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Abstract—Indoor semantic floorplan is important for a range of location based service (LBS) applications, attracting many research
efforts in several years. In many cases, the out-of-date indoor semantic floorplans would gradually deteriorate and even break down
the LBS performance. Thus, it is important to automatically update changed semantics of indoor floorplans caused by environmental
variation. However, few research has been focused on the continuous semantic updating problem. This paper presents SISE as a
mobile crowdsourcing system that uses a new abstraction for indoor general entities and their semantics, enGraph, to automatically
update changed semantics of indoor floorplans using images and inertial data. We first propose efficient methods to generate enGraph.
Thus, an image can be associated with an indoor semantic floorplan. Accordingly, we formulate the enGraph matching problem and then
propose a quality-based maximum common subgraph matching algorithm so that entities extracted from an image can be corresponded
to entities in the indoor semantic floorplan. Furthermore, we propose a quadrant comparison algorithm and a region shrink based
localization algorithm to detect and localize changed entities. Thus, the new semantics can be labeled and out-of-date semantics can
be removed. Extensive experiments have been conducted on real and synthetic data. Experimental results show that 80% of out-of-date

semantics of indoor general entities can be updated by SISE.

Index Terms—Indoor semantic floorplan, crowdsourcing, self-updating system

1 INTRODUCTION

INDOOR location-based services (LBS) have been exten-
sively studied in the mobile computing community over
the past few years with a variety of applications, includ-
ing navigation, geo-social networks, and advertisements.
Indoor map building has attracted a lot of research attention
from both industry and academia. For example, Google In-
door Maps' can provide detailed indoor floorplans covering
several large public indoor spaces, such as malls, airports,
and sport venues. However, only a small fraction of millions
of indoor environments can be provided by Google because
these indoor floorplans are usually built manually and
hence are labor-intensive and time-consuming. Recently,
many solutions have been proposed to achieve automatic
construction of indoor floorplans using motion trajectories
of mobile users [1], [2], [3], [4], [5], [6]. Despite of these
progresses, none of those approaches have provided rich
semantics associated with indoor floorplans. If the indoor
semantic floorplan is available, existing LBSs can be en-
hanced and new LBSs can be further designed.

Semantics tagged on indoor floorplans represent the
attributes (e.g., labels, spatial locations, sizes, and function-
alities) of indoor objects in an indoor space. Semantics can
be classified as place’s semantics (e.g., the location and ID of
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a room) and entity’s semantics (e.g., the location and name
of a fridge). Recently, many approaches have been proposed
to label or infer semantics for some places and entities in
indoor space [7], [8], [9], [10], [11], [12], [13]. First, to label
places, ShopProfiler [7], SemSense [8], and AutoLabel [9]
were proposed to identify stores in a shopping mall and
label their names in indoor floorplans. Second, to label
general entities, several Structure from Motion (SfM) based
methods [10], [11] were proposed to reconstruct the layout
of an indoor space and to label the name of entities in the
layout. OverLay [12] was presented to combine multiple
techniques to register objects into an augmented reality
system. TransitLabel [13] was developed to recognize user
activities in transit stations and to infer the functionalities
around the physical areas of users.

However, these approaches mainly focus on identifying
and labeling semantics of some places and entities. More-
over, even if the indoor semantic floorplan is constructed,
the semantics in a dynamic indoor environment may be
frequently changed. For example, a furniture in a room
might be moved. Consequently, the initial indoor semantic
floorplan would gradually deteriorate and even break down
the performance of LBSs, if new semantics cannot be labeled
or out-of-date semantics cannot be removed. However, re-
search on self-updating of semantics in dynamic indoor
environments is very limited.

Recently, mobile crowdsourcing has become a popular
concept. It is a low-cost and efficient way to obtain data from
mobile users. A large body of LBSs have been developed
using the mobile crowdsourcing manner, such as indoor
localization [14], [15], indoor navigation [16], [17], and in-
door mapping [1], [2], [3], [4], [5], [6], [13], [18]. Besides, the
wide availability of mobile devices and wearable devices are



equipped with built-in visual and inertial sensors. There-
fore, mobile users are enabled to take and share geo-tagged
pictures anywhere in indoor environments.

Following this trend, we propose a mobile crowdsourc-
ing system (called SISE) to automatically and continuously
update semantics of general entities in dynamic indoor
environments. We use the ubiquitous sensors available in
commodity mobile devices to develop a new abstraction
data model, called enGraph, for the representation of in-
door general entities and their semantics, which is called
enGraph. An enGraph is an undirected graph. If indoor
general entities are changed, those enGraphs generated for
entities can be different. Therefore, enGraphs provide a
method to update changed entities. SISE applies the entity
recognition algorithms [19], [20] to recognize different enti-
ties in images and uses landmarks to localize the changed
entities. Starting from an out-of-date indoor semantic floor-
plan, SISE can timely obtain a new indoor semantic floor-
plan to persistently maintain the quality of indoor LBSs for
a long term.

Implementing this basic idea into a deployable system,
however, faces several challenges. First, it is difficult to
efficiently generate enGraphs to accurately and completely
represent general indoor entities and their semantics. To
address this problem, we use multiple entity recognition
algorithms to recognize entities in images and their names
are an enGraph. An enGraph is then constructed as a com-
plete graph, where a vertex represents an entity, an edge
is linked between any two entity vertices, and each vertex
has a label set to represent its semantics. Accordingly, we
propose two efficient enGraph generation methods to build
the data enGraph and the query enGraph. The data enGraph
is generated by the indoor semantic floorplan and the query
enGraph is generated from an input image. We also propose
a coordinate transformation method to align the coordinate
systems of these two enGraphs.

Second, since semantics extracted from an image are
new in an indoor space, it is challenging to correspond
entities in an image with the ones in the indoor semantic
floorplan to find the out-of-date semantics. A simple ini-
tialization method is to match the query enGraph with the
data enGraph using an existing subgraph matching method.
Existing subgraph matching methods, however, fail to pro-
vide an high-quality matching result for our enGraphs in
most cases. Those incorrect and low-quality subgraphs may
lead to wrong correspondences. To address this problem, we
first formulate the enGraph matching problem as a quality-
based maximum common subgraph matching problem with
set similarity in enGraph. We then incorporate the back-
tracking, search space shrinking, and the quality score based
methods to accurately and efficiently find the high-quality
matched subgraph.

Third, it is challenging to detect and localize changed
entities and to update their semantics at correct positions
in an indoor semantic floorplan. To address this problem,
we first present a quadrant model to represent general
entities and then propose a quadrant comparison based
algorithm to detect changed entities in indoor space. To
localize changed entities, we then propose a region shrink
based localization algorithm under two constraints, i.e.,
the quadrant constraint among entities and the orientation

2

constraint between the entity and the camera. Thus, SISE
can automatically update the out-of-date semantics using
the new ones.

The contribution of this work can be summarized as
follows. First, we formulate the indoor semantic floorplan
updating problem for entities and then propose a mobile
crowdsourcing based floorplan self-updating method. Sec-
ond, we develop a new abstraction representation for indoor
general entities and their semantics (called enGraph) and
further propose two efficient enGraph generation methods.
The novel abstraction representation provides a method
to accurately and efficiently update out-of-date semantics
in the indoor semantic floorplan. Third, to obtain high-
quality matched subgraphs between two enGraphs with set
similarity, we design a quality-based subgraph matching
algorithm, which greatly improves the semantics updating
accuracy of SISE. Fourth, we propose a light-weight algo-
rithm to accurately and timely detect and localize changed
entities for semantics updating. Finally, a SISE prototype
system is developed and extensive experiments have been
conducted on real and synthetic data. Experimental results
show that 80% of out-of-date semantics can be updated.
These experimental results have demonstrated the effective-
ness of SISE.

The rest of this paper is organized as follows. Section
2 presents the related work. Section 3 gives an overview
of SISE. Section 4 introduces the abstraction representation
of indoor general entities and their semantics (called en-
Graph) and enGraph generation methods. Section 5 presents
the quality-based subgraph matching method. Section 6
shows the changed semantics detection and localization
algorithms. The prototype implementation and experiments
are discussed in Section 7. Technical discussions and limita-
tions are given in Section 8. We conclude the work in Section
9.

2 RELATED WORK

Although a large body of literatures are available in LBS, we
mainly review those ones closely related to our work.

Automatic Indoor Floorplan Reconstruction. Most in-
door floorplan construction approaches are based on pedes-
trian motion traces [1], [2], [3], [4], [5], [6]. CrowdInside
[1] was proposed to estimate accurate indoor motion traces
of users using anchor points (e.g., elevators) to construct
the building’s layout. Walkie-Markie [3] and the work in
[2] were introduced to combine WiFi signals and inertial
data to obtain hallways’ length, orientation, and the indoor
floorplan. MapGENIE [5] was presented to construct in-
door floorplan using exterior information and the grammar
which encodes structural information of a building. Jigsaw
[4] and CrowdMap [6] were proposed to use a computer
vision approach to process crowdsourced images and videos
and combine users’ motion traces to estimate the building’s
layout. However, those systems do not provide any seman-
tic information for indoor floorplans.

Indoor Semantic Floorplan Construction. Several ap-
proaches have been proposed to label semantics in indoor
floorplans. SfM technique was proposed in [10], [11], [21]
to identify and localize all the foreground objects in a
room to construct an indoor semantic floorplan. However,



those SfM approaches do not address the automatical and
continuous semantics updating problem. ShopProfiler [7]
was proposed to use indoor motion traces of users and WiFi
heat map to construct indoor floorplan, identify shops and
infer brand names. AutoLabel [9] was proposed to combine
website information and WiFi tagged pictures of stores to
label store names in the floorplans of malls. SemSense [8]
requires users to actively assign a store name to a physical
location during check-in operations. TransitLabel [13] was
developed to recognize user activities in transit stations
and to infer the functionalities around the physical areas of
users. However, those techniques mainly focus on the label-
ing of specific semantics (e.g., store names, transit stations
semantics). OverLay [12] combines the smartphone sensing
and the computer vision techniques to register objects into
an augmented reality system by collecting a set of images.
However, it has to manually label all images.

Although a new indoor semantic floorplan can be con-
structed for every particular time period using those meth-
ods, this updating strategy, however, is very labor-intensive
and time-consuming, and may introduce unnecessary up-
dates for unchanged environment. Those methods are de-
signed for automatic construction of complete floorplans
rather than continuous semantic floorplan updating in com-
plex indoor space. Moreover, these approaches mainly focus
on the identification and labeling of semantics of some
particular places and entities, such as store names and
some semantics of transit stations. For SISE, entity recog-
nition algorithms [19], [20] are used to automatically and
continuously recognize general entities from images, detect
changed entities and update their semantics in an indoor
floorplan. SISE goes one step further and maintains the
semantics of entities in an indoor space.

Subgraph Matching. Subgraph matching is the basis
for many graph applications [22], [23], [24]. Since subgraph
matching is NP-hard [25], a large number of methods has
been proposed to solve this problem. For exact subgraph
matching, the VF2 algorithm [26], TreePi [27], and RINQ
[23] have been proposed. However, in our work, the label
on each vertex in the query graph is given in probability,
which is determined by set similarity. Those exact subgraph
matching approaches do not consider set similarity on ver-
tices. For inexact subgraph matching, some vertices or edges
can be matched not exactly. Closure-Tree [28] was proposed
to support both subgraph query and graph similarity query.
SAGA [29] was proposed to search subgraphs in a database
that are similar to the query, allowing for node mismatches,
node gaps, and graph structural differences. TALE [22]
was proposed for approximate subgraph matching to allow
node mismatches, node/edge insertion and deletion. Sev-
eral maximum common subgraph matching methods have
been proposed, as reviewed in [30]. However, our work is
different from these inexact subgraph matching solutions.
That is, no node/edge mismatches are allowed in our work,
and the matching vertices should have similar sets.

The work closest to ours was recently proposed in [24].
It used effective pruning and indexing methods to address
the subgraph matching problem in a large graph database
by set similarity. This work assumes that the data graph is a
probability graph while the query graph is a certain graph.
However, in our work, the data graph is a certain graph
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Fig. 1: An illustration of the indoor localization SDK of
different subspaces.

while the query graph is a probability graph. Moreover,
the query graph may not be included in the data graph.
Therefore, existing subgraph matching solutions cannot be
directly applied in our work.

3 OVERVIEW

In this section, we give an overview of this work, including
the indoor spatial model, the problem description, and the
architecture of the proposed system.

3.1 Indoor Spatial Model

The indoor spatial model of a 2D indoor space is built
by considering two coordinate systems. The first one is
the earth-centred earth-fixed coordinate system (ECEF),
which is the world coordinate system. The second one is
the floorplan coordinate system (FPCS), which is a local
coordinate system. We assume that the updating of each
indoor semantic floorplan is independent. For simplicity, the
origins of ECEF and FPCS on each floor are assumed to be
coincident. Besides, FPCS (Xrpcg) can be transformed to
ECEF (XgcEr) using the following equation:

—sinw
Ccosw

Ccosw
sinw

Xpcer=R(w)Xppcs= [ } Xrpcs, (1)
where w is the rotation angle and R(w) is the rotation matrix
between ECEF and FPCS.

Additionally, the indoor space is further divided into
a series of subspaces using their own special features: (1)
Corridor: both sides of a corridor are walls, or one side is
wall and the other side is transparent windows. (2) Room:
it contains a portion of space separated by walls. (3) Open
Area: it is like a room without walls (e.g., a lobby). To
obtain indoor subspaces in an indoor floorplan, the outline
of subspaces in an indoor floorplan is manually drew. The
size of each subspace is then calculated using an image bi-
naryzation method [31] and the size of the indoor floorplan.
The indoor spatial model is suitable for most buildings in
the world. In this paper, the existing indoor localization
SDK, such as the Baidu LBS SDK?, is used to locate a user in
the indoor space. Specifically, the Baidu LBS SDK uses WiFi,
magnetic data, and cell-tower signals to locate a user in an

2. http:/ /Ibsyun.baidu.com/location/



indoor space. Although it has an average localization error
of few meters, it still can accurately localize the subspace of
a user. As shown in Fig. 1, the location points of subspaces
1,2, 3, and 4 are obviously separated from each other.

3.2 Problem Description

An indoor semantic floorplan contains several semantics
(e.g., names and positions) extracted from general entities
in indoor space. Since indoor environments are usually dy-
namics, these semantics in the initial indoor semantic floor-
plan would be out-of-date, resulting in a deteriorated and
even break down performance of LBS systems. Therefore,
new semantics should be labeled and out-of-date semantics
should be removed. This general problem is formalized as
indoor semantic floorplan updating.

In this paper, our objective is to obtain new semantics
of these changed entities and to automatically update the
old ones. Specifically, this paper focuses on semantic self-
updating of general entities in indoor space. Two semantics
of an entity have to be updated, including the category
and position (xz,y), ie., S={s;|(category,z,y), 1<i<M},
where M is the number of indoor entities. Several existing
indoor semantic floorplan construction methods can work
on crowdsourced images [8], [10], [11], [12]. Same as these
previous systems, we also assume that users are motivated
to contribute their images to our system via mobile crowdsensing
[4], [18]. Based on those facts, we aim to design a method
to update the indoor semantic floorplan. This method is ex-
pected to be efficient while meeting accuracy and confidence
requirements.

The semantic updating accuracy requirement is defined
by two parameters: a confidence interval € and an error
probability J. Let 7 be the number of updated semantics
and m be the number of changed semantics in an indoor
space, the updating accuracy is calculated if 7iv satisfies
Pr{|m-m|<em}>1-0. Furthermore, the localization accuracy
of a changed entity is calculated as the Euclidean distance
between the estimated location and the ground-truth loca-
tion of an entity in an indoor space.

Besides, the self-updating method should be efficient.
Although existing methods [7], [8], [9], [12], [13] can be
used to reconstruct the indoor semantic floorplan for every
particular time period, this updating strategy is very labor-
intensive and time-consuming.

3.3 System Architecture

Fig. 2 illustrates the architecture of the proposed SISE sys-
tem. SISE is a crowdsourcing-based semantics self-updating
system for indoor semantic floorplans. It requires images
and inertial data obtained by ordinary mobile devices. It
is composed of the following two components. (I) Mo-
bile application. It allows user to collect crowdsourced data
(images and inertial data), which are then automatically
compressed and uploaded to the server for further pro-
cessing. (II) Updating engine. Most of the computational
burden is enforced in the updating engine, which consists
of three modules, including the enGraph generation module
(Section 4), the enGraph matching module (Section 5), and
the indoor semantic floorplan updating module (Section 6).
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Fig. 2: System architecture.

The updating engine can be implemented on a PC or a cloud
server.

Semantic Detection. Given an image, entity recognition
algorithms have enabled fast and accurate entity recognition
using deep learning techniques [19], [20]. We use three entity
recognition algorithms, i.e., Faster R-CNN [19], SSD [20],
and R-FCN [32]. These methods use neural networks to
determine whether an entity is present in an image, and
to localize the entity in the image.

The enGraph Generation Module. We develop a new
abstraction representation for indoor general entities and
their semantics, enabling an image to be associated with
an indoor semantic floorplan. More specifically, we propose
a method for enGraph to generate new data model for an
indoor semantic floorplan and an image. We then transform
these enGraph local coordinate systems into the world coor-
dinate system.

The enGraph Matching Module. To match the data
enGraph and the query enGraph, we first formulate the
enGraph matching problem and then propose a quality-
based maximum common subgraph matching algorithm.
Specifically, the quality score of matched subgraphs is cal-
culated to obtain a high-quality result.

Updating Module. This module takes the data enGraph,
the query enGraph, and their matched subgraph as input
to update semantics in the indoor floorplan. Specifically,
we propose a quadrant comparison algorithm and a region
shrink based localization algorithm to detect and localize
changed entities. The new semantics can then be labeled
and out-of-date semantics can be removed.

Additionally, since those crowdsourced data may not
cover all places of an indoor space, some entities may not be
updated. Therefore, similar to other mobile crowdsourcing
systems [4], [6], [13], an incentive mechanism [15] can be
designed to encourage users to contribute more images.



4 ENGRAPH: AN ABSTRACTION FOR INDOOR

GENERAL ENTITIES

We start with a new abstraction data model for indoor
general entities and their semantics. We then design two
dedicated generation methods for the abstraction data
model. Accordingly, we propose a coordinate transforma-
tion method to align the coordinate systems of the data
model.

4.1 A New Abstraction: enGraph

To update out-of-date semantics using images, images have
to be associated with the indoor semantic floorplan. To solve
this problem, we design a new abstraction data model for
entities and their semantics contained in images and the
indoor semantic floorplan, called enGraph. An enGraph is
an undirected graph with each vertex representing an entity
and an edge is added between two arbitrary entity vertices.
Each vertex has a set of labels to represent semantics of an
entity.

Definition 1 (Data enGraph). A data enGraph G is represented
by a tuple (V(G), E(G), L(G)), where V(G) is a set of
vertices, E(G) is a set of edges (E(G)CV(G)xV(G)), and
L(G(u)) is a label for a vertex ueV (G).

Definition 2 (Query enGraph). A query enGraph @) is defined
as (V(Q), E(Q), L(Q), Pr(Q)), where V(Q) is a vertex set,
E(Q) is an edge set (E(Q)CV(Q)xV(Q)), L(Q(v)) is a
label set for a vertex veV(Q), and Pr(Q) is a probability
set of L(Q).

It can be seen from Definitions 1 and 2 that the data
enGraph is a certain graph as it is generated by an entire
indoor semantic floorplan. In contrast, the query enGraph is
a probabilistic graph as it is generated by an image and the
labels on a vertex are given in probability. Besides, the query
enGraph may not be included in the data enGraph due to
indoor environmental dynamics, such as a newly emerged
entity u. In this case, u¢V (G) and ueV(Q).

Three operations are further defined on two enGraphs
(G1 and (), including intersection, minus and union oper-
ations.

Definition 3 (intersection operation). The intersection operation
of G1 and G is to find the largest graph G3 that satisfies
G3CG and G3C Gy, which is defined as G3=G1NGo.

Definition 4 (minus operation). Suppose that GoCGy, the
minus operation of G7 and G is to find the largest graph
G5 that satisfies G3C G and G3NG2=a, which is defined as
G3=G1/Gs. If Go is a vertex set, G'g is a new graph obtained
by removing the vertices of G; that are included in Go.

Definition 5 (union operation). The union operation of G; and
Gs is to find a graph G3 by adding G1 /G5 into G2 or G2 /G
into GG1, which is defined as G3=G1UG>.

4.2 The Data Generation Method

To accurately and efficiently detect the changed semantics
in an indoor semantic floorplan, the data enGraph should
be efficient and simple. A data enGraph is efficient means
it encodes all general entities and their semantics. A data

(b) Object graphs inferred by different recognition algorithms

Fig. 3: An illustration of the query enGraph generation
method. (a) Entity recognition results a; obtained by the
Faster R-CNN and the SSD algorithms. (b) The object graph
is inferred using entity locations in the image coordinate
system. (c) The query enGraph is generated by merging
these two object graphs.

enGraph is simple means it requires a short computational
time for graph processing to meet required accuracy. There-
fore, it is challenging to construct a useful and simple data
enGraph. To solve this problem, the construction roles of the
data enGraph are designed:

1) Each subspace is independently used to construct the
data enGraph, and these data enGraphs are then con-
nected using the special entities (e.g., doors) which can
easily be identified in an indoor semantic floorplan.

2) The data enGraph constructed in each subspace is a
complete graph.

3) Equation 1 is used to transform FPCS to ECEF of the
data enGraph.

4.3 The Query enGraph Generation Method

In this section, we propose a query enGraph generation
method. Here, an example is used to illustrate this method.
We assume that six entities are included in an image, as
shown in Fig. 3.

First, two object recognition algorithms (i.e., Faster R-
CNN [19] and SSD [20]) are used to recognize entities from
an image in this example. The details of these two entity
recognition algorithms are not presented due to space limit.
Their output results include the name a;, the location in
the image coordinate system, and the bounding box of
each entity, as shown in Fig. 3(a). Here, a bounding box
represents the minimum bounding rectangle of an entity in
an image.

Second, an object graph is constructed using the location
(u, v) of entities in the image coordinate system [33]. In an
object graph, a vertex represents an entity, an edge is linked
between two vertices, and the label denotes the entity name.
As shown in Fig. 3(b), two object graphs are constructed
using the Faster R-CNN and the SSD algorithms.

Third, these object graphs are merged to generate the
query enGraph using the union operation. Since the labels of



a vertex produced by different entity recognition algorithms
may be different (See Fig. 3(b)), a label set is used. As
illustrated in Figs. 3(b-c), vertex V; has two different labels
in two graphs, the label set of a vertex V; is set {a1,ar}.

4.4 Coordinate Transformation

As the data enGraph is defined in FPCS and the query
enGraph is defined in the camera coordinate system, the
goal of coordinate transformation is to transform FPCS and
the camera coordinate system into ECEF.

First, Eq. 1 is used to transform FPCS into ECEF for the
data enGraph. Second, to transform the camera coordinate
system into ECEF for the query enGraph, we propose a co-
ordinate system transformation method. Given an enGraph
QC in the camera coordinate system and an enGraph Q¥ in
ECEF, we use two matrixes, i.e., translation matrix (7') and
rotation matrix (R), to achieve Q¥ =[T', R]QC. For simplicity,
the translation between Q¥ and Q€ is not considered in this
paper, because the location of objects in the indoor space is
currently unknown. Therefore, we have Q¥ =RQC.

Theorem 1. Given two enGraphs QV' and Q2 and the rotation
matrix of the camera R, we can obtain QV'=R°Q"%. Note that,
Q°! and Qv are inferred from two images captured from two
viewing directions by the same camera.

Proof. Theorem 1 can be proved by the homography theory
in computer vision. Given several entities O={0;|1<i<m}
on the same plane, two intrinsic matrixes K and K " of two
cameras, and the rotation matrix R° between two cameras,
we can obtain the homography matrix H as H=K'R°K !
using the homography theory [34]. m is the number of
detected entities from an image. For each entity, we have
oV1=Ho"*=K'R°K~'0??, where i=1,2,...,m. As o/'eQ"!
and 0??€Q"?, thus we have Q"'=R°Q"2. Hence, Theorem 1
is proved. O

In our work, the inertial data are used to calculate the
attitude of the first camera using the method proposed in
[35]. The attitude of the second camera is set in ECEF to
make the viewing direction parallels to the Y, axis.

5 ENGRAPH MATCHING

The data enGraph represents the indoor semantic floorplan
and the query enGraph represents the semantics abstracted
from an images. It is challenging to accurately match the
query enGraph with the data enGraph so that entities ex-
tracted from an image can be corresponded to the entities
in the indoor semantic floorplan. In this section, we first
describe the enGraph matching problem and then present
our subgraph matching algorithm to solve this problem.

5.1 Problem Description

In this subsection, we first introduce the definition of sub-
graph isomorphism and then formally describe the sub-
graph matching problem, namely quality-based maximum
common subgraph matching with set similarity in enGraph.
Specifically, given a data enGraph G and a query enGraph
@, the maximum common subgraph C' between G and @
is taken by C=GN(Q with the maximum number of vertices

C.
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Definition 6 (Subgraph Isomorphism). Given two graphs
G=(V(G), E(G), L(G)) and Q=(V(Q), E(Q), L(Q)), a sub-
graph isomorphism from G and () is an injective function
[ V(@)=V(Q), such that V(u,v) € E(G), (f(u), f(v)) €
E(Q) and L(G(u))=f(L(Q(u))), L(G(v))=f(L(Q(v))), and
L(G(u,v))=f(L(Q(u, v))).

Definition 7 (Quality-based Maximum Common Subgraph
Matching with Set Similarity in enGraph). For a data enGraph
G and a query enGraph @ with n vertices (v1,...,v,), and
a predefined similarity threshold x, a maximum common
subgraph match of @ is a graph C of G containing |C|
vertices (v1,...,v|¢|) of V(G) that satisfies the following
conditions:

1) Q¢ is isomorphic to G¢, where G¢ and Q)¢ represent
the maximum common subgraph C'in enGraphs G and

Q.

2) sim(L(u;), L(v;))>k, where L(u;) and L(v;) are the
sets associated with u; and v; in G¢ and Q¢, re-
spectively. sim(L(u;), L(v;)) gives a similarity score
between L(u;) and L(v;).

3) The matched subgraph with the highest quality score
determines the final result.

By a reduction from the well-known subgraph matching
problem, the quality-based maximum common subgraph
matching with set similarity in enGraph can be proved to
be NP-complete [25]. In this paper, the probability Jaccard
similarity is used.

Definition 8 (Probability Jaccard Similarity). Given label sets
L(u) and L(v) of vertices u and v, the probability Jaccard
similarity between L(u) and L(v) is:
_Yierwnrw Prd)
Yierwurw) Prl)’

where Pr(l) is the probability of label I, Pr(1)>0.

sim(L(u), L(v))

@

Furthermore, the quality score is used to choose the
best result. In our work, two matrices, the distance matrix
and probability matrix, are used to compute the quality
score. The distance matrix D is the Euclidean distance
between the matched subgraph and the camera, where the
location of camera is estimated using the state-of-the-art
dead reckoning method [14], [36]. The probability matrix
is calculated using the probability Jaccard similarities for
labels on vertices in the matched subgraph. Therefore, the
quality score score(C') is defined as:

score(C):%(%+ Z sim(L(u), L(v))), 3)

ueG,veQ

where Z is the normalized term.

5.2 The MAS Algorithm

In this subsection, we propose a quality-based maximum
common subgraph matching algorithm (called MAS) to
solve the matching problem between two enGraphs. With-
out loss of generality, we assume that G and () are connected
and simple graphs, where a simple graph is a graph without
self-loops nor multiple edges. Our MAS algorithm can be
easily extended to directed and/or edge labeled graphs.



Algorithm 1 The MAS Algorithm

Input: A data enGraph G, a query enGraph (), subspace
constraint, orientation constraint, and a predefined similar-
ity threshold &.

Output: A matched maximum common subgraph C.

1: for veV(Q) do

2:  if sim(L(v), L(u))>k then

Z(v)«{ulueV(G")};
else
Ec.add(v)

Q'=Q(V(Q)/Ec);

for veV(Q’) do
Recursive_Search(v;)

GG size

10: for j=0 to g.-1 do

11: S.(j)=score(Ge(4));

12: C=argmax S¢;

13: return gC’;

14: Function Recursive_Search(v;)

15: for u€Z(v;) and w is unmatched do
16: if sim(L(u), L(v;))>k then

17: continue;

18: [ (v;)<—u; us<—matched;
19: if i<|V(Q)|-E¢.size then

20: Recursive_Search(viy1);
21: else

22: Ge.add(f(Q));

23: f(v;)<~NULL; u<unmatched;

The MAS algorithm is implemented as a backtracking
algorithm [37]. The idea of the backtracking algorithm is to
find solutions by increasing or abandoning partial solutions.
Instead of searching over the whole space of a data enGraph
G, we limit the search space by enforcing two constraints
using the indoor spatial model and the quadrant model. (1)
Subspace constraint. The search space can be easily limited
to a special subspace based on the location of a user, such
as a room. (2) Orientation constraint. The orientation of
a user for image acquisition can be estimated using the
inertial data [35]. Therefore, the searching space is limited
in a small data enGraph G’ using these constraints such
that the subgraph matching process can be accelerated.

Algorithm 1 shows the details of our MAS algorithm.
Its inputs include a query enGraph @, a data enGraph G/,
and a predefined similarity threshold x. Its outputs include
a matched maximum common subgraph C' in G’ and a
vertex set Fo, where each vertex in @ is not included in
G’. First, a matching candidate set Z(v) is found for each
vertex in ) (Lines 2-3). At the same time, the E¢ is also
found (Lines 4-5) using the probability Jaccard similarity
between vertices © and v, where u€G’ and ve(@. Once
the candidate set is obtained, the new query enGraph @’
is generated by removing these vertices included in E¢
(Line 6). Next, the function Recursive_Search(v;) is used
to match v; with Z(v;) (Lines 7-8). This process is repeated
by recursively matching the subsequent vertex v;; with
Z(vi+1) (Lines 19-20). If every vertex of " has a counterpart
in G’ (Line 22). If all vertices in Z(v;) have been tested and

@ I [ Vs =V, (11)
(V)= vy vy(I)
@ 1] 1Y V; —> v, (T
Vo> Vo(I) Vs = Vo (IV)
Vo>V (I Vs>V, (1)
@ @ V: —> V, (T V: =V, (IV)

<:> Landmark O Normal entity

Fig. 4: An illustration for the quadrant model of entities.
Entities Vp, V1, and V2 are landmarks and entities V3, Vj,
and V5 are normal entities. Their location relationships can
be obtained.

no feasible matching can be found, Recursive_Search(v;)
is backtracked to the previous state for further exploration
(Line 23). If there are multiple matched subgraphs in G, the
quality score is calculated for each matched subgraph (Line
11). The subgraph with the highest quality score determines
the final result.

Theorem 2. The time complexity of the MAS algorithm is
OV (@) V(&) |+V(Q)[x|Z(v)|+gec)-

Proof. Algorithm 1 consists of three stages, i.e., matching
candidate searching, Recursive_Search(v;), and quality
score calculation. In the first stage, the time complexity
for matching candidate searching is O(|V(Q)|x|V(G")])
since it processes |V (Q)| vertices in graph @ and |V(G')|
vertices in graph G’. In the second stage, the time com-
plexity for traversing all vertices in Q' and Z(v) is
O(IV(Q")|x|Z(v)|) in the worst case. The time complex-
ity for quality score calculation over all matched sub-
graph in G’ is O(g.). Thus, the overall complexity is
o[V (Q)|x|V(G"|+|V(Q")|x|Z(v)|+g.)- Hence, Theorem 2
is proved. O

6 INDOOR SEMANTIC FLOORPLAN UPDATING

If all entities extracted from images have been corresponded
to the indoor semantic floorplan, we are able to update
changed semantics in an indoor semantic floorplan. A crit-
ical issue is to detect and localize changed entities and up-
date their semantics. To solve this problem, we first present
the quadrant model for general entities and then propose
a quadrant comparison based algorithm to detect changed
entities in the indoor space. Second, to localize changed
entities, we propose a region shrink based localization algo-
rithm using two constraints, the quadrant constraint among
entities and the orientation constraint between the entity
and the camera.

6.1 Quadrant Model for General Entities

The quadrant model is built on an entity and has a local
coordinate system with its axes parallel to the axes of ECEF.
Specially, it has I quadrants (I, II, ...). Thus, the location
relationship between two entities is described using the
quadrant. As illustrated in Fig. 4, the quadrant model of the
entity V4 has four quadrants (I, II, IIL, IV). Take entity V for
example, entity V3 is on the second quadrant of the entity 1



Algorithm 2 The Quadrant Comparison Algorithm

Input: The matched subgraph G¢ in data enGraph, query
enGraph @), landmark set £, and E¢ (Algorithm 1).

Output: The changed entity set Cg.
: Cp=0; Go=Gc/EL; Q'=Q/Ec;
: for veGe do
dby=Construct Entity Database(G¢(v));
: forue@’ do
dby=Construct Entity Database(Q' (u));
. for UGGIC do

if Comparison(dby(v), dbs(v))==true then
Cg.add(v); break;

return Cg;

O X NN TR @

and their location relationship can be denoted as Va—V;(II).
Similarly, the location relationships between other entities
(V3-V5) and the entity V4 can be obtained. Here, the entity
Vi is denoted as the landmark and entities V3, V; and V5
are denoted as normal entities. As shown in Fig. 4, there are
three landmarks (V5-V3) and three normal entities (V3-V5).
Besides, if the location of a normal entity in the indoor space
is changed, the entity is considered as a changed entity.

6.2 Algorithm for Changed Entity Detection

The goal of changed entity detection is to find these changed
entities in a specific indoor area. These changed entities
include moved entities, disappeared entities, and newly
emerged entities. So far, the newly emerged entities have
been obtained from Algorithm 1, that is, these entities are
included in E¢. Therefore, our goal is to detect the moved
and disappeared entities. There are three intuitions behind
changed entity detection. (1) There are many fixed entities
in indoor space, such as doors, windows, wardrobes, and
elevators. Those entities are considered as landmarks. If those
fixed entities are changed, it is very hard to select landmarks
without prior knowledge. In the worst case, human inter-
vention is still required by our system to select landmarks.
(2) The location of other entities can be estimated using
these landmarks and are further considered as new land-
marks. (3) If the location of an entity changes, the quadrant
relationship between the changed entity and landmarks
will be changed. Therefore, a quadrant comparison based
algorithm is proposed using these intuitions. The basic idea
of the quadrant comparison based algorithm is to compare
quadrants between the normal entity and landmarks. First,
entity databases are constructed to store landmarks, normal
entities, and the quadrants for these entities included in
the data enGraph and the query enGraph. If quadrants
between a normal entity and landmarks are inconsistent in
the two entity databases, the normal entity is considered as
a changed entity.

Algorithm 2 illustrates the details of the quadrant com-
parison algorithm. First, the normal entity set is initialized
to be (), landmarks are removed from the matched subgraph
G ¢ in the data enGraph, and the entities included in E¢ are
also removed from the query enGraph () (Line 1). Then, two
entity databases are constructed using enGraphs G¢ and @
(Lines 2 to 5). If quadrants between a normal entity and

C
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Fig. 5: An example of the orientation constraint between an
entity and a camera.

landmarks are changed, the normal entity is then considered
as a changed entity and is added to the changed entity set
Cg (Lines 6 to 8).

Algorithm Analysis. In Algorithm 2, a changed entity
may not be identified if it moves in the same quadrant
determined by all landmarks. The probability of this event
occurrence is defined as the false negative rate. In fact, if the
number of landmarks and quadrants is increased, the false
negative rate will be decreased. Therefore, the number of
quadrants and landmarks plays a very important role for the
detection of changed entities. Theoretical analysis for false
negative rate produced by Algorithm 2 is further presented.

Let ¢ be the number of quadrants in the quadrant model
of an entity and r be the number of landmarks. For a
landmark, the false negative rate Pr(q, r) of a normal entity
is calculated as %. It is the same for multiple landmarks.
First, we consider the worse case, that is, there are two
quadrants (¢=2) in the quadrant model of an entity and
multiple landmarks are collinear. In this case, the false
negative rate is calculate as 3. Therefore, if there are ¢
quadrants in the quadrant model of an entity, the maximum
of the false negative rate is 1. Second, we consider the best
case that if there are ¢ quadrants in the quadrant model
of an entity and all of the r landmarks are not collinear,
the minimum false negative rate is . Assume that the
detection for different entities is independent and the false

negative rate is therefore within the range of [q—lr, %]

6.3 Algorithm for Changed Entity Localization

We start with the calculation of two constraints and then
present the changed entity localization algorithm.

Constraint calculation. To estimate the location of
changed entities, two constraints are calculated using land-
marks, including the quadrant constraint among entities
and the orientation constraint between the entity and the
camera.

Quadrant Constraint. The quadrant constraint is deter-
mined by the quadrant model (Section 6.1). Any two entities
are subject to this specific quadrant constraint. Such quad-
rant constraint among entities provide the opportunity for
the entity localization.

Orientation Constraint. Fig. 5 shows an entity with a
bounding box (i.e., the blue box), the known location and
pose of the camera C in ECEF. The pose of a camera is
calculated in the earth coordinate system using magnetome-
ter and gyroscope sensors. The magnetometer sensor pro-
vides the absolute direction in the earth coordinate system



Algorithm 3 The ResLoc Algorithm

Input: The matched subgraph C'in data enGraph, changed
entity set Cg, quadrant constraint set ).S7T’, and orientation
constraint set OST.

Output: The estimated location of changed entities and the
updated enGraph.

1: G0=C / C E,

2: for :=0 to |CE| do

: Ag=LocationArea(QST(1));

3

4: Ao=LocationArea(OST(i));

5: Region=RegionShrink(Aq, Ao);

6: Location(i)=Centroid Estimation(Region);
7 Go.add(CEg,);

8:

return G,;

and the gyroscope sensor provides the relative direction
changes with respect to the device platform. However, the
pose estimated by magnetometer and gyroscope sensors has
errors due to electromagnetic interference. In this paper,
the A algorithm [35] is used to provide accurate pose.
The A? algorithm primarily leverages the gyroscope, but
incorporates the accelerometer and magnetometer to select
the best sensing capabilities, resulting in the most accurate
attitude estimation [35]. @ is the camera’s Field of View
(FoV) and H is the camera’s focus, which are fixed for a
given mobile device. The orientation angle (£3) between
the entity and the camera is calculated as follows. First,
the lengths of lines |HB|, |EH|, and |DH| are calculated
using points H, B, F, and D in the image. Then, we can

~ 7 0
obtain |CH|= lan%l . Thus, Z1=arctan %. Similarity,
H|tan & .. .
/2=arctan %. Finally, Z3 is calculated as £3=/2-/1.

Localization. Combining Algorithm 2 for changed en-
tity detection and two constraints, we propose the Region
Shrinking based Localization (ResLoc) algorithm to locate
the changed entities and to update their semantics in indoor
floorplans. The key insight is that the region calculated
by two constraints can automatically be shrunk to a small
region. Here, an example is used to illustrate this algorithm.

As illustrated in Fig. 6, let the entity Vj (the grey circle)
be a changed entity, entities V; and V> (white circles) and
cameras C; and C are landmarks in the indoor subspace.
We can obtain Vp—Vi(Ill) and Vy—Va(I) using quadrant
constraints of entities V; and V5. Since the locations of the
entities V; and V5 are available, the location of entity V; is
restricted in region A (the blue polygon in Fig. 6). Similarly,
the location of entity Vj is restricted in region A; (the green
polygon in Fig. 6) using the orientation constraints of cam-
eras (1 and C5. Furthermore, the joint part of these regions
(region Ay) is the final region of the entity V4. Finally, the
gravity center of region A, determines the location of entity
V5. Note that, as the number of landmarks increases, the
localization accuracy can be improved (See Fig. 9(b)). Thus,
multiple images are used to estimate the location of gen-
eral entities. We use the density-based clustering algorithm
(DBSCAN [38], [39]) to obtain images of an entity.

The ResLoc algorithm is depicted in Algorithm 3. The
inputs of the ResLoc algorithm include the matched sub-
graph C (obtained from Algorithm 1), the changed entity set

Fig. 6: An example of the ResLoc algorithm. The entity V} is
located in region A based on quadrant constraints of other
entities (V7 and V2) and in region A; based on orientation
constraints of cameras (C; and Cs). The joint part Ay of
these regions is the final region of the entity V; and the
gravity center of region A, determines the location of entity
o

E¢ (obtained from Section 6.2), the quadrant constraint set
QST, and the orientation constraint set OST'. The outputs
of the ResLoc algorithm include the estimated location of
general entities and the updated enGraph. First, the object
graph (G,) is extracted as: G,=C/C, (Line 1). That is, the
changed entities are removed from the matched subgraph
C'. It is the part of the entire data enGraph G that we want
to update. Lines 2 to 8 describes the process to estimate
the location of each changed entity by shrinking the region
determined by each landmark. Specifically, regions of the
i-th entity are obtained using the quadrant constraint and
the orientation constraint, respectively. The region of each
entity is updated by extracting the joint part of those regions
obtained from Lines 3 to 4. Next, the gravity center is used
to estimate the final location of each general entity (Line 6).
Finally, the changed entities and their semantics are labelled
in the indoor semantic floorplan (Line 7).

7 IMPLEMENTATION AND EVALUATION

In this section, the implementation details of SISE are first
presented. The evaluation methodology and setups are then
described. The performance of each component of SISE is
further presented.

7.1 Implementation

A SISE prototype was implemented to update the seman-
tic indoor floorplans. It consists of a mobile application
software which collects crowdsourced data from various
sensors embedded in mobile devices, and a server for data
processing. The mobile application software was imple-
mented in Java for Android platform, and has been tested
on different Android mobile devices, including Samsung
Galaxy S7, MI3, and Huawei P9. All modules of the updat-
ing engine were implemented in Python and Java on a PC
server with 32GB RAM, an i7 CPU processor, and a 12GB
Titan GPU. To recognize entities, parts of the ImageNet®
and the COCO* datasets containing 152 types of indoor
general entities, were used to train models of the entity
recognition algorithms. Besides, WiFi networks were used
for communication between the mobile devices and the
server.

3. www.image-net.org/
4. www.mscoco.org/
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Fig. 7: Experiment scenario for our SISE system, where
the area R represents the room, the area C represents the
corridor, and the area O P represents the open area.

7.2 Evaluation Methodology and Setups

Using real and synthetic data, extensive experiments were
conducted to evaluate the performance of each component
of SISE. The real data were collected on one floor of our
office building by volunteers, which covers 4000m? with
the length of 100m and the width of 40m. The floorplan
of our office building was further divided into three areas,
i.e., three rooms (R101, R102, and R103), a corridor (C1),
and an open area (OP1), as shown in Fig. 7. Specifically,
rooms R101 and R103 are office rooms and room R102
is a gym. Besides, these areas contain rich information of
entities, including their category, location, and size. During
the initialization of our experiment, semantics of all entities
(e.g., names and locations) were labeled manually since the
available semantic floorplans of the building were out of
date. Similarly, the ground-truth semantics of changed enti-
ties were also labeled manually by recording and watching
videos.

Volunteers were invited to participate in the data col-
lection procedure. Each of them carried a mobile device,
which is installed with a mobile application software, to
capture images at different times of a day. The locations
were determined by themselves. These captured images
covered most indoor areas and all available general entities.
Considering the rewarding mechanism, this data collection
method is acceptable for general realistic scenarios. 640
fully-labeled images were used to test the performance of
SISE. Specifically, each subspace was collected 128 images
on average. Those images covered entire area of each sub-
space. Besides, we also created the synthetic data to test the
performance of our method. @R denotes that real data are
used in the experiment and @RN denotes that the real data
has N entities. The synthetic data were randomly generated
from the same space with 100 unit length and 40 unit width.
Similarly, @S denotes that synthetic data are used in our
experiments and @SN means that the synthetic data has N
entities. For example, @R100 means that the real data with
100 entities are used in the experiment.

7.3 Performance Evaluation
7.3.1  Performance of Indoor Semantic Floorplan Updating

Performance Metrics. Accuracy is an important metric
for indoor semantic floorplan updating. Suppose that the
ground-truth set of changed semantics is M and the set
of semantics updated by SISE is M. In order to assess
the performance of SISE, the precision P and recall R of
semantic updating are used, i.e.,

MM
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where P presents the precision of semantic updating, it
was used to evaluate the updating accuracy of SISE. R is
the recall of semantic updating, it is expressed as the ratio
of the number of updated semantics to the number of the
groundtruth changed semantics.

Besides, the updating time consumed by changed se-
mantics, is used to evaluate the efficiency of SISE. Specifically,
the updating time for an image was calculated. We further
compared the updating time costed by SISE on all images
with that costed by the SFM-based technique.

Furthermore, the entity localization error is another im-
portant performance metric to evaluate the performance of
SISE. Location error represents the Euclidean distance be-
tween the estimated location and the ground-truth location
of an entity.

Experimental Results. First, the semantic updating per-
formance was evaluated on both real and synthetic datasets
in five different indoor subspaces. The Faster R-CNN [19],
the SSD [20], and the R-FCN [32] algorithms were used to
recognize entities in images. It can be seen from Table 1
that SISE achieves a precision around 81.1% and a recall
around 79.8% on real data. It also achieves a precision
around 90.5% and a recall around 88.6% on synthetic data.
These results clearly demonstrate that our entity semantic
updating method is accurate and robust to indoor scenes.
The difference between real data and synthetic data are
that the real data is generated with the entity recognition
algorithms, while the synthetic data does not. In another
words, experimental results produced on the synthetic data
are only affected by the semantics updating algorithm of
SISE. In contrast, the experimental results produced on real
data are affected by both the entity recognition algorithms
and the semantics updating algorithm. This demonstrates
that the performance of entity recognition has a significant
influence on the overall performance of SISE. Next, the
performance of entity recognition algorithms was further
tested using the real data.

In our experiments, three entity recognition algorithms
were tested, including the Faster R-CNN [19], the SSD [20],
and the R-FCN [32] algorithms. The average recognition
precision (mAP) was used to measure the performance of
the entity recognition algorithm. It can be seen from Table
2 that if more entity recognition algorithms are used, the
mAP value is increased. Experimental results demonstrate
that the semantics updating accuracy produced by SISE
(Table 1) can further be improved if more entity recognition
algorithms are used.

Next, the updating time was measured on real data.
The updating time for one entity was first tested using
different number of images in different indoor subspaces.
The number of images was ranged from 1 to 8. The numbers
of entities were 256, 32, and 128 for room R101, R102,

TABLE 1: Update Performance Evaluation on Real Data and
Synthetic Data.

Precesion (P) Recall (R)
Real data 81.1% 79.8%
Synthetic data 90.5% 88.6%
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using 10 images.

and R103, respectively. Experiments were run 10 times for
each indoor subspace. One changed entity was randomly
selected in each experiment. Their average results are pre-
sented in Fig. 8(a). The time to update the semantic of one
entity is less than 9s, which fully demonstrates the efficiency
of SISE.

Furthermore, the updating time for all entities of each
subspace was tested using 640 images. 128 images were col-
lected in average for each subspace. We extended the SFM
technique (namely, COLMAP [40], [41]) to support seman-
tic updating of indoor environments. COLMAP recovers a
dense representation of a scene (i.e., the 3D model) using the
SEM technique. To obtain the initial 3D models, 4800 images
were collected in five different indoor subspaces of our office
building and five dense 3D models were generated. In our
experiments, the number of images used by COLMAP is
the same as our method in the same scene. All parameter
settings for COLMAP were consistent with the settings pre-
sented in the original papers [40], [41]. We manually labeled
the differences, i.e., changed entities and their semantics, be-
tween two 3D models generated at different time periods of
the same scene. Average time consumption was calculated
by updating the semantics of each scene. It can be seen from
Fig. 8(b) that the time costed by SISE to update the semantics
of all entities is 2.7 minutes, while the SFM-based method
takes 15.8 minutes in average excluding manual semantic
labeling. The experimental results have fully demonstrated
the significant advantage of our proposed method over the
SFM-based method. Our method is highly efficient due to
the use of efficient enGraph data structure. Besides, our
method can perform self-updating while the SFM-based
method requires manual labeling.

Finally, the entity location localization was further tested
in our experiments on real data. The changed entities were
randomly selected and the number of changed entities was
ranged from 50 to 100 in five different indoor subspaces.

TABLE 2: Recognition Results Produced by Three Entity
Recognition Algorithms

mAP

Faster R-CNN 44.6

Faster R-CNN + SSD 58.5
Faster R-CNN + SSD + R-FCN  79.8
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Fig. 10: Time required to generate enGraphs for the data
enGraph and the query enGraph.

The ground-truth location of a changed entity was recorded
manually. It can be seen from Fig. 9(a) that 90% of changed
entities have a location error less than 1.5m. In particular,
90% of entities in Rooms R101 and R102 have a location
error less than 0.85m. The largest location error in Corridor
C1 is close to 2m. Besides, the location errors achieved
in Rooms R101 and R103 are smaller than that of other
subspaces. Both the number and density of entities in Rooms
R101 and R103 are larger than those of other subspaces.

To decrease the location error, multiple images were
used. On one hand, multiple images increase the number
of entity landmarks. On the other hand, multiple images
also provide additional camera constraints. To test the entity
localization performance using multiple images, the loca-
tion errors achieved in corridor C'1 and room R102 were
measured. The number of images are ranged from 1 to 8
with a step of 1. Each experiment was run 10 times. Fig.
9(b) reports their average experimental results. The location
error is decreased when the number of images is increased.
However, the location error cannot be further reduced when
the number of images is close to 5. That is because the
instantaneous location and orientation errors of the camera
produced by the dead reckoning method [14], [36] and the
A3 algorithm [35] still influence the location estimation of
normal entities.

7.3.2 The enGraph Efficiency

We further tested the enGraph efficiency by measuring
the generation time for data enGraph and query enGraph.
The size of the data enGraph was ranged from 2 to 1000.
The size of the query enGraph was ranged from 2 to 32
because the number of entities recognized by the state-
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Fig. 12: Processing time produced by our MAS and the VF2 algorithms using the real and synthetic data.

of-the-art entity recognition algorithms [19], [20] is up to
32 in our experiments. Specifically, the generation time for
query enGraph includes the recognition time of entities and
the building time of the query enGraph. Fig. 10 shows the
time required to generate enGraphs for different numbers
of entities. It can be seen from Fig. 10(a) that the data
enGraph generation takes less than 0.85s for less than 1000
entities. Furthermore, it can be seen from Fig. 10(b) that
the query enGraph generation takes less than 0.5s. Hence,
the generation time for an enGraph demonstrates that the
enGraph is conducive to improve the efficiency of indoor
semantic floorplan updating.

7.3.3 Performance of Subgraph Matching

The match accuracy and the query processing time of our
matching algorithm were calculated to test the subgraph
matching performance. In our experiments, the sizes of the
data enGraph were 32, 256, 2048, and 8192, respectively.
Since query enGraphs are usually small, their sizes are
ranged from 3 to 10. Each experiment was run 10 times. In
particular, for query processing, each run includes 100 query
graphs. The average results were presented in this section.
Furthermore, the VF2 algorithm [26] was considered as a
baseline for comparison. Besides, the MAS algorithm was
also evaluated under different similarities. That is, MAS-0.3
has similarity values larger than 0.3, MAS-0.5 has similarity
values larger than 0.5, and MAS-0.8 has similarity values
larger than 0.8.

It can be seen from Fig. 11 that MAS outperforms VF2
in all cases. That is because MAS is efficient to address the
set similarity problem and uses an advanced quality score
mechanism to return the correct matched subgraph. On one
hand, the match accuracy of MAS and VF2 is increased,
when the size of data enGraph is increased. On another
hand, when the size of query enGraph is increased, the

0.9 -B-Landmark@1 -B-Landmark@1
Los <$-Landmark@2 2 5|-9-Landmark@2
Df:“ - -¥%-Landmark@3 —¥Landmark@3|
297 -© Landmark@4 2 -6 Landmark@4 h
206 Landmark@5) Landmark@5|

5

Omitted Entity (#)

4 5 6 7 8 9 10 4 5 6 7 8 9 10
Query enGraph Size (#) Normal Entity (#)

(a) False negative rate (b) Omitted entitles
Fig. 13: The false negative rate and the number of omitted
normal entities produced by SISE using the real data.

match accuracy of MAS and VF2 is decreased. The MAS-
0.3 receives the best match accuracy.

It can be seen from Fig. 12 that MAS outperforms VF2 in
most cases. Two common trends are observed: (1) When the
data enGraph size is small, MAS processes queries as fast as
VF2. (2) The influence of the data enGraph size for MAS is
smaller than that for VF2. That is because VF2 does not com-
pute the quality score of matched subgraphs as MAS does.
When the query size is increased, the number of matched
subgraphs is decreased, and VF2 cannot successfully filter
the redundant search. MAS successfully limits the search
space using the subspace constraints.

7.3.4 Detection Accuracy of Changed Entity

We further tested the detection accuracy of changed entities
achieved by SISE on the real data. Let N; represent the
number of landmarks. Let Landmark@]l represent 1 land-
mark, Landmark@2 represent iNl landmarks, Landmark@3
represent %Nl landmarks, and Landmark@5 represent N;-1
landmarks. Each experiment was run 10 times using differ-
ent numbers of landmarks. The number of normal entities
was ranged from 4 to 10 with a step of 1. First, the false



negative rate was measured using different numbers of
landmarks. It can be seen from Fig. 13(a) that the false
negative is decreased when the number of landmarks is
increased. Second, the number of omitted entities caused
by the false negative rate was measured. It can be seen
from Fig. 13(b) that the number of omitted normal entities
is decreased as the number of landmarks is increased. In
summary, the above results have clearly demonstrated our
theoretical analysis for Algorithm 2.

8 DISCUSSION AND LIMITATIONS

Energy Consumption. The energy consumption of the mo-
bile application software was further tested, including the
acquisition of images and inertial data and the communica-
tion of WiFi network. The PowerTutor profiler’ was used to
test the energy consumption in the Google Nexus 7 tablet.
The energy consumed for inertial sensors (accelerometer, gy-
roscope, and geomagnetic) is about 30mW only. Capturing
an image only consumes about 0.1]. Furthermore, the en-
ergy consumption by WiFi network is 3.6] for transmitting
the inertial data and an image to the server. Compared to the
battery capacity of 20k Joules, the collection and uploading
of inertial sensor data and an image do not constitute any
signification power consumption for a mobile device [4].

Updating of General Entities in Different Same Planes.
Since it is difficult to extract the location relationship be-
tween two entities which are not in the same plane from
an image, SISE can only update the changed entities lying
on the same plane. Nevertheless, SISE can also update
the entire indoor semantic floorplan by detecting multiple
planes [42], [43]. In future, SISE will be extended to support
multiple plane updating at the same time by combining
other techniques, such as SfM technique [4], [10], [11].

Updating of Annotated Objects. Since some annotated
objects (e.g., store names, posters) are tagged on the wall,
it is difficult to unify them to the same plane and then
update them using enGraphs in SISE. Moreover, compared
to general entities, the key issue is how to accurately detect
and recognize the text tagged in the annotated objects.
Recently, several computer vision methods [44], [45] have
been proposed to detect and recognize texts from images. In
future, we will extend SISE to support annotated semantic
updating.

9 CONCLUSION

In this paper, a self-updating method of the indoor semantic
floorplan called SISE is proposed using a novel abstraction
representation. First, two enGraph generation methods have
been designed and a quality-based subgraph matching al-
gorithm has been proposed to efficiently obtain the high-
quality matched subgraphs. Two light-weight algorithms
have then been proposed to accurately and efficiently de-
tect the changed entities. These entities are then detected
and their semantics in the indoor semantic floorplan are
updated. Extensive experiments have been conducted on
both real data and synthetic data. Experimental results
demonstrate that SISE can effectively update 80% out-of-
date semantic of indoor general entities caused by indoor
environmental variations.

5. http:/ /ziyang.eecs.umich.edu/projects/powertutor/
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