3. Given an integer k such
that k(dP +dP~1) <n < (k+1)(d” + dP1), we know that
the (i + 1)th predecessor and successor of node z exist for
0 < i <k — 1. Furthermore, its (k4 1)th successor does not
exist except that node z is mapped to the last arc of the
current cycle, and its (k+ 1)th predecessor exists except
that node x is mapped to the first arc selected from a cycle.
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Fig. 3. The topology of MOORE before and after adding a peer 121.

The other jth successor of node x does not exist for
k+1< j<d, and it needs to find a substitute from nodes
belonging to 1-factor F*, even from nodes belonging to
previous 1-factors, in order to keep a constant out-degree.
The other jth predecessors of node z also do not exist for
k+ 1 < j < d. Therefore, node z should find a substitute for
its jth predecessor for k + 1 < j < d from nodes belonging
to 1-factor F*. Node z, however, does not select substitutes
for predecessors from nodes belonging to previous 1-factors
in order to not increase the in-degree of nodes belonging to
previous 1-factors.

The resulting topology of MOORE after adding a new
node can be represented pictorially and an example is
illustrated in Fig. 3. If a node 121 joins MOORE, whose
topology is shown in Fig. 3a, the resulting topology of
MOORE is plotted by Fig. 3b.

4.6 Node Departing

The correctness and effectiveness of MOORE rely on the
fact that predecessors and successors of each node are up to
date. An incorrect neighbor might increase the delay of
routing a message, and even fail to deliver messages
correctly. Therefore, a node departing voluntarily should
repair the topology through the following procedures
before it leaves:

Let © =xi22...2p11 denote a node departing from
MOORE, and k denote the identifier of the current 1-factor.
In practice, there exist at least two cases of node departing
operations. The first case is F'(z) = k, which means that node
x belongs to the current 1-factor F*. F(z) < kis another case,
which means that node = belongs to the previous 1-factors.
The node departing operation harms the topology structure
and results in unsuccessful message routing. Algorithm 4
can compensate for the negative impact of the node leaving
operation. For example, If node 121 departs from MOORE,
whose topology is shown in Fig. 3b, the resulting topology of
MOORE is plotted by Fig. 3a.

Algorithm 4. Node departs (z, k)

if F(z)k then

2:  y «— findSubstitute(x)

3: update(y, k, F(z))

4: Node z transfers its resources and routing table to
node y, then departs from MOORE. Node y updates
its identifier, routing table, and links with that of node
z, and informs in-neighbors about its change of
address.

5: else

—
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6: Node z transfers its resources to node corresponding
to arc (y1y2 - - - Ym—1,05(Y1Y2 - - - Ym—1)) before
departing.

7:  update(z, k, F(x))

update(z, k, ()

1: fori=0to d do

2: if i < k then

3: w— (07 (z122...2D), 2122 . .. 2D)

4:  Informs node w to update the link to node x with

a new ﬂ link to node <Ufi(2223 e Z])+1)7 2023 ... Z])+1>.

5: else

6:  we (o7 (o7 (22 2p41)), 07 (22 ... 2p41))

7:  Informs node w to update the link to node x with

a new [ link to node <U;'7(ZQZ;; e ZD41), 2973 -« - ZD41),
where j is a random integer satisfied 0 < j < k such
that the new destination node exists.

In the first case, node z needs to inform its in-neighbors to
update the link incident on node x and transfers its resources
to another responsible node defined by the resource
distribution policy. In the second case, node = needs to find
anode y toreplace it and inform the in-neighbors of node y to
update related links and routing entries. Then, node y takes
over the identifier, resources, links, and routing table of node
x; and its original identifier becomes free. Finally, node y
updates its links according to the new routing table and
informs its in-neighbor about the change of its address. Node
y should be selected from nodes belonging to 1-factor F¥,
then 1-factor F*~!, and so on. This policy can preserve the
desired topology of a backbone subnetwork consisting of
nodes belonging to previous 1-factors.

5 TopoLOGY ADJUSTMENTS
5.1 Problem Statements

In general, the topology of MOORE is a quasi-Kautz
digraph IK(d,n), where the number of nodes n is covered
by a unique range [d” 4+ dP~!,d”™! 4 dP). In practice, the
topology becomes a Kautz digraph K (d, D), if n reaches the
upper boundary of this range. In this situation, if other
nodes apply to join MOORE, it needs to expand the
topology to a new quasi-Kautz digraph whose order equals
to the lower boundary of a new range [d”*! + dP, dP+? +
dP+1). If the number of nodes reaches d”+% + dP*1, a quasi-
Kautz digraph becomes a Kautz digraph and is ready to be
expanded further.

It is easy to derive a quasi-Kautz digraph IK(d,d”™ +
dP) from its predecessive Kautz digraph K(d, D) by using
Definition 1 with the 1-factor F° of K(d, D) as the arc set F'.
To expand the topology of MOORE similarly, we propose
two strategies to update logical identifier of each node and
associated algorithms to update out-neighbors and routing
tables of each node.

For the first strategy, eachnode « = x5 . .. xp updates its
logical identifier with (z, o} (z)) such that the new identifier
and the original identifier have a common prefix with length
D. This strategy is also called the prefix-preserved expansion
strategy. For the second strategy, each node z updates its
logical identifier with (o7*(z), z) such that the new identifier
and the original identifier have a common suffix with length
D. This strategy is also called the suffix-preserved expansion
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strategy. For the two strategies, existing nodes form the same
topology structure. As analyzed later, the two strategies,
however, produce different network overhead during the
topology expansion process.

The number of nodes in MOORE sometimes decreases to
the lower boundary of the range [d” + dP~!,dP! + dP) in
practice. In this situation, if some existing nodes want to
leave, MOORE needs to shrink its topology to its pre-
decessive Kautz digraph. If the number of nodes in MOORE
decreases to d”~! + dP~2, the quasi-Kautz digraph might be
shrunken further. The shrink operation can be performed
by updating the logical identifier, out-neighbors, and
routing table of each existing node. There are two possible
strategies to update logical identifiers of existing nodes. For
the prefix-preserved shrink strategy, each existing node = =
122 ...xp_1xp updates its original logical identifier with
Z122 ... xp_1 such that the new and original identifiers have
a common prefix with length D — 1. For the suffix-preserved
shrink strategy, each node z updates its logical identifier
with 23 ... Tp.

5.2 Prefix-Preserved Adjustment Strategy

The prefix-preserved expansion strategy can be implemen-
ted by Algorithm 5. The parameter s in this algorithm
denotes the identifier of the 1-factor that was selected to
induce the quasi-Kautz digraph with the same order as
K(d, D), where the default value of s is 0. For each node
T =z x2...Tp, it constructs a temporary routing table by
the following operations:

1. Updates its logical identifier with (z, o (x)).
Updates the logical identifier of its (s+1)™ ou
neighbor node o*(z) with (o} (), o5(z)).

3. Updates the logical 1dent1f1er of its (i +1)th out-
neighbor node o' (z) with (o7°(d% (0 ()), 0% (o5 (2))),
where 0 < ¢ < d and i#s.

4. Discovers the address of a node which updates its
logical identifier o7 *(o% (o5 (z)) with (o7%(0%(0}(x)),
o\ (o5(z))), where 0 < i < d and i#s.

Algorithm 5. Prefix-preserved Expansion (K (d, D), s)
Require: K(d, D) is a d-regular Kautz digraph withdiameter
D.
for each node zx labeled zx ..
x.label — (z,0%(z))
Node z constructs a temporary routing table.
fori=0tod—1do
if s =i then
z=212...2p1 — (05 (x),05(x))
address — x.routing[s].address
Node z adds (z, address, o) as the (i + 1)™ entry of
the temporary routing table.
9: else
10: Z=2122...2D41 — <01’ (ot (03 (), o (a5 (2)))
11: address «— Route(oy* (0 (05 (z)), , node))
12: Node z adds (z, address, 3) as the (i + 1)“1 entry of
the temporary routing table.
13: for each node z in K(d, D) do
14:  Updates its routing table with the temporary routing
table, then updates links according to new routing
table.

_zp in K(d, D) do
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Fig. 4. The topology of MOORE before and after expanding the topology
if using the prefix-preserved expansion strategy.
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For 0 < i < dand i#s, the fresh and original (i + 1)th out-
neighbors of node x are not the same node, and hence, node
2 must discover the physical address of its new out-neighbor
by initiating a query. The new (s+ 1)th out-neighbor of
node z is just the original (s + 1)th out-neighbor. Therefore,
node z is not necessary to send a query for the physical
address of its new (s + 1)th out-neighbor. After all existing
nodes finish these operations, each of them updates its
routing table with the temporary routing table, and finally,
updates links according to its new routing table. As an
example, Fig. 4a becomes Fig. 4b through this algorithm.
Theorem 4 proves the network overhead of this type of
topology expansion strategy.

Theorem 4. In the case of the prefix-preserved expansion
strategy, the expansion of the entire overlay network causes
n x (d — 1) log, n additional network overhead.

Proof. As mentioned above, each node must explore
physical addresses of d — 1 neighbors by initiating d — 1
query messages. It is clear that each of these messages
will be routed to a destination within at most log;n
hops. Therefore, the total number of messages caused
by expanding the overall topology is at most n x
(d — 1)log;n. Thus, Theorem 4 holds. 0

In contrast to expanding the overlay, MOORE shrinks its
topology when the number of existing nodes decreases to
the order of the predecessive Kautz digraph. For the prefix-
preserved shrink strategy, each node = =xixy...2p_12p
constructs a temporary routing table by the following
operations:

1. Updates its logical identifier with x> ...zp_;.
2. Updates the logical identifier y1y>...yp_1yp of its
(i + 1)th out-neighbor node with y;ys ... yp_1 where

0<i<d.

3. Discovers the physical address of a node which
updates its logical identifier yiys...yp—1yp with
ny2-.-Yo-1-

For 0 < > d, the new and original (¢ + 1)th neighbors of
node z are not necessarily the same node. Actually, only
one neighbor of node x does not change after performing
the topology shrink operation. The node = therefore must
discover the physical address of each new neighbor by
routing a query to the node. After all existing nodes finish
those operations, each of them updates its routing table
with the temporary routing table, and finally, updates links
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according to its new routing table. As an example, Fig. 4b
becomes Fig. 4a after performing this type of topology
shrink operation. Theorem 5 proves the network overhead
of this operation.

Theorem 5. In the case of the prefix-preserved shrink strategy,
the shrink of the entire overlay network results in n x (d —
1) log, n additional network overhead.

Proof. As discussed above, each node must explore
physical addresses of d — 1 new neighbors by initiating
d—1 query messages. It is clear that each of these
messages will be routed to a destination within at most
loggn hops. Therefore, the total number of messages
caused by expanding the overall topology is at most
n x (d — 1) log; n. Thus, Theorem 5 holds. O

5.3 Suffix-Preserved Adjustment Strategy

As mentioned in Theorems 4 and 5, the topology expansion
and shrink operations based on the prefix-preserved
strategy suffer from large network overhead. To address
this problem, we adopt the suffix-preserved strategy. In this
situation, the expansion of the entire topology is imple-
mented by the following local operations at each existing
node x = x5 ...xp in MOORE.

1. Updates its logical identifier with (o7 °(z), z).
Updates the logical identifier of its (s+ 1)th out-
neighbor node o7 (x) with (z, o} (x)).

3. Updates the identifier of its (: + 1)th out-neighbor
node o (z) with (o7*(c}(x)), 0t (z)), where 0 <i <
and i#s.

After finishing this kind of topology expansion, re-
sources at each node must be transferred to another node if
we keep on distributing resources based on the longest
prefix matching policy. To avoid costly movements of
resources among nodes during the process of expanding the
topology, MOORE distributes resources according to the
longest suffix matching policy instead of the longest prefix
matching policy.

A resource labeled as x;...xp...71977 is stored and
maintained by its preferred host labeled as zp . .. zox; if this
node exists in MOORE. Otherwise, the resource will be
taken over by its second host labeled as (o7 °(zp_1 ... z2z1),
ZTp-1...%2x1). The topology construction and maintenance
strategies ensure that at least the second host of each
resource appears in MOORE. In this case, Theorem 6 shows
that each resource stays at the original node after expanding
the overall topology.

Theorem 6. In the case of the suffix-preserved expansion
strateqy, the expansion of the entire network does not cause
additional network overhead, except dP + gP-1 messages to
start the process.

Proof. In the case of MOORE based on a Kautz digraph
K(d, D), each resource x;...xp...zox; is hosted by its
preferred node x =zp...x9z;. After expanding the
overall topology of MOORE, node z updates its identifier
with <UIS(I),$> =ITp+1Tp...T2T]. Node z is still the
preferred host of resources whose identifiers have a
suffix xp,1zp...xr371, and becomes the second host of
other resources stored in it before expanding the
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Fig. 5. The topology of MOORE before and after expanding the topology
if using the suffix-preserved expansion strategy.
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topology. Therefore, each resource stays at the original
node after expanding the topology and does not
introduce any overhead.

On the other hand, each node =z = zp...zyx; main-
tains links to its out-neighbors zp_i...x1a, where
a€{0,1,2,...,d} — {z1}. After expanding the topology,
the node obtains a new logical identifier (o7*(z),z) =
Tp41Zp ... rox1 and maintains links to nodes z;, . . . 29115,
where g€ {0,1,2,...,d} —{z1} and the value of z/,
obeys to the topology construction rule of the quasi-
Kautz digraph mentioned above. For Vg3 € {0,1,2,...,
d} — {z:1}, the identifier of an out-neighbor ', ...zz1
of node xpi1zp...xox1 is p_y ... z271 0 before expand-
ing the topology. It is clear that all out-neighbors of node
Zp4i...22x; are the same out-neighbors of node
Zp...xex; although their logical identifiers are updated.

In other words, the links maintained by each node do
not change, and no network overhead is further
incurred. For example, node A is labeled 21 and has
out-neighbor B with identifier 12 and C with identifier
10, before expanding the entire topology, as shown in
Fig. 5a. After expanding the entire topology, the
identifiers of node A, B, and C are updated as 021, 012,
and 210, respectively. As shown in Fig. 5b, the out-
neighbors of node A are still the nodes B and C. Thus,
Theorem 6 holds. O

In the case of the suffix-preserved strategy, the shrink of
the entire topology is implemented by the following local
operations at each existing node = =z ... zp:

1. Updates its logical identifier with zsxz3...zp.

2. Updates the logical identifier y;y»...yp of its
(¢ 4+ 1)th out-neighbor node with yys...yp where
0<i<d.

3. Discovers the physical address of a node which

updates its logical identifier y1y»...yp with
Y2Y3 .- -YD-

After all existing nodes finish those operations, each of
them updates its routing table with the temporary routing
table, and finally, updates links according to its new routing
table. The longest suffix matching policy of resource
distribution ensures that each resource stays at the original
node after shrinking the overall topology.

Theorem 7. In the case of the suffix-preserved shrink strategy,
the shrink of the entire overlay network does not cause
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additional network overhead, except dP + aP-!
start the process.

messages to

Proof. Each existing node « = zp ... o2, maintains links to
its out-neighbors z/,_; ...z1, where o € {0,1,2,...,d} —
{z1} and the value of z, obeys Definition 1. After
shrinking the topology, the node obtains a new logical
identifier zp_;1...x977 and maintains links to nodes
Tp-2...x9w13, where [€{0,1,2,...,d} —{z1}. For
Va €{0,1,2,...,d} — {1}, the identifier of an out-neigh-
bor zl,_; ...zsziaof node x = zp ... zox is updated with
Zp—g ... a1 after shrinking the topology. It is clear that
all out-neighbors of node xzp_; ...x22; are the same out-
neighbors of node zp...zryx; although their logical
identifiers are updated.

In other words, the links maintained by each node do
not change, and no network overhead is further incurred.
For example, node A is labeled 021 and has out-neighbor
B with identifier 012 and C with identifier 210 before
shrinking the entire topology, as shown in Fig. 5b. After
shrinking the entire topology, the identifiers of node A, B,
and C are updated as 21, 12, and 10, respectively. As
shown in Fig. 5a, the out-neighbors of node A are still the
nodes B and C. Thus, Theorem 7 holds. O

6 ANALYSIS AND EVALUATION

We use PeerSim to implement MOORE. PeerSim is a P2P
simulation framework aimed at developing and testing any
kind of P2P protocols in a dynamic environment. Our
simulations are cycle-based, and the MOORE topology with
any order is evolved from the smallest Kautz digraph
K(d,1) through those dynamic operations of nodes men-
tioned above. In this section, we will evaluate the following
characteristics of MOORE: degree distribution, diameter,
average routing path length, and congestion. The value of
each characteristic under different network configurations
is the average value of a sample achieved from at least 100
rounds of simulations.

6.1 Degree Distribution of MOORE

Property 1. MOORE is d-regular and has a constant degree if its
order equals to k multiple of ny for 1 <k < d, where ng
denotes the order of its predecessor Kautz digraph. Otherwise,
it is d-out-regular and has a constant degree. Its index of
expandability is not larger than 6~ (IK(d,n)).

Proof. The proof has been proposed in Section 3. ]

Theorem 3 proposes the bound on its minimum in-
degree. In this section, we focus on the in-degree distribu-
tion of MOORE with orders 7,680 and 18,000 under node
identifier choice policies factor Random and cycleSequence.

Fig. 6 shows that the in-degree of most nodes is adjacent
to d and that of the remaining nodes is close to the trail of its
in-degree distribution figure. The in-degree of more nodes
is close to d and far away from the trail of its in-degree
distribution if MOORE adopts the cycleSequence policy
rather than factorRandom policy. Thus, cycleSequence is
more suitable to MOORE for improving its connectivity and
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Fig. 6. The in-degree distribution of IK(4,7,680) and IK(4,18,000).
(a) The in degree of peers in a network with order 7,680. (b) The in
degree of peers in a network with order 18,000.

robustness, especially if the order is close to that of its
predecessor Kautz digraph.

We know that the order of IK(4,7,680) and IK(4,
18,000) is covered by ranges (ng,2n] and [3ng,4ny], where
no denotes the order of K(4,6) and 4ny equals that of
K(4,7). Thus, the least in-degrees of IK(4,7,680) and
IK(4,18,000) are 1 and 3 according to Theorem 3, as shown
in Fig. 6. Furthermore, the in-degree of most nodes is
around d and that of few nodes is around the tail of its in-
degree distribution figure, if the order of MOORE is
adjacent to any multiple of ny.

6.2 Diameter and Path Length Distribution of
MOORE

In an overlay network, the length of a routing path denotes
the number of hops from the source to the destination along
the routing path.

Property 2. Given a MOORE with arbitrary order n and out-
degree d, its diameter is D) = [log, iy + 1].

Proof. First, let’s calculate D such that d”2(d+1) <n <
dP~1(d + 1). Thus, the length of the node identifier must
be D, and we can always find a pair of vertices at
distance D. Thus, D; = [log, 75 + 1]. O

According to the well-known results of the order/diameter
problem, we know that D is the smallest diameter for any
number of vertices n where d?~! + dP2 <n < dP +dP-1. A
lookup for a resource or node initiated by any node can
reach its destination in O(log;n) hops. The same result
holds for publishing resources.

We evaluate the diameter and average path length of
MOORE in different scales (from 256 to 22,528 peers) and
compare it with other constant degree digraphs with the
same degree 4, such as 2D CAN, 3D CAN, 4D butterfly, de
Bruijn, and Kautz digraph. In each experiment, we sample
at least ' = [n/2] nodes randomly, and let each sampled
node launch a routing to other n — 1 nodes, then analyze the
average path length over n'(n — 1) routings.

Asshown in Figs.7 and 8, the curves of butterfly, de Bruijn,
and Kautz digraphs are dashed lines or discrete points since
their orders are discrete sequences, while that of MOORE and
CAN are solid lines because of their arbitrary orders. In Fig. 7,
the diameter of MOORE is less than 1.2log,n and that of
butterfly and CAN at the whole order axis. In Fig. 8, the
average path length of MOORE is also less than 1.2 log, n and
that of butterfly and CAN at the whole order axis. In the two
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Fig. 9. The path length distribution of 7K (4,12,800) and IK(4,10,240).

figures, we do not compare MOORE with k-dimensional
CCC directly since the degree of CCC is 3 irrespective of the
value of k. In reality, the diameter and average path length of
MOORE with out-degree 3 are also less than that of CCC,
respectively. Furthermore, the average path length of
MOORE under different scales is trivially different if the
scales are covered by an identical range, such as [320, 1,280),
[1,280, 5,120), [5,120, 20,480) in Fig. 8.

Property 3. With the shortest path routing scheme, MOORE can
achieve low congestion.

Proof. Fig. 9 shows the distribution of the routing path
length of IK(4, 12,800) and IK(4, 10,240). We can
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observe that more than 90 percent of routing path
lengths are close to the diameter of MOORE. We also
find that there exists a similar result under any scale of
MOORE. This is closer to the result of the long path
routing scheme used by [10], [19]. Therefore, it is
reasonable that MOORE can also achieve the similar
low congestion characteristic discussed by Xu et al. [12]
and Li et al. [19] although our algorithm adopts a
shortest path routing scheme. 0

Property 4. Messages caused by node joining and departing
operations are at most 2.5dlog,n and (2.5d + 1) log; n. Only
d and 2d nodes need to update routing tables when dealing
with a new node and a departed node, respectively.

Proof. Recall that Algorithm 3 must find d out-neighbors in
order to construct its routing table, and inform d in-
neighbors to update their routing table. Algorithm 4 may
need to find a substitute node first. Therefore, the former
part of Property 4 holds because the routing length is less
than 1.2log,n, and the latter part also holds according to
the two algorithms. 0
Ideally, there should also be a discussion on one of the

biggest problems of P2P systems, i.e., performance under

churn. This is partially addressed through the discussion in

Section 5; though which level of churn would still be

sustainable for MOORE is not being discussed.

7 CONCLUSION

MOORE is the first efficient structured P2P network based
on the quasi-Kautz digraph and is O(log;n) in diameter
with a constant node out-degree. It constructs an overlay
digraph for all network sizes and any constant degree, and
achieves optimal diameter, high performance, good con-
nectivity, and low congestion. In the future, we will
improve MOORE to support more types of queries, such
as range and multiattribute queries, and consider the
locality of the physical network to reduce latency.
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