*Manuscript

Click here to view linked References

O©CoO~NOOOITA~AWNPE

Available online at www.sciencedirect.com

Computer
ScienceDirect Communi-

o P Sl .
ELSEVIER Computer Communications 00 (2015) 1-15 %

Control Plane of Software Defined Networks: A Survey

Junjie Xie?, Deke Guo®**, Zhiyao Hu?, Ting Qu*, Pin LvP

“Science and Technology on Information Systems Engineering Laboratory
National University of Defense Technology, Changsha Hunan 410073, China
bSchool of Computer, Electronics and Information, Guangxi University
Nanning, Guangxi 530003, China

Abstract

Software Defined Networking (SDN) has been proposed to solve ossifications of Internet. The main motivation of SDN is to
separate the control plane and data plane, enabling a centralized control. In this way, the network infrastructure becomes an open
and standardized resource. Hence, it can be managed and utilized in a more efficient way. The controller is the key infrastructure
in the SDN and provides programming interfaces to the entire network. Then, various applications can be written to perform
management tasks and offer new functionalities on the controller. In this survey, we present many essential research issues about
the controller, and especially focus on the control architecture, performance, scalability, placement, interface and security. The aim
of this paper is to provide an up-to-date view to the SDN controller.

Keywords:
Software-defined Networks, Controller, Control plane, Survey

1. Introduction

The Internet has become extremely difficult to develop both in terms of its physical infrastructure as well as its
protocols and performance. Moreover, as current and emerging Internet applications and services become increasingly
more complex and demanding, it is imperative that the Internet be able to evolve to meet these new challenges.
Additionally, computer networks are typically built from a large number of network devices such as routers, switches
and numerous types of middleboxes, and many complex protocols implemented on them. Network operators have
to manually transform high-level policies into low-level configuration commands with access to very limited tools
while adapting to changing network conditions. Moreover, network devices are usually vertically integrated black
boxes [1]. As a result, network management and performance tuning are quite challenging and thus error-prone. To
solve these Internet ossifications, Software Defined Networking (SDN) has been proposed and achieves substantial
attentions from both academia and industry.

The main advantage of SDN is the separation of control plane and data plane, which enables the centralized
control. SDN aims to dramatically simplify the network management and enable the innovations through the pro-
grammability of networks. In SDN, the network management is logically centralized in the control plane consisting
of one or multiple controllers, which host many control applications. Network devices in the data plane just perform
packet forwarding and other advanced packet processing functions. Those network devices can be programmed by

*guodeke @ gmail.com

http://ees.elsevier.com/comcom/viewRCResults.aspx?pdf=1&docID=14070&rev=1&fileID=418831&msid={584091DA-B6EA-4478-8F7E-F43957573A43}

O©CoO~NOOOITA~AWNPE

/ Computer Communications 00 (2015) 1-15 2

applications via some open northbound and southbound interfaces, e.g., OpenFlow [2]. Actually, the SDN originates
from the programmable network and the decoupled control logic [1].

The Open Signaling (OPENSIG) working group [3] has dedicated to make ATM, Internet and mobile networks
more open, extensible and programmable since 1995. They note that the separation of control software from the
communication hardware is necessary, but challenging to be realized. The basic idea behind such proposals is to
access those network hardware via open and programmable interfaces. In the mid 1990s, the Active Networks [4]
initiatively proposed that the network infrastructure should be programmable for customizing network services. One
approach is to develop the user-programmable switches, each of which possesses the inband data transfer and out-of-
band management channels. Another approach is called capsules, which refers to program fragments. They can be
carried in users’ messages and then be interpreted and executed by network devices. However, the active network is
not widely deployed in practice, due to security, performance, and other practical issues [5]. In 2004, the 4D project
[6] advocated a clean-slate redesign of the control and management architecture, which emphasizes the separation
between the routing decision and the protocols governing the interaction between network elements. The 4D project
is the first one to provide network control mechanism with a global view. It is generally believed that the 4D project
is the beginning of the SDN.

The SDN includes the data plane and the control plane, where the controller is the essential component to improve
the control plane. Because the controller provides the programmatic interfaces to the entire network, many applica-
tions can perform management tasks and offer new functionalities on the controller. The switches in the data plane
only forward received flows, according to given rules derived from the controller. The controller is responsible to
maintain the global viewpoint of the whole network and imposes control constraints on each flow by running a set
of user-defined control applications. If the controller fails or becomes the performance bottleneck, the network will
lose the advantages of SDN. Currently, many efforts have been done on the architecture of the SDN controller, such
as NOX [7], Maestro [8], Beacon [9], etc. However, many challenging issues about the SDN controller have not been
well addressed.

In this paper, we survey the up-to-date research issues about the SDN controller, so as to plot the mainstream and
emerging area of the SDN controller. Currently, we consider that research issues involved in the controller mainly fall
into the following aspects.

e To efficiently manage and operate the network, user-defined applications are designed and deployed at the
controller.

e The architecture of controller heavily affects the performance of SDN. Many different architectures have been
proposed recently, such as the multi-core controller, the logically centralized controller and the completely
distributed controller.

e The single controller exhibits the limitations of performance and scalability. Meanwhile, the placement problem
of distributed controllers also affects the network performance.

e The mainstream interfaces associated with the controller are essential components to connect the users and
network devices so as to realize the SDN.

o The controller is the core of SDN. If it is attacked and become undependable, the entire network would be
destroyed.

Section 2 introduces the framework of software-defined networks. Section 3 surveys the category of network
architecture. Section 4 covers the performance and scalability issues of SDN controller. Section 5 surveys mainstream
interfaces of the SDN controller. Section 6 focuses on the security issue of the SDN controller. Finally, Section 7
discusses some potential research directions of the SDN controller.

2. Framework of software-defined networks

As shown in Figure 1, SDN includes three layers, i.e., the infrastructure layer, the control layer and the application
layer. We can see that the controller layer manages the underlying physical network through the southbound API. The
most notable is that OpenFlow [2] supported by the Open Network Foundation (ONF) is the mainstream southbound

2

O©CoO~NOOOITA~AWNPE

/ Computer Communications 00 (2015) 1-15 3

\
N [
Appllcatlon LT ‘ Business Application HJ

N N '

Northbound API

Control Layer I

Southbound API (OpenFlow)

Infrastructure
Layer

Figure 1. Three-layer framework of software defined networks.

API. OpenFlow shows the core idea of SDN that the control plane separates from the data plane. However, OpenFlow
is not purely equal to SDN, and there are also some other southbound API, such as I2RS [10] and OpFlex [11].
Meanwhile, the controller layer naturally supports the application layer, where many applications are deployed at
this layer, via the northbound API. That is, the controller layer acts as the core component of SDN. Additionally,
all controllers at the control layer require an east-west interface as a bridge to implement the synchronization and
negotiation functions.

The infrastructure layer consists of SDN switches shown in Figure 1. When a new flow reaches a SDN switch,
for that flow, the SDN switch will send a route request to the controller. The controller calculates a routing path
for that flow on the basis of the global view, and then delivers the forwarding rule of that routing path to all involved
switches through a secure channel. When those SDN switches receive the forwarding rules, they will update their flow
tables. They then forward the received flow according to the corresponding flow rules derived from the controller,
and this is a reactive manner. Meanwhile, the SDN can also work with proactive flows. For example, DIFANE [12]
adds proactivity to the control policies and distributes rules to authority switches. These authority switches store the
mandatory rules and can directly forward packets without the controller. DIFANE can be easily implemented with
today’s flow-based switches. Additionally, if we want to schedule the flow for different purposes, we can develop
relevant applications supported by the controller through the northbound API. There are various applications running
in the controller to manage and operate the whole network.

Due to the inherent advantages, the SDN has been introduced to many networks, such as the Internet, datacenter
networks, and enterprise networks. Although it traditionally motivates to address the complex routing problem in the
flow control in networks, many other applications can be easily implemented in SDN, such as firewalls [13], load
balance [14], access control [15], NAT, etc.

Moreover, Google had several years’ experience in operating Wide Area Network (WAN) across its data centers.
The utilization of such WAN is only 30 — 40% on average. To address the issue, the project B4 [16] enhances the
WAN utilization to near 100% by using the SDN principle and the OpenFlow protocol. More precisely, B4 introduced
the SDN-based traffic engineering into Google’s WAN across data centers. Consequently, it can dynamically allocate
the inter-datacenter bandwidth among traffics and fully exploit the network capacity.

Additionally, many efforts have been done on the software-defined wireless network. Some applications, such as
QOdin [17], have been realized at the SDN controller. The traditionally enterprise wireless local area network (WLAN)
can be strengthened as a software-defined WLAN after the introduction of Odin. Consequently, it can provide a wide
range of functionalities and services. Actually, there are increasing number of new applications realized and deployed
in the software-defined WLAN.

In summary, SDN controller achieves and maintains a global view of the whole network, through which users
can develop more applications to improve the network performance and resources utilization. Because the controller
undertakes massive compute and storage tasks, it may become the bottleneck of the entire network. Meanwhile, it
is well known that the control architecture will affect the performance and scalability of controller. To improve the
control architecture, many efforts have been done, which will be introduced in the next section.

3

O©CoO~NOOOITA~AWNPE

/ Computer Communications 00 (2015) 1-15 4

3. Network architecture category

Start from the 4D project [6], the centralized control architecture is proposed for software-defined networks to
enable continuous innovations in the network control and management. At the beginning, Ethane [18] adopts a single
controller to manage the entire enterprise network. Ethane reports that a single controller could manage over 10,000
machines. It, however, may be restricted within some Internet topologies. Due to the capacity limitation of a single
controller and the large amount of flows, one controller is insufficient to control the entire network. To improve
the scalability and performance, some novel control architectures are proposed, such as Maestro [8], Onix [19] and
Kandoo [20]. Such architectures fall into two categories, the single-control plane and the multiple-control plane.
For the first category, some researchers believe that one controller is enough and the problem is how to enhance its
performance. This kind of control plane is referred to as the single-control plane. Maestro [8], for example, is a
preventative single-control plane. For the second category, multiple controllers are used to cooperatively manage the
network, such as HyperFlow [21] and DISCO [22].

Currently, the multiple-control plane has two different implementation methods. First, these controllers synchro-
nize their local views about the network with each other. Consequently, all controllers maintain a global and consistent
network view for making an optimal decision. Such control planes are called the logically centralized but physically
distributed control planes, such as ONOS [23]. On the contrary, it is not necessary for each controller to pursue the
global network view. That is, a local view of the whole network is usually sufficient to achieve given functions of
software-defined networks. Each controller makes decisions only using its local view. The kind of control plane is
referred to as the completely distributed control plane. Moreover, the hierarchical control plane is a special case of
the completely distributed control plane, such as Kandoo [20]. In the remainder of this section, we will discuss such
control planes in detail. Before the discussion, we firstly give a brief introduction to mainstream controllers as Table
1.

Table 1. A brief comparison of mainstream controllers.

Controller Category Southbound Interface | Platform Development Team
Beacon single controller OpenFlow Win/Mac/Linux | Stanford

McNettle single controller OpenFlow Linux Yale University
Onix logically centralized | OpenFlow Linux Nicira

DISCO logically centralized | OpenFlow Win/Mac/Linux | Thales

ONOS logically centralized | OpenFlow/Others Win/Mac/Linux | ON.Lab
OpenDaylight | logically centralized | OpenFlow/Others Win/Mac/Linux | Linux Foundation
OpenContrail | logically centralized | OpenFlow/Others Linux Juniper

3.1. The multi-core controller

It is true that large amount of flows are injected into various networks. If the principle of SDN is introduced into
such networks, one basic issue is how the single controller can generate the optimal routing solutions for such flows
in time. If the controller does not have sufficient capacity to handle such flow requests, it will become a bottleneck
of the entire network. For this reason, some proposals are presented to enhance the capacity of the single controller,
such as Beacon [9] and McNettle [24].

Beacon [9] provides a framework for controlling network devices using the OpenFlow protocol, and designes a
set of built-in applications for enabling various control functions. Beacon achieves surprisingly high performance via
utilizing multi-core. Moreover, the performance is able to scale linearly with the number of processing cores. For
example, it can handle 12.8 million flow requests per second with 12 cores.

The simplicity of a logical centralized controller, however, comes at the cost of limited scalability in the control
plane. To address this problem, McNettle [24] is designed as an extensible control system. It can easily extend the
controller to integrate a multi-core processor by writing handlers and background programs in a high-level program-
ming language. Using a single controller with 46 cores, McNettle [24] can serve up to 5000 switches while achieving
the throughput of over 14 million flows per second.

O©CoO~NOOOITA~AWNPE

/ Computer Communications 00 (2015) 1-15 5

Global Network View

Apps Appn e Appy App, . Appy Appn
Ctrly Ctrl; Cirlm

Swy Swy Swy Sws Swy Sw;

Figure 2. An example of the logically centralized but physically distributed control architecture.

Maestro [8] provides a simple single-thread programming model for application programmers. Moreover, it can
support and manage the parallelism. It utilizes some optimization techniques of parallelism to expand the throughput
of a controller. Maestro can be successful to deal with 600 thousand flow requests per second using an eight-core
controller.

Although the aforementioned methods can improve the capacity of a single controller, one controller is indeed
insufficient in practical networks, such as the Internet and large-scale data centers. For software-defined networks, the
controller needs to calculate the routing path of each new flow. Moreover, the waiting time from sending a flow request
to allocating its routing path by the controller should be not too long. In the case of the Internet, due to the broad
geographical distribution, a single controller is not suitable no matter where it is deployed. Here, remote transmission
of the flow request consumes additional time. In data centers, the limited capacity of one controller cannot adapt to the
increasing scale of inter-network. Therefore, the introduction of multiple controllers is an inevitable and reasonable
solution.

3.2. The logically centralized controller

As aforementioned, the SDN starts with an omniscient controller, such as NOX [7], to manage the entire network.
Although multi-core controller exhibits superior performance than traditional single controller, it is confronted with
many obstacles, such as the single point of failure and limited scalability. To address these issues, some proposals
about distributed controllers are proposed recently. Meanwhile, such controllers have to share information with each
other to build a consistent view of the entire network. This type of control plane is referred to as the logically
centralized and physically distributed control plane, such as ONOS [23] and OpenContrail [25]. Meanwhile, Onix
[19] and HyperFlow [21], are also two representatives of this kind of control plane.

An example of the logically centralized but physically distributed control plane is demonstrated in Figure 2. We
can see that these controllers can share a network-wide view from the Figure 2. To maintain a global view of the entire
network and to make a global optimal decision, these physically distributed controllers must synchronize its states
with others. When the local view of one controller changes, the controller will synchronize the updated information
to other controllers. In conclusion, for a logically centralized control plane, controllers need to exchange information
with each other. Some researchers focus on the dedicated methods of information exchange or state synchronization.
Consider that, the information exchange among controllers consumes many network resources. It is critical to reduce
the resultant network overload, while keeping the information consistent for the logically centralized control plane.

In traditional networks, every function, such as routing, must build their own state distribution, element discovery,
and failure discovery mechanism. Due to the lack of a common control plane, the development of flexible, reliable
and feature-rich network control planes has been significantly hindered. To solve the problem, Onix [19] is proposed
as a distributed system. Onix focuses on the problem of providing generic distributed state management APIs, which
enable the programmer to program their control logic. Based on the Onix, the control plane operates on a global view
of the network. Therefore, it is a logically centralized but physically distributed control plane. Additionally, it is also
the platform to manage large-scale data center networks, such as SEATTLE, VL2 and Portland.

HyperFlow [21] provides a logical centralized control, which consists of many distributed controllers and exhibits
good scalability. It has been implemented as an application for NOX [21]. In reality, network operators can deploy
any number of controllers on demand. Through propagating events that affect the controller’s state, HyperFlow can
enable all controllers to achieve the network-wide view by passively synchronizing network-wide views of OpenFlow

5

O©CoO~NOOOITA~AWNPE

/ Computer Communications 00 (2015) 1-15 6

controllers. Since each controller has the global view, HyperFlow minimizes the response time of the control plane
through local decision making at each individual controller.

DISCO [22] is another open and extensible SDN control plane, which copes with the distributed and heterogeneous
characteristics of wide area networks and modern overlay networks. Each DISCO controller manages its own network
domain and communicates with other controllers, through a lightweight control channel, to ensure those end-to-
end network services. Consequently, each DISCO controller can construct a logically centralized control plane.
The control plane also provides some classic functionalities, such as the traffic engineering and end-point migration.
Moreover, the control plane can be adapted to dynamic network topologies and is resilient to attacks and disruptions.

Since the centralized controller has not provided the required levels of availability and responsiveness, to solve
the problem, Canini et al. have studied a distributed and robust control plane, which enables concurrent and robust
policy implementation [26]. They introduced a formal model of SDN under fault-prone, concurrent control. Then
they formulated the problem of consistent composition of concurrent network policy updates and discussed different
protocols to solve the consistent policy composition problem.

Currently, there are two famous SDN control plane architectures, ONOS [27] and OpenDaylight [28], with mul-
tiple contributors. Open Network Operating System (ONOS) [23] provides a global network view to applications,
which is logically centralized even though it is physically distributed across multiple servers. It adopts a distributed
architecture for high availability and scale-out. Meanwhile, ONOS abstracts device characteristics so that the core
operating system does not have to be aware of the particular protocol being used to control a device. ONOS follows
in the footsteps of previous closed source distributed SDN controllers such as Onix [19], but ONOS has been released
as an open source project which the SDN community can examine, evaluate, extend and contribute to as desired [27].

OpenDaylight [28] allows for the network to be logically (and/or physically) split into different slices or tenants
with parts of the controller, modules, explicitly dedicated to one or a subset of these slices. This includes allowing
the controller to present different views of the controller depending on which slice the caller is from. Meanwhile,
Opendaylight builds consistent clustering that gives fine-grained redundancy and scale out while insuring network
consistency. However, there lack introductions of multiple controller instances in the official website [28]. It is
noteworthy that this controller is implemented strictly in software and is contained within its own Java Virtual Machine
(JVM). As such, it can be deployed on any hardware and operating system platform that supports Java.

Additionally, the OpenContrail Controller [25] is a logically centralized but physically distributed SDN con-
troller that is responsible for providing the management, control, and analytics functions of the virtualized network.
OpenContrail is a network virtualization platform for the cloud. The OpenContrail system consists of two main
components: the OpenContrail Controller and the OpenContrail vRouter. Meanwhile, OpenContrail is an extensible
system that can be used for multiple networking use cases but there are two primary drivers of the architecture: cloud
networking and network function virtualization (NFV) in Service Provider Network.

When the mapping between a switch and a controller is statically configured, there will exhibit uneven load
distribution among the controllers. To solve the problem, Dixit et al. [29] have proposed the ElastiCon, an elastic
distributed controller architecture, which can dynamically increase or decrease the number of controllers according
to the change of traffics. After deploying the ElastiCon, the load of controllers can be shifted across controllers.
The authors also introduce a novel switch migration protocol for enabling such load shifting, which conforms to the
OpenFlow standard.

3.3. The completely distributed controller

The introduction of SDN brings network designers freedom to refactor the network control plane. One core benefit
of SDN is the centralized control plane, where the controller is responsible to control flows and manage network
resources based on the global view of the entire network. However, to maintain a global view, controllers have to
synchronize states with each other. As the state of the whole network frequently changes, synchronization may lead
to the network overload. Moreover, Levin et al. have found that the inconsistent control state of the SDN significantly
degrades the performance of many applications [30]. Therefore, control plane state and logic must inevitably be
physically distributed. It is also understood that fully physically centralized control is inadequate, because it limits
the reliability and scalability of the control plane. Some proposals begin to construct the local network view. Levin et
al. also demonstrate that a controller can derive a non-optimal but good flow path, even though all controllers do not
exchange their local network views with each other [30]. Tam et al. [31] and Schmid et al. [32] have also done some
efforts in this field.

6

O©CoO~NOOOITA~AWNPE

/ Computer Communications 00 (2015) 1-15 7

Legend
——— Logical Control Channel
——— Datapath Connection

Figure 3. An example of the hierarchical control architecture.

To resolve the scalability problem of the centralized control plane in large-scale data centers, Tam et al. [31] have
proposed to utilize multiple independent controllers, each of which only controls a subnet of the entire network. Such
controllers can be treated as a single centralized controller. However, none of them achieves the complete information
of the data center network. Moreover, given a request, it can ensure that at least one controller can response to it at
any time. An inevitable drawback for this method is the case that each controller cannot find the optimal solution for
each flow.

For the distributed control plane, each controller manages its local domain. Schmid et al. [32] aims to achieve
the better routing decision at each controller via some improved local algorithms. Existing local algorithms can be
utilized to develop efficient coordination protocols, through which each controller only cooperates with its neighbor-
ing controllers. Although the existing distributed algorithms can be used, there are also demands for the dedicated
distributed algorithm for software-defined networks.

Kandoo [20] is another representative design of control plane, which has a hierarchical architecture. Kandoo
employs two layers of controllers, as shown in Figure 3. The observations indicate that the size of flow in the data
plane is different. The flow resulting in large volume of data transmission is called the elephant flow. Such flows
can heavily affect the load of underlying networks. However, the number of the elephant flow is few. When Kandoo
detects an elephant flow, the root controller will calculate an optimal path for the elephant flow, according to the
network-wide view. By contrast, there are large number of small flows. Those controllers at the bottom layer will deal
with those small flows by their local views. Consequently, these bottom controllers can handle most of frequent events
and effectively reduce the load of the root controller. Kandoo enables network operators to deploy local controllers on
demand and relieve the load of controller at the top layer, which is the only potential bottleneck in terms of scalability.

4. The performance and scalability of the controller

4.1. The performance of the controller

Given a controller, its performance means that how many flow requests the controller can handle per second and
how fast the controller can respond to each flow request. NOX, a popular network controller, can handle around 30k
flow requests per second while maintaining a sub-10ms flow install time [33]. To improve the performance of NOX,
Tootoonchian et al. have added some well-known optimization techniques to the NOX controller, such as I/O batching
and multi-threaded successor [34]. Such optimization strategies can significantly improve the performance of NOX.
For example, on an eight-core machine with 2GHz CPUs, NOX can handle 1.6 million requests per second with an
average response time of 2ms.

Although there are numerous efforts to enhance the performance of the controller, it still cannot meet the high
network demands, such as the eruptive flow requests and the low respond delay. Recent measurements of some
production environments suggest that the performance of a single controller is still far from sufficient. For example,
Kandula et al. find that a cluster of 1500 servers receives 100k flows per second on average [35]. Benson et al. [9]
report that a network with 100 switches can result in 10M flow arrivals per second in the worst case. In addition, the
10ms flow setup delay, resulting from a SDN controller, would add 10% delay to the large number of short-lived flows

7

O©CoO~NOOOITA~AWNPE

/ Computer Communications 00 (2015) 1-15 8

in such a network. Therefore, the single controller cannot satisfy the network demand in terms of both capacity and
response time.

The gap between limited performance of controller and heavy demand of network flows has motivated researchers
to address perceived architectural inefficiencies (e.g., [12] [36]). Owing to enabling flow-level control, OpenFlow
can simplify network and traffic management in enterprise and data center networks. However, OpenFlow’s current
design cannot meet the needs of high-performance networks. Consider that, Curtis et al. design DevoFlow [36], a
modification of the OpenFlow. DevoFlow breaks the coupling between control and global visibility and just maintains
a useful amount of visibility. Therefore, DevoFlow can handle most microflows in the data plane. Meanwhile,
DevoFlow uses 10-53 times fewer flow table entries at each switch on average, and results in 10—42 times fewer
control messages.

Meanwhile, Yu et al. demonstrate that a flow that goes through a long path needs less time than going through the
controller [12]. It means that the time from a SDN switch sends a flow request to the SDN switch gets the forwarding
rule is longer than the flow is directly forwarded in the data plane, although the route for the flow may not be the
optimal route. Therefore, to speed up the flow of processing and reduce the load of controllers, they propose the
DIFANE [12] that add the proactivity to SDN. DIFANE relegates the controller to the simpler task of partitioning
these rules over the switches. By storing necessary rules into intermediate switches in advance, DIFANE can keep
all traffic in the data plane. Moreover, DIFANE can handle wildcard rules efficiently and react quickly to network
dynamics such as policy changes, topology changes and host mobility.

4.2. The scalability of the controller

The scalability challenge of control plane in the SDN is inherently similar to those issues in traditional networks.
Yeganeh et al. think that SDN should either eliminate the design complexity of the control plane or make it more
scalable [37]. To address the scalability of a single controller, the major solution is the improvement of the controller’s
performance with increasing the number of CPU cores linearly. McNettle [24] is a highly scalable SDN control
framework, which executes on shared-memory multi-core servers and provides a simple programming model for
controller developers. OpenDaylight [28] improves the scalability of control plane by supporting the OSGi (Open
Service Gateway Initiative) framework. The OSGi framework is used for applications that run in the same address
space as the controller. The business logic and algorithms reside in the applications. Owing to more applications,
the OpenDaylight enhances the scalability of control plane. Although such proposals can improve the controller’
performance at some extent, they are still not able to accelerate the response to flow requests.

The aforementioned logically centralized control plane usually consists of lots of distributed controllers. This
not only improves the number of flow requests it can handle per second but also reduces the response time to each
flow request. There are many efforts to design the logically centralized but physically distributed controllers, such as
[19] [21] [29]. Achieving the distributed core, the network operator can add servers incrementally to ONOS, without
disruption, as needed for additional control plane capacity. The ONOS instances work together to create what appears
to the rest of the network and applications as a single platform [27]. Applications and network devices do not have
to know if they are working with a single instance or with multiple instances of ONOS. This feature makes ONOS
scalable that one can scale ONOS capacity seamlessly.

Meanwhile, distributed controllers need to maintain a global consistent network view to achieve the logically
centralized control plane. The controllers share information through the state synchronization mechanism. Therefore,
for improving the scalability, the essential work aims to reduce the overload of state synchronization and keep the
information consistent among controllers. Existing state synchronization schemes for multiple controllers are based on
periodic synchronization. Note that the state synchronization mechanism among controllers often causes undesirable
situations, such as the forwarding-loop problem. To address these issues, a Load Variance-based Synchronization
(LVS) mechanism is proposed in [38]. LVS-based schemes conduct effective state synchronization among controllers
only when the load of a specific server or domain exceeds a certain threshold. Therefore, the LVS can effectively
reduce the synchronization overhead among controllers and eliminate the forwarding-loop problem.

Although achieving the global network view incurs some challenging issues, they can be handled by related local
algorithms [32] in distributed control plane. Moreover, each controller only needs to communicate with their local
neighbors, within a given number of hops from it. Accordingly, we can reduce the load of controllers and realize
the load balance among them. Due to such efficient mechanisms proposed in [32], the scalability of the logically
centralized controller can be considerably improved.

8

O©CoO~NOOOITA~AWNPE

/ Computer Communications 00 (2015) 1-15 9
1 2 1
A A
B
E B E
D c b c
() (b
1
1
A A
E B E B
D c b C
2 2
(c) (d)

Figure 4. Options about controller placement in a five-node SDN.

4.3. The placement problem of controllers

The distributed control plane leads to an open problem, i.e., how many controllers are required. The number of
controllers and their locations have direct impact on the performance of a software-defined network. Heller et al.
[39] has formally characterize the placement problem of controllers in the wide-area networks. The delay between
controllers or controller-switch will lead to long response time, and then influence their ability to respond to network
events. The authors consider the optimal controller placement problem, which tries to minimize the propagation delay
between controllers or controller-switch in the WAN. Meanwhile, they report that the latency from every node to a
single controller can meet the response-time goals of existing technologies in many medium-size networks. However,
with the expansion of the network, only one controller is not enough to manage the whole network. Therefore,
multiple controllers are used cooperatively to control the whole network. This paper leaves many open problems to
be solved in the future.

Consider that commercial controllers are scalable on the basis of capacity, many proposed control planes do not
consider the scalability. Jimenez et al. [40] define the principles for designing a scalable control plane from the
aspect of the controller placement problem. They use an algorithm called k-Critica to find the minimum number of
controllers as well as their locations to build a robust control network topology, which disposes failures and balances
the loads among lots of designated controllers.

Additionally, the authors in [41] find that the number of controllers and their locations can affect the reliability of
SDNs. Figure 4 uses an example to demonstrate the effect of deploying one or two controllers in a software-defined
network consisting of 5 switches. Those solid lines represent real physical links and the dotted lines denote the shortest
paths between a pair of switches or from a switch to a controller. Every controller just controls several switches and
each switch is controlled by one controller.

It is clear that one controller will cause the single-point-of-failure and Figures 4(b), 4(c), 4(d) are more reliable than
Figure 4(a). As shown in Figure 4(b), if the physical link between switches A and E breaks, the communication path
between switch A and its controller and the links between two controllers will break down. However, if the same fault
happens in Figure 4(c), the communication path between two controllers will not be affected. Consequently, Figure
4(c) is more reliable than Figure 4(b). Figure 4(c) and Figure 4(b) demonstrate that the location of controllers will
affect the reliability of SDN. Moreover, we find that Figure 4(d) is more reliable than Figure 4(c) due to the following
reason. When the link between switches D and E fails, only switch E in Figure 4(d) would not communicate with its
controller, i.e., Controller 2. However, both switches E and A would not communicate with the Controller 2 in Figure
4(c). It means that the control range of each controller also influences the reliability of SDN. Hu et al. [41] propose
a metric, called the expected percentage of the control path loss, to measure the influence of the controller placement

9

O©CoO~NOOOITA~AWNPE

/ Computer Communications 00 (2015) 1-15 10

on the reliability of SDN. Finally, the authors utilize the simulated annealing algorithm to optimize the locations of
controllers.

However, the aforementioned methods focus on static networks and would not support dynamic networks. Bari
et al. [42] propose a framework for dynamically deploying multiple controllers in WAN. According to the network
condition, the number of required active and inactive controllers and their locations could be identified. The evaluation
results show that this method could effectively decrease the set up time of a flow.

5. The major interfaces of controller

The major interfaces of controller are essential enabling components of a software-defined network. Firstly, the
controller is required to provide the southbound interface to manage the underlying network. Secondly, the northbound
interface is vital to directly support various networking applications, which have dedicated demands on the underlying
network. Such interfaces also can simplify the design and implementation of innovative networking applications and
services. Lastly, for the distributed controllers, the east-west bridge is needed to enable efficient communication
among controllers and improve the reliability of control plane.

5.1. The southbound interface

As mentioned above, the separation between the control plane and the data plane in SDN results into the network
programming, which enables network managers to take charge of the entire network. Moreover, many network-
wide applications, such as monitoring data flow or balancing switch load, is required to program the underlying
network. Thus, the setting up of switches and optimizing the network management all need a southbound interface
for establishing the channel between controllers and switches.

OpenFlow is a widely used southbound interface and protocol[2]. It requires that each Ethernet switch is e-
quipped with an internal flow-table. OpenFlow protocol establishes a secure channel between controllers and switch-
es. Through this channel, each switch can forward a flow request to a controller, and the controller delivers the
generated rules for that request to involved switches. After receiving control rule from controller, each switch updates
its flow table. Additionally, OpenFlow allows researchers to run experiments on heterogeneous switches. Meanwhile,
vendors do not have to expose the internal details of switches and can add OpenFlow to their switch products.

NETCONF [43] is a managing protocol to modify the configuration of network devices. It allows network devices
to expose an API, through which extensible configuration data could be transmitted and retrieved. Although the
protocol simplifies the device’s reconfiguration and acts as a building block, there is not any separation of the data and
control plane in this protocol. Thus, a network with NETCONF is not fully programmable.

Meanwhile, ForCES [44] is another famous protocol for communication between the controller and forwarding
components within a network element since 2003. Although ForCES shares some common goals with SDN, their
initiatives are different in many aspects. For ForCES, the internal architecture of each network device is redefined
such that the control element is separated from the forwarding element. The combination of them still exhibits as a
single network element to the outside world. Other researchers also try to combine additional forwarding hardware
with third-party control within a single network device. ForCES is a parallel approach to software-defined networking
and is under development by the IETF Forwarding and Control Element Separation Working Group.

Additionally, a high level commanding network programming language is needed to simply and efficiently manage
switches on the controller. Compared with other languages, it should have a simple-structured syntax for an imperative
network programming and needs only a few types of statements to construct interface rules. Programs written by these
commands can construct and install rules into switches. Finally, controllers can add rules to flow tables and manage
the switches.

5.2. The northbound interface

The northbound interface can help the application developers to manage and program the network. However, the
existing programming languages usually use the low level abstraction supplied by the underlying hardware; hence,
they fail to provide support for modular programming. Moreover, the intuitive network policies in the SDN domains
are inherently dynamic and stateful. Current configuration languages are also not expressive enough to capture these
policies.

10

O©CoO~NOOOITA~AWNPE

/ Computer Communications 00 (2015) 1-15 11

Frenetic [45] is a high-level language for programming network switches. Meanwhile, it provides a declarative
query language for classifying and aggregating network traffic. It also delivers a functional library for describing
high-level packet-forwarding policies. Meanwhile, Frenetic facilitates the modular reasoning and activates the code
reuse. Such important properties are enabled by Frenetics novel runtime system, which manages all of the details
related to installing, uninstalling, and querying low-level packet-processing rules on physical switches.

Pyretic [46] is a programming platform, which raises the abstraction level and enables the creation of modular
software. Consequently, it allows programmers to create sophisticated SDN applications and develop dependent
modules applications. Management polices are further expressed as abstract functions. In addition, multiple policies
could be grouped together using one of several policy composition operators, such as the parallel composition and the
sequential composition.

Additionally, Procera [47] is a SDN control architecture, which supports a declarative policy language based on
the functional reactive programming. It is further extended to express those high-level network policies and temporal
queries over event streams, which occur frequently in network policies. Meanwhile, we must ensure that those rules
installed on one task should not affect other tasks. Monsanto et al. [48] recommend a set of new abstractions to
develop an application with multiple independent modules to jointly manage the network. Furthermore, to simplify
the SDN programming, Maple [49] utilizes a standard programming language to decide the behaviors of the entire
network. At the same time, it also provides a programmer-defined, centralized policy, which runs on every packet
entering a network. Hence, it is obliviously employed to translate a high-level policy into SDN rules on individual
switches. Maple includes a highly-efficient multicore scheduler and a novel tracing runtime optimizer. The scheduler
can efficiently scale to controllers with 40+ cores. The optimizer can automatically record reusable policy decisions
and keep flow tables of the switches up-to-date.

There exists the resource competing problem when multiple controllers work together. To address this problem,
the corybantic system [50] is designed, which consists of a coordinator at a typical SDN controller. The coordinator
utilizes many independent modules, each of which manages different aspects of the network. The coordinator has
the responsibility to deal with the conflicts among modules. Every module seeks to optimize one or more objective
functions. The coordination among those modules can maximize the overall value resulting from the controllers’
decisions.

Currently, software-defined networks still lack the standard of northbound interfaces. ONF has a North Bound
Interface Working Group (NBI-WG) [51], which is dedicated to define and subsequently standardize various North-
bound API Interfaces (NBIs) for SDN Controller. Firstly, the goal of this group is to provide extensible, stable, and
portable NBI APIs to controllers, network services, and application developers. Secondly, they want to increase the
portability of software designed to interact with SDN controllers. This will be done by defining multiple APIs at
differing levels of abstraction to allow network behavior to be more programmable. The last but not least target is to
ensure that controller vendors are free to innovate, using API extensions, within their own designs. Such efforts will
accelerate the SDN innovation.

5.3. The east-west bridge

Actually, large-scale datacenter networks and enterprise networks are always partitioned into many sub-networks,
each of which is controlled by a different controller. The Internet is also managed by owners of different domains.
The fact limits the use of the centralized control across those domains, each of which usually deploys a controller.
Each of such controllers should have the global network view to determine the next domain hop for those flows
across domains. Hence, controllers are required to exchange reachability and topology information between the inter-
domain networks. However, these controllers cannot communicate with each other directly without the help of given
interfaces, as shown in Figure 5. To solve this problem, Lin et al. [52] propose a new network view exchange
mechanism.

Lin et al. design a high-performance mechanism for heterogeneous SDN domains to exchange network view for
enterprises, data centers, and intra-domain networks [52]. Meanwhile, considering the network privacy, they propose
WBridge [52] to abstract the physical network to a virtual network view. They also evaluate several related solutions
in different SDN domains. Moreover, Lin et al. show a west-east bridge mechanism for different SDN administrative
domains to cooperate with each other [53]. They design a peer-to-peer exchange mechanism of network information.

Considering different SDN domains, what network information should be exchanged and how such information
can be efficiently exchanged among inter-domain SDN peers are two essential problems. To achieve a resilient peer-

11

O©CoO~NOOOITA~AWNPE

/ Computer Communications 00 (2015) 1-15 12

Controller

Controller

Physical Links

————— OpenFlow Protocol
<€ East-vest Bridge % SDN Switch

Figure 5. East-west bridge for different SDN domains.

to-peer control plane over heterogeneous SDN domains, Lin et al. propose a maximum connection degree based
connection algorithm [53]. To address the privacy issue, they propose to virtualize the SDN network view, and only
exchange the virtualized network view to construct the relative global network view.

As shown in Figure 5, the east-west bridge enables the exchange of individual network views among different
controllers. Through the information exchange, each controller can have a global view of the entire network. After
receiving the first packet of each new flow, the controller will compute an optimal routing path for that flow, according
to the global view.

Additionally, ONOS [27] is deployed as a service on a cluster of servers, and the same ONOS software runs
on each server. Each ONOS instance manages a subsection, and the state information local to the subsection is
disseminated across the cluster as events. The events are generated in the store, and are shared with all of the nodes
in a cluster via distributed mechanisms built into the various services’ distributed stores. Using high speed messaging
in a publish/subscribe model, ONOS instances can quickly inform other instances of updates. The distributed core of
ONOS provides messaging, state management and leader election services to instances or between them. As a result,
multiple instances behave as a single logical entity.

6. The security of controller

It is generally known that the networking programmability and the global control plane are two distinguished
capabilities of software-defined networks. Such capabilities indeed bring some new security problems. There exists
three security parts, the controllers, the communication channels among controllers, and the channels between the
controllers and switches. Currently, less effort has been done to deal with the security problem of SDN. Moreover,
the data integrity and confidentiality among controllers also lack sufficient attention. Kreutz et al. [54] developed a
secure and dependable control platform, which still does not completely solve the security problem of SDN.

The security problem in enterprise networks differs from that on the Internet. SANE [55] provides a protection
architecture for enterprises networks. It can manage the networks through the central control and authenticate all
network elements to grant the enterprise security. Ethane [18] further improves the SANE. Using the centralized
controller, Ethane manages the routing and admittance of flows and couples simple flow-based Ethernet switches.
Ethane and SANE are designed to enable secure communication between the control plane and the data plane.

Moreover, a switch may suffer the inconsistency between a new OpenFlow rule and an existing rule. FortNOX [56]
introduces a security kernel that can detect the potential rule conflicts. It can insert security rules into switches with
different priorities. At the same time, to prevent faulty rules from the switch, VeriFlow [57] provides a safety layer
between the controller and the switches to verify the network invariants. Moreover, it can complete the verification
within hundreds of microseconds when new rules are generated. Veriflow is the first tool to check network-wide
invariants in real time. They can also guarantee the communication security between the control plane and the data
plane.

Furthermore, a data center usually needs a load balancer to ensure the access balance among servers. Compared
to dedicate load-balancing devices, SDN brings an alternative approach that deploys a load-balanced application

12

O©CoO~NOOOITA~AWNPE

/ Computer Communications 00 (2015) 1-15 13

at the controller. The controller installs packet-handling rules into involved switches inside the data center, which
finally navigates traffic to dedicated servers in a load-balancing manner. The controller can utilize wildcard rules as a
more scalable solution [14]. Wang et al. design corresponding algorithms to compute concise wildcard rules, which
achieve a designed traffic distribution and are resilient to the changes of load-balanced policies without disrupting
existing connections.

Additionally, FROSCO [58] provides a new application development framework, which allows developers to
develop and deploy secure applications. Moreover, authors contribute the source code to the SDN community. Note
that FROSCO focuses on ensuring the security of controller. Currently, less efforts have been done on the secure
communication among controllers.

7. Future research issues of the controller

The SDN brings the possibility of various network innovations, but lacks uniform definitions and standard im-
plantation in reality. Jarschel et al. make a thorough analysis on the SDN definition [59]. Many essential issues of the
controller, however, need to be well addressed so as to improve the development and usages of SDN.

(1) The operators manage an underlying network through the controller, which is the key component of a software-
defined network. To better manage networks, more abstractions, frameworks and programming languages need
to be studied for deploying more distinguished control applications on the controller.

(2) The distributed control plane is a reasonable solution to the performance, scalability and topology issues of the
control plane. However, maintaining a global network view is very difficult due to the dynamic network behaviors.
For this reason, efficient methods need to be extensively studied for keeping the global consistent network view
and reducing the resulting communication. Meanwhile, the design methods of completely distributed control
plane still lack in-depth study.

(3) Currently, there are more and more applications to manage the whole network. It is impractical to deploy all
applications into each controller. Therefore, the deployment problem of applications will need more research.

(4) The policies from different applications will be converted into flow rules on the control plane. There might be
conflicts among rules. Meanwhile, to multiple applications that will deal with a same flow, it is need to compound
the rules from these applications. Therefore, the rules compound and the conflicts avoiding are worth doing more
works.

(5) Although there are many works about the scalability of controllers, the problem has not been well solved. Only
increasing the number of controllers is not efficient to resolve the scalability of controllers. The locations and the
number of controllers can also heavily affect the network performance. Actually, it is essential to research the co-
ordination among controllers. Moreover, using the least number of controllers and finding their most appropriate
locations still need more efforts.

(6) The northbound, southbound, and east-west interfaces need to be further developed. The northbound interface
contributes to develop more applications to better use and manage the network. The southbound interface enables
the controller to efficiently manage the underlying network. The east-west bridge makes the different SDN do-
mains to efficiently communicate with each other. More and outstanding interfaces will significantly enhance the
development of SDN.

(7) The security of the controller is always an important problem. If the controller is successfully attacked, the
functionality of the software-defined network will be destroyed. To ensure the controllers’ security, it is necessary
to develop more security-aware control applications. Meanwhile, more techniques are required to ensure the
secure communications among controllers and that between the controller and switches.

Acknowledgements

This work is partially supported by the National Basic Research Program (973 program) under Grant No. 2014CB347800,

the NSFC under Grant No. 61422214, the Program for New Century Excellent Talents in University, and the Prelimi-
nary Research Funding of NUDT under Grant No. JC10-05-02.
13

O©CoO~NOOOITA~AWNPE

/ Computer Communications 00 (2015) 1-15 14

References

[1]
[2]
[3]
[4]

[5]
[6]

[7]

[8]

[9]
[10]
(11]
[12]
[13]
(14]
[15]
[16]
[17]
(18]
[19]
(20]
(21]
(22]
[23]
[24]

[25]
[26]

[27]
(28]
[29]
[30]
(31]
(32]
[33]
(34]
[35]
[36]
[37]

[38]

B. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, T. Turletti, A survey of software-defined networking: Past, present, and future of
programmable networks, Communications Surveys Tutorials, IEEE 16 (3) (2014) 1617-1634.

N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker, J. Turner, Openflow: Enabling innovation in
campus networks, ACM SIGCOMM Computer Communication Review 38 (2) (2008) 69-74.

A. Campbell, I. Katzela, K. Miki, J. Vicente, Open signaling for atm, internet and mobile networks (opensig’98), ACM SIGCOMM Computer
Communication Review 29 (1) (1999) 97-108.

D. Tennenhouse, J. Smith, W. Sincoskie, D. Wetherall, G. Minden, A survey of active network research, Communications Magazine,IEEE
35 (1) (1997) 80-86.

J. Moore, S. Nettles, Towards practical programmable packets, in: Proc. [EEE INFOCOM, Anchorage, Alaska, 2001.

A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers, J. Rexford, G. Xie, H. Yan, J. Zhan, H. Zhang, A clean slate 4d approach to network
control and management, ACM SIGCOMM Computer Communication Review 35 (5) (2005) 41-54.

N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, S. Shenker, Nox: Towards an operating system for networks, ACM
SIGCOMM Computer Communication Review 38 (3) (2008) 105-110.

Z.Cai, A. L. Cox, T. S. E. Ng, Maestro: A system for scalable openflow control, Tech. Rep. TR10-08.

D. Erickson, The beacon openflow controller, in: Proc. ACM HotSDN, Hong Kong, China, 2013.

IETF, Datatracker, Interface to the routing system (i2rs), http://datatracker.ietf.org/wg/i2rs/ (2014).

Cisco, Opflex: An open policy protocol, http://www.cisco.com/c/en/us/solutions/collateral/
data-center-virtualization/application-centric-infrastructure/white-paper-c11-731302.html (2014).

M. Yu, J. Rexford, M. J. Freedman, J. Wang, Scalable flow-based networking with difane, ACM SIGCOMM Computer Communication
Review 40 (4) (2010) 351-362.

H. Hu, G.-J. Ahn, W. Han, Z. Zhao, Towards a reliable sdn firewall, in: Proc. USENIX Open Networking Summit, Santa Clara, CA, 2014.
R. Wang, D. Butnariu, J. Rexford, Openflow-based server load balancing gone wild, in: Proc. USENIX Hot-ICE, Boston, MA, 2011.

A. K. Nayak, A. Reimers, N. Feamster, R. Clark, Resonance: dynamic access control for enterprise networks, in: Proc. ACM WREN, Spain,
Barcelona, 2009.

S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata, J. Wanderer, J. Zhou, M. Zhu, et al., B4: Experience with a
globally-deployed software defined wan, in: Proc. ACM SIGCOMM, Hong Kong, China, 2013.

L. Suresh, J. Schulz-Zander, R. Merz, A. Feldmann, T. Vazao, Towards programmable enterprise wlans with odin, in: Proc. ACM HotSDN,
Helsinki, Finland, 2012.

M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, S. Shenker, Ethane: Taking control of the enterprise, ACM SIGCOMM Computer
Communication Review 37 (4) (2007) 1-12.

T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu, R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, et al., Onix: A distributed
control platform for large-scale production networks., in: Proc. USENIX OSDI, Vancouver, BC, Canada, 2010.

S. H. Yeganeh, Y. Ganjali, Kandoo: a framework for efficient and scalable offloading of control applications, in: Proc. ACM HotSDN,
Helsinki, Finland, 2012.

A. Tootoonchian, Y. Ganjali, Hyperflow: A distributed control plane for openflow, in: Proc. USENIX INM/WREN, SAN JOSE,CA, 2010.
K. Phemius, M. Bouet, J. Leguay, Disco: Distributed multi-domain sdn controllers, in: Proc. IEEE/IFIP NOMS, Krakow, Poland, 2014.

P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide, B. Lantz, B. O’Connor, P. Radoslavov, W. Snow, et al., Onos: towards an
open, distributed sdn os, in: Proc. ACM HotSDN, Chicago, IL, USA, 2014.

A. Voellmy, J. Wang, Scalable software defined network controllers, ACM SIGCOMM Computer Communication Review 42 (4) (2012)
289-290.

Opencontrail, http://wuw.opencontrail.org/ (2014).

M. Canini, P. Kuznetsov, D. Levin, S. Schmid, A distributed and robust sdn control plane for transactional network updates, in: Proc. IEEE
INFOCOM, HongKong, 2015.

Onos, http://onosproject.org/ (2014).

Opendaylight, http://www.opendaylight.org/ (2014).

A. Dixit, F. Hao, S. Mukherjee, T. Lakshman, R. Kompella, Towards an elastic distributed sdn controller, in: Proc. ACM HotSDN, Hong
Kong, China, 2013.

D. Levin, A. Wundsam, N. Heller, Brandon aand Handigol, A. Feldmann, Logically centralized?: state distribution trade-offs in software
defined networks, in: Proc. ACM HotSDN, Helsinki, Finland, 2012.

A.-W. Tam, K. Xi, H. J. Chao, Use of devolved controllers in data center networks, in: Proc. INFOCOM WKSHPS, IEEE, Shanghai, China,
2011.

S. Schmid, J. Suomela, Exploiting locality in distributed sdn control, in: Proc. ACM HotSDN, Hong Kong, China, 2013.

A. Tavakoli, M. Casado, T. Koponen, S. Shenker, Applying nox to the datacenter, in: Proc. ACM HotNets, New York City, NY, USA, 2009.
A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, R. Sherwood, On controller performance in software-defined networks, in: Proc.
USENIX Hot-ICE, San Jose, CA, 2012.

S. Kandula, S. Sengupta, A. Greenberg, P. Patel, R. Chaiken, The nature of data center traffic: Measurements & analysis, in: Proc. ACM
SIGCOMM IMC, Chicago, Illinois, USA, 2009.

A.R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, S. Banerjee, Devoflow: Scaling flow management for high-performance
networks, ACM SIGCOMM Computer Communication Review 41 (4) (2011) 254-265.

S. H. Yeganeh, A. Tootoonchian, Y. Ganjali, On scalability of software-defined networking, Communications Magazine, IEEE 51 (2) (2013)
136-141.

Z. Guo, M. Su, Y. Xu, Z. Duan, L. Wang, S. Hui, H. J. Chao, Improving the performance of load balancing in software-defined networks
through load variance-based synchronization, Computer Networks 68 (0) (2014) 95 — 109.

14

O©CoO~NOOOITA~AWNPE

(39]
[40]

[41]
[42]
(43]
[44]
[45]

(46]
[47]

(48]
(49]
[50]
[51]

[52]
(53]

(54]
[55]
[56]
[57]
[58]

[59]

/ Computer Communications 00 (2015) 1-15 15

B. Heller, R. Sherwood, N. McKeown, The controller placement problem, in: Proc. ACM HotSDN, Helsinki, Finland, 2012.

Y. Jimenez, C. Cervello-Pastor, A. J. Garcia, On the controller placement for designing a distributed sdn control layer, in: Proc. Networking
Conference, 2014 IFIP, Trondheim, Norway.

Y. Hu, W. Wang, X. Gong, X. Que, S. Cheng, On reliability-optimized controller placement for software-defined networks, Communications,
China 11 (2) (2014) 38-54.

M. F. Bari, A. R. Roy, S. R. Chowdhury, Q. Zhang, M. F. Zhani, R. Ahmed, R. Boutaba, Dynamic controller provisioning in software defined
networks., in: Proc. CNSM, Zurich,Switzerland, 2013.

R. Enns, M. Bjorklund, J. Schoenwaelder, A. Bierman, Network configuration protocol (netconf) (June 2011).

A. Doria, J. H. Salim, W. Wang, L. Dong, R. Gopal, Forwarding and control element separation (forces) protocol specification (March 2010).
N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford, A. Story, D. Walker, Frenetic: A network programming language, SIGPLAN
Not. 46 (9) (2011) 279-291.

J. Reich, C. Monsanto, N. Foster, J. Rexford, D. Walker, Modular sdn programming with pyretic, USENIX 38 (5) (2013) 128-134.

A. Voellmy, H. Kim, N. Feamster, Procera: A language for high-level reactive network control, in: Proc. ACM HotSDN, Helsinki, Finland,
2012.

C. Monsanto, J. Reich, N. Foster, J. Rexford, D. Walker, et al., Composing software defined networks., in: Proc. USENIX NSDI, Lombard,
1L, 2013.

A. Voellmy, J. Wang, Y. R. Yang, B. Ford, P. Hudak, Maple: Simplifying sdn programming using algorithmic policies, ACM SIGCOMM
Computer Communication Review 43 (4) (2013) 87-98.

A. AuYoung, S. Banerjee, J. Lee, J. C. Mogul, J. Mudigonda, L. Popa, P. Sharma, Y. Turner, Corybantic: Towards the modular composition
of sdn control programs, in: Proc. ACM HotNets, College Park, MD, 2013.

ONF, Open networking foundation north bound interface working group (nbi-wg) charter final version: V 1.1, https://www.
opennetworking.org/images/stories/downloads/working-groups/charter-nbi.pdf (2014).

P. Lin, J. Bi, Y. Wang, East-west bridge for sdn network peering, Frontiers in Internet Technologies 401 (2013) 170-181.

P. Lin, J. Bi, Z. Chen, W. Yangyang, H. Hu, A. Xu, We-bridge: West-east bridge for sdn inter-domain network peering, in: Proc. IEEE
INFOCOM WKSHPS, Toronto, ON, Canada, 2014.

D. Kreutz, F. M. Ramos, P. Verissimo, Towards secure and dependable software-defined networks, in: Proc. ACM HotSDN, Hong Kong,
China, 2013.

M. Casado, T. Garfinkel, A. Akella, M. J. Freedman, D. Boneh, N. McKeown, S. Shenker, Sane: A protection architecture for enterprise
networks., in: Proc. Usenix Security, Vancouver, BC, Canada, 2006.

P. Porras, S. Shin, V. Yegneswaran, M. Fong, M. Tyson, G. Gu, A security enforcement kernel for openflow networks, in: Proc. ACM
HotSDN, Helsinki, Finland, 2012.

A. Khurshid, W. Zhou, M. Caesar, P. B. Godfrey, Veriflow: Verifying network-wide invariants in real time, in: Proc. ACM HotSDN, Helsinki,
Finland, 2012.

S. Shin, P. A. Porras, V. Yegneswaran, M. W. Fong, G. Gu, M. Tyson, Fresco: Modular composable security services for software-defined
networks., in: Proc. The Internet Society NDSS, San Diego, CA United States, 2013.

M. Jarschel, T. Zinner, T. Hossfeld, P. Tran-Gia, W. Kellerer, Interfaces, attributes, and use cases: A compass for sdn, Communications
Magazine, IEEE 52 (6) (2014) 210-217.

15

