
2011
Volume 8, Number 4

ACM Transactions on

Architecture and
Code Optimization

A
CM

Transactions
on

A
rchitecture

and
Code

O
ptim

ization
Vol.8

•N
o.4

•2011
A

rticles
18-55

continued on back cover

Article 31 (20 pages) Hardware Transactional Memory with Software-Defined Conflicts
R. Titos-Gil, M. E. Acacio, J. M. García, T. Harris, A. Cristal, O. Unsal, I. Hur, and M. Valero

Article 32 (23 pages) Improving Performance of Nested Loops on Reconfigurable Array Processors
Y. Kim, J. Lee, T. X. Mai, and Y. Paek

Article 33 (16 pages) Making Wide-Issue VLIW Processors Viable on FPGAs
M. Purnaprajna and P. Ienne

Article 34 (25 pages) On the Evaluation of the Impact of Shared Resources in Multithreaded COTS
Processors in Time-Critical Environments
P. Radojković, S. Girbal, A. Grasset, E. Quiñones, S. Yehia, and F. J. Cazorla

Article 35 (21 pages) Non-Monopolizable Caches: Low-Complexity Mitigation of Cache Side Channel Attacks
L. Domnitser, A. Jaleel, J. Loew, N. Abu-Ghazaleh, and D. Ponomarev

Article 36 (20 pages) On the Simulation of Large-Scale Architectures Using Multiple Application
Abstraction Levels
A. Rico, F. Cabarcas, C. Villavieja, M. Pavlovic, A. Vega, Y. Etsion, A. Ramirez,
and M. Valero

Article 37 (20 pages) Optimizing Explicit Data Transfers for Data Parallel Applications on
the Cell Architecture
S. Saidi, P. Tendulkar, T. Lepley, and O. Maler

Article 38 (21 pages) PLDS: Partitioning Linked Data Structures for Parallelism
M. Feng, C. Lin, and R. Gupta

Article 39 (21 pages) Polyhedral Parallelization of Binary Code
B. Pradelle, A. Ketterlin, and P. Clauss

Article 40 (22 pages) ReNIC: Architectural Extension to SR-IOV I/O Virtualization for Efficient Replication
Y. Dong, Y. Chen, Z. Pan, J. Dai, and Y. Jiang

Article 41 (22 pages) Sabrewing: A Lightweight Architecture for Combined Floating-Point and
Integer Arithmetic
T. M. Bruintjes, K. H. G. Walters, S. H. Gerez, B. Molenkamp, and G. J. M. Smit

Article 42 (20 pages) Seamlessly Portable Applications: Managing the Diversity of Modern
Heterogeneous Systems
M. Kicherer, F. Nowak, R. Buchty, and W. Karl

Article 43 (20 pages) SYRANT: Symmetric Resource Allocation on Not-Taken and Taken Paths
N. Premillieu and A. Seznec

Article 44 (21 pages) The Gradient-Based Cache Partitioning Algorithm
W. Hasenplaugh, P. S. Ahuja, A, Jaleel, S. Steely Jr., and J. Emer

Article 45 (20 pages) The Migration Prefetcher: Anticipating Data Promotion in Dynamic NUCA Caches
J. Lira, T. M. Jones, C. Molina, and A. González

Article 46 (21 pages) Thread Tranquilizer: Dynamically Reducing Performance Variation
K. K. Pusukuri, R. Gupta, and L. N. Bhuyan

Article 47 (20 pages) TL-Plane-Based Multi-Core Energy-Efficient Real-Time Scheduling Algorithm
for Sporadic Tasks
D. Zhang, D. Guo, F. Chen, F. Wu, T. Wu, T. Cao, and S. Jin

Article 48 (22 pages) The Accelerator Store: A Shared Memory Framework For Accelerator-Based Systems
M. J. Lyons, M. Hempstead, G.-Y. Wei, and D. Brooks

Article 49 (21 pages) Toward High-Throughput Algorithms on Many-Core Architectures
D. Orozco, E. Garcia, R. Khan, K. Livingston, and G. R. Gao

Article 50 (23 pages) Using Machine Learning to Improve Automatic Vectorization
K. Stock, L.-N. Pouchet, and P. Sadayappan

Article 51 (19 pages) Utilizing RF-I and Intelligent Scheduling for Better Throughput/Watt in a Mobile GPU
Memory System
K. Therdsteerasukdi, G. Byun, J. Cong, M. F. Chang, and G. Reinman

Article 52 (20 pages) VSim: Simulating Multi-Server Setups at Near Native Hardware Speed
F. Ryckbosch, S. Polfliet, and L. Eeckhout

Article 53 (21 pages) Writeback-Aware Partitioning and Replacement for Last-Level Caches in Phase
Change Main Memory Systems
M. Zhou, Y. Du, B. Childers, R. Melhem, and D. Mossé

Article 54 (23 pages) A Transactional Memory with Automatic Performance Tuning
Q. Wang, S. Kulkarni, J. Cavazos, and M. Spear

Article 55 (20 pages) sFtree: A Fully Connected and Deadlock-Free Switch-to-Switch Routing Algorithm
for Fat-Trees
B. Bogdanski, S.-A. Reinemo, F. O. Sem-Jacobsen, and E. G. Gran

SPECIAL ISSUE ON HIGH-PERFORMANCE AND
EMBEDDED ARCHITECTURES AND COMPILERS
Article 18 (2 pages) Introduction

P. Stenström and K. De Bosschere
Article 19 (20 pages) ABS: A Low-Cost Adaptive Controller for Prefetching

in a Banked Shared Last-Level Cache
J. Albericio, R. Gran, P. Ibáñez, V. Viñals, and J. M. LLabería

Article 20 (19 pages) An Architecture-Independent Instruction Shuffler to Protect
against Side-Channel Attacks
A. G. Bayrak, N. Velickovic, P. Ienne, and W. Burleson

Article 21 (21 pages) Approximate Graph Clustering for Program Characterization
J. Demme and S. Sethumadhavan

Article 22 (21 pages) Bahurupi: A Polymorphic Heterogeneous Multi-Core Architecture
M. Pricopi and T. Mitra

Article 23 (20 pages) Compiler Mitigations for Time Attacks on Modern x86 Processors
J. Van Cleemput, B. Coppens, and B. De Sutter

Article 24 (20 pages) Compiler Techniques to Improve Dynamic Branch Prediction for Indirect Jump
and Call Instructions
J. McCandless and D. Gregg

Article 25 (19 pages) DAPSCO: Distance-Aware Partially Shared Cache Organization
A. García-Guirado, R. Fernández-Pascual, A. Ros, and J. M. García

Article 26 (20 pages) On-the-Fly Structure Splitting for Heap Objects
Z. Wang, C. Wu, P.-C. Yew, J. Li, and D. Xu

Article 27 (18 pages) Efficient Liveness Computation Using Merge Sets and DJ-Graphs
D. Das, B. Dupont de Dinechin, and R. Upadrasta

Article 28 (21 pages) Efficiently Exploiting Memory Level Parallelism on Asymmetric Coupled Cores
in the Dark Silicon Era
G. Patsilaras, N. K. Choudhary, and J. Tuck

Article 29 (22 pages) Exploring the Limits of GPGPU Scheduling in Control Flow Bound Applications
R. Malits, E. Bolotin, A. Kolodny, and A. Mendelson

Article 30 (20 pages) FlexSig: Implementing Flexible Hardware Signatures
L. Orosa, E. Antelo, and J. D. Bruguera

2011
Volume 8, Number 4

ACM Transactions on

Architecture and
Code Optimization

A
CM

Transactions
on

A
rchitecture

and
Code

O
ptim

ization
Vol.8

•N
o.4

•2011
A

rticles
18-55

continued on back cover

Article 31 (20 pages) Hardware Transactional Memory with Software-Defined Conflicts
R. Titos-Gil, M. E. Acacio, J. M. García, T. Harris, A. Cristal, O. Unsal, I. Hur, and M. Valero

Article 32 (23 pages) Improving Performance of Nested Loops on Reconfigurable Array Processors
Y. Kim, J. Lee, T. X. Mai, and Y. Paek

Article 33 (16 pages) Making Wide-Issue VLIW Processors Viable on FPGAs
M. Purnaprajna and P. Ienne

Article 34 (25 pages) On the Evaluation of the Impact of Shared Resources in Multithreaded COTS
Processors in Time-Critical Environments
P. Radojković, S. Girbal, A. Grasset, E. Quiñones, S. Yehia, and F. J. Cazorla

Article 35 (21 pages) Non-Monopolizable Caches: Low-Complexity Mitigation of Cache Side Channel Attacks
L. Domnitser, A. Jaleel, J. Loew, N. Abu-Ghazaleh, and D. Ponomarev

Article 36 (20 pages) On the Simulation of Large-Scale Architectures Using Multiple Application
Abstraction Levels
A. Rico, F. Cabarcas, C. Villavieja, M. Pavlovic, A. Vega, Y. Etsion, A. Ramirez,
and M. Valero

Article 37 (20 pages) Optimizing Explicit Data Transfers for Data Parallel Applications on
the Cell Architecture
S. Saidi, P. Tendulkar, T. Lepley, and O. Maler

Article 38 (21 pages) PLDS: Partitioning Linked Data Structures for Parallelism
M. Feng, C. Lin, and R. Gupta

Article 39 (21 pages) Polyhedral Parallelization of Binary Code
B. Pradelle, A. Ketterlin, and P. Clauss

Article 40 (22 pages) ReNIC: Architectural Extension to SR-IOV I/O Virtualization for Efficient Replication
Y. Dong, Y. Chen, Z. Pan, J. Dai, and Y. Jiang

Article 41 (22 pages) Sabrewing: A Lightweight Architecture for Combined Floating-Point and
Integer Arithmetic
T. M. Bruintjes, K. H. G. Walters, S. H. Gerez, B. Molenkamp, and G. J. M. Smit

Article 42 (20 pages) Seamlessly Portable Applications: Managing the Diversity of Modern
Heterogeneous Systems
M. Kicherer, F. Nowak, R. Buchty, and W. Karl

Article 43 (20 pages) SYRANT: Symmetric Resource Allocation on Not-Taken and Taken Paths
N. Premillieu and A. Seznec

Article 44 (21 pages) The Gradient-Based Cache Partitioning Algorithm
W. Hasenplaugh, P. S. Ahuja, A, Jaleel, S. Steely Jr., and J. Emer

Article 45 (20 pages) The Migration Prefetcher: Anticipating Data Promotion in Dynamic NUCA Caches
J. Lira, T. M. Jones, C. Molina, and A. González

Article 46 (21 pages) Thread Tranquilizer: Dynamically Reducing Performance Variation
K. K. Pusukuri, R. Gupta, and L. N. Bhuyan

Article 47 (20 pages) TL-Plane-Based Multi-Core Energy-Efficient Real-Time Scheduling Algorithm
for Sporadic Tasks
D. Zhang, D. Guo, F. Chen, F. Wu, T. Wu, T. Cao, and S. Jin

Article 48 (22 pages) The Accelerator Store: A Shared Memory Framework For Accelerator-Based Systems
M. J. Lyons, M. Hempstead, G.-Y. Wei, and D. Brooks

Article 49 (21 pages) Toward High-Throughput Algorithms on Many-Core Architectures
D. Orozco, E. Garcia, R. Khan, K. Livingston, and G. R. Gao

Article 50 (23 pages) Using Machine Learning to Improve Automatic Vectorization
K. Stock, L.-N. Pouchet, and P. Sadayappan

Article 51 (19 pages) Utilizing RF-I and Intelligent Scheduling for Better Throughput/Watt in a Mobile GPU
Memory System
K. Therdsteerasukdi, G. Byun, J. Cong, M. F. Chang, and G. Reinman

Article 52 (20 pages) VSim: Simulating Multi-Server Setups at Near Native Hardware Speed
F. Ryckbosch, S. Polfliet, and L. Eeckhout

Article 53 (21 pages) Writeback-Aware Partitioning and Replacement for Last-Level Caches in Phase
Change Main Memory Systems
M. Zhou, Y. Du, B. Childers, R. Melhem, and D. Mossé

Article 54 (23 pages) A Transactional Memory with Automatic Performance Tuning
Q. Wang, S. Kulkarni, J. Cavazos, and M. Spear

Article 55 (20 pages) sFtree: A Fully Connected and Deadlock-Free Switch-to-Switch Routing Algorithm
for Fat-Trees
B. Bogdanski, S.-A. Reinemo, F. O. Sem-Jacobsen, and E. G. Gran

SPECIAL ISSUE ON HIGH-PERFORMANCE AND
EMBEDDED ARCHITECTURES AND COMPILERS
Article 18 (2 pages) Introduction

P. Stenström and K. De Bosschere
Article 19 (20 pages) ABS: A Low-Cost Adaptive Controller for Prefetching

in a Banked Shared Last-Level Cache
J. Albericio, R. Gran, P. Ibáñez, V. Viñals, and J. M. LLabería

Article 20 (19 pages) An Architecture-Independent Instruction Shuffler to Protect
against Side-Channel Attacks
A. G. Bayrak, N. Velickovic, P. Ienne, and W. Burleson

Article 21 (21 pages) Approximate Graph Clustering for Program Characterization
J. Demme and S. Sethumadhavan

Article 22 (21 pages) Bahurupi: A Polymorphic Heterogeneous Multi-Core Architecture
M. Pricopi and T. Mitra

Article 23 (20 pages) Compiler Mitigations for Time Attacks on Modern x86 Processors
J. Van Cleemput, B. Coppens, and B. De Sutter

Article 24 (20 pages) Compiler Techniques to Improve Dynamic Branch Prediction for Indirect Jump
and Call Instructions
J. McCandless and D. Gregg

Article 25 (19 pages) DAPSCO: Distance-Aware Partially Shared Cache Organization
A. García-Guirado, R. Fernández-Pascual, A. Ros, and J. M. García

Article 26 (20 pages) On-the-Fly Structure Splitting for Heap Objects
Z. Wang, C. Wu, P.-C. Yew, J. Li, and D. Xu

Article 27 (18 pages) Efficient Liveness Computation Using Merge Sets and DJ-Graphs
D. Das, B. Dupont de Dinechin, and R. Upadrasta

Article 28 (21 pages) Efficiently Exploiting Memory Level Parallelism on Asymmetric Coupled Cores
in the Dark Silicon Era
G. Patsilaras, N. K. Choudhary, and J. Tuck

Article 29 (22 pages) Exploring the Limits of GPGPU Scheduling in Control Flow Bound Applications
R. Malits, E. Bolotin, A. Kolodny, and A. Mendelson

Article 30 (20 pages) FlexSig: Implementing Flexible Hardware Signatures
L. Orosa, E. Antelo, and J. D. Bruguera

ACM
2 Penn Plaza, Suite 701
New York, NY 10121-0701
Tel.: 212-869-7440
Fax: 212-869-0481
http://www.acm.org

Home Page: http://taco.acm.org/

Editor-in-Chief

Thomas M. Conte Georgia Institute of Technology / email: conte@gatech.edu

Associate Editors

David Albonesi Cornell University / email: albonesi@cls.cornell.edu

David August Princeton University / email: august@cs.princeton.edu

David Brooks Harvard University / email: dbrooks@eecs.harvard.edu

Fred Chong University of California, Santa Barbara / email: chong@cs.ucsb.edu

Jack Davidson University of Virginia / email: jwd@virginia.edu

Koen De Bosschere Ghent University / email: koen.debosschere@elis.ugent.be

Lieven Eeckhout Ghent University / email: lieven.eeckhout@elis.ugent.be

Paolo Faraboschi Hewlett-Packard / email: paolo.faraboschi@hp.com

Antonio González Universitat Politecnica de Catalunya & Intel / email: antonio@ac.upc.es

Rajiv Gupta University of California, Riverside / email: gupta@cs.ucr.edu

Michael Hind IBM / email: hind@watson.ibm.com

Wen-Mei W. Hwu University of Illinois, Urbana-Champaign / email: w-hwu@uiuc.edu

Ravi Iyer Intel / email: ravishankar.iyer@intel.com

Hsien-Hsin S. Lee Georgia Institute of Technology / email: leehs@ece.gatech.edu

Scott A. Mahlke University of Michigan / email: mahlke@umich.edu

Margaret Martonosi Princeton University / email: martonosi@princeton.edu

Onur Mutlu Carnegie Mellon University / email: onur@cmu.edu

Eric Rotenberg North Carolina State University / email: ericro@ece.ncsu.edu

Per Stenström Chalmers University of Technology / email: pers@chalmers.se

David A. Wood University of Wisconsin, Madison / email: david@cs.wisc.edu

Donald Yeung University of Maryland / email: yeung@eng.umd.edu

Huiyang Zhou North Carolina State University / email: hzhou@ncsu.edu

Headquarters Journals SÏtaff

Laura Lander Journal Manager

Irma Strolia Editorial Assistant

Media Content Marketing Production

The ACM Transactions on Architecture and Code Optimization (ISSN 1544-3566) is published quarterly in Spring, Summer, Fall,
and Winter by the Association for Computing Machinery (ACM), 2 Penn Plaza, Suite 701, New York, NY 10121-0701. Fall 2011.
Periodicals class postage paid at New York, NY 10001, and at additional mailing offices. Printed in the U.S.A. POSTMASTER:
Send address changes to ACM Transactions on Architecture and Code Optimization, ACM, 2 Penn Plaza, Suite 701, New York,
NY 10121-0701.

For manuscript submissions, subscription, and change of address information, see inside backcover.

Copyright © 2011 by the Association for Computing Machinery (ACM). Permission to make digital or hard copies of part or all of
this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or com-
mercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permission to republish from: Publi ca tions

Department, ACM, Inc. Fax +1 212-869-
0481 or email permissions@acm.org.

For other copying of articles that carry a
code at the bottom of the first or last
page or screen display, copying is per-
mitted provided that the per-copy fee in-
dicated in the code is paid through the
Copyright Clearance Center, 222 Rose-
wood Drive, Danvers, MA 01923.

ACM Transactions on Architecture and Code Optimization
http://taco.acm.org/

Guide to Manuscript Submission
Submission to the ACM Transactions on Architecture and Code Optimization is done electronically through http://
acm. manuscriptcentral. com. Once you are at that site, you can create an account and password with which you
can enter the ACM Manu script Central manuscript review tracking system. From a drop-down list of journals,
choose ACM Transactions on Architecture and Code Optimization and proceed to the Author Center to submit
your manuscript and your accompanying files.

You will be asked to create an abstract that will be used throughout the system as a synopsis of your paper. You
will also be asked to classify your submission using the ACM Computing Classification System through a link
provided at the Author Center. For completeness, please select at least one primary-level classification followed
by two secondary-level classifications. To make the process easier, you may cut and paste from the list. Remem-
ber, you, the author, know best which area and sub-areas are covered by your paper; in addition to clarifying
the area where your paper belongs, classification often helps in quickly identifying suitable reviewers for your
paper. So it is important that you provide as thorough a classification of your paper as possible.

The ACM Production Department prefers that your manuscript be prepared in either LaTeX or Ms Word format.
Style files for manuscript preparation can be obtained at the following location: http:// www. acm. org/ pubs/
submissions/submission.htm. For editorial review, the manuscript should be submitted as a PDF or Post script
file. Accompanying material can be in any number of text or image formats, as well as software/ documentation
bundles in zip or tar-gzipped formats.

Questions regarding editorial review process should be directed to the Editor-in-Chief. Questions regarding the post-
acceptance production process should be addressed to the Journal Manager, Laura Lander, at lander@ hq.acm.org.

Subscription, Single Copy, and Membership Information.

Send orders to:

ACM Member Services Dept.
General Post Office
PO Box 30777
New York, NY 10087-0777

For information, contact:

Mail: ACM Member Services Dept.
2 Penn Plaza, Suite 701
New York, NY 10121-0701

Phone: +1-212-626-0500
Fax: +1-212-944-1318
Email: acmhelp@acm.org
Catalog: http://www.acm.org/catalog

Subscription rates for ACM Transactions on Architecture and Code Optimization are, for print: $ 40 per year for ACM
members and $35 for students; and for print and online: $48 for members and $42 for students. Single copies are
$18 each for ACM members and $40 for nonmembers. Your subscription expiration date is coded in four digits
at the top of your mailing label; the first two digits show the year, the last two show the month of expiration.

Notice to Past Authors of ACM-Published Articles. ACM intends to create a complete electronic archive of all
articles and/or other materials previously published by ACM. If you have written a work that was previously pub-
lished by ACM in any journal or conference proceedings prior to 1978, or any SIG Newsletter at any time, and
you do NOT want this work to appear in the ACM Digital Library, please inform permission@ acm.org, stating the
title of the work, the author(s), and where and when published.

About ACM. ACM is the world’s largest educational and scientific computing society, uniting educators,
researchers and professionals to inspire dialogue, share resources and address the field’s challenges. ACM strength-
ens the computing profession’s collective voice through strong leadership, promotion of the highest standards,
and recognition of technical excellence. ACM supports the professional growth of its members by providing oppor-
tunities for life-long learning, career development, and professional networking.

Visit ACM’s Website: http://www.acm.org.

Change of Address Notification. To notify ACM of a change of address, use the addresses above or send an
email to coa@acm.org.

Please allow 6-8 weeks for new membership or change of name and address to become effective. Send your old
label with your new address notification. To avoid interruption of service, notify your local post office before
change of residence. For a fee, the post office will forward 2nd- and 3rd-class periodicals.

ACM Transactions on

Architecture and
Code Optimization

ACM
2 Penn Plaza, Suite 701
New York, NY 10121-0701
Tel.: 212-869-7440
Fax: 212-869-0481
http://www.acm.org

Home Page: http://taco.acm.org/

Editor-in-Chief

Thomas M. Conte Georgia Institute of Technology / email: conte@gatech.edu

Associate Editors

David Albonesi Cornell University / email: albonesi@cls.cornell.edu

David August Princeton University / email: august@cs.princeton.edu

David Brooks Harvard University / email: dbrooks@eecs.harvard.edu

Fred Chong University of California, Santa Barbara / email: chong@cs.ucsb.edu

Jack Davidson University of Virginia / email: jwd@virginia.edu

Koen De Bosschere Ghent University / email: koen.debosschere@elis.ugent.be

Lieven Eeckhout Ghent University / email: lieven.eeckhout@elis.ugent.be

Paolo Faraboschi Hewlett-Packard / email: paolo.faraboschi@hp.com

Antonio González Universitat Politecnica de Catalunya & Intel / email: antonio@ac.upc.es

Rajiv Gupta University of California, Riverside / email: gupta@cs.ucr.edu

Michael Hind IBM / email: hind@watson.ibm.com

Wen-Mei W. Hwu University of Illinois, Urbana-Champaign / email: w-hwu@uiuc.edu

Ravi Iyer Intel / email: ravishankar.iyer@intel.com

Hsien-Hsin S. Lee Georgia Institute of Technology / email: leehs@ece.gatech.edu

Scott A. Mahlke University of Michigan / email: mahlke@umich.edu

Margaret Martonosi Princeton University / email: martonosi@princeton.edu

Onur Mutlu Carnegie Mellon University / email: onur@cmu.edu

Eric Rotenberg North Carolina State University / email: ericro@ece.ncsu.edu

Per Stenström Chalmers University of Technology / email: pers@chalmers.se

David A. Wood University of Wisconsin, Madison / email: david@cs.wisc.edu

Donald Yeung University of Maryland / email: yeung@eng.umd.edu

Huiyang Zhou North Carolina State University / email: hzhou@ncsu.edu

Headquarters Journals SÏtaff

Laura Lander Journal Manager

Irma Strolia Editorial Assistant

Media Content Marketing Production

The ACM Transactions on Architecture and Code Optimization (ISSN 1544-3566) is published quarterly in Spring, Summer, Fall,
and Winter by the Association for Computing Machinery (ACM), 2 Penn Plaza, Suite 701, New York, NY 10121-0701. Fall 2011.
Periodicals class postage paid at New York, NY 10001, and at additional mailing offices. Printed in the U.S.A. POSTMASTER:
Send address changes to ACM Transactions on Architecture and Code Optimization, ACM, 2 Penn Plaza, Suite 701, New York,
NY 10121-0701.

For manuscript submissions, subscription, and change of address information, see inside backcover.

Copyright © 2011 by the Association for Computing Machinery (ACM). Permission to make digital or hard copies of part or all of
this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or com-
mercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permission to republish from: Publi ca tions

Department, ACM, Inc. Fax +1 212-869-
0481 or email permissions@acm.org.

For other copying of articles that carry a
code at the bottom of the first or last
page or screen display, copying is per-
mitted provided that the per-copy fee in-
dicated in the code is paid through the
Copyright Clearance Center, 222 Rose-
wood Drive, Danvers, MA 01923.

ACM Transactions on Architecture and Code Optimization
http://taco.acm.org/

Guide to Manuscript Submission
Submission to the ACM Transactions on Architecture and Code Optimization is done electronically through http://
acm. manuscriptcentral. com. Once you are at that site, you can create an account and password with which you
can enter the ACM Manu script Central manuscript review tracking system. From a drop-down list of journals,
choose ACM Transactions on Architecture and Code Optimization and proceed to the Author Center to submit
your manuscript and your accompanying files.

You will be asked to create an abstract that will be used throughout the system as a synopsis of your paper. You
will also be asked to classify your submission using the ACM Computing Classification System through a link
provided at the Author Center. For completeness, please select at least one primary-level classification followed
by two secondary-level classifications. To make the process easier, you may cut and paste from the list. Remem-
ber, you, the author, know best which area and sub-areas are covered by your paper; in addition to clarifying
the area where your paper belongs, classification often helps in quickly identifying suitable reviewers for your
paper. So it is important that you provide as thorough a classification of your paper as possible.

The ACM Production Department prefers that your manuscript be prepared in either LaTeX or Ms Word format.
Style files for manuscript preparation can be obtained at the following location: http:// www. acm. org/ pubs/
submissions/submission.htm. For editorial review, the manuscript should be submitted as a PDF or Post script
file. Accompanying material can be in any number of text or image formats, as well as software/ documentation
bundles in zip or tar-gzipped formats.

Questions regarding editorial review process should be directed to the Editor-in-Chief. Questions regarding the post-
acceptance production process should be addressed to the Journal Manager, Laura Lander, at lander@ hq.acm.org.

Subscription, Single Copy, and Membership Information.

Send orders to:

ACM Member Services Dept.
General Post Office
PO Box 30777
New York, NY 10087-0777

For information, contact:

Mail: ACM Member Services Dept.
2 Penn Plaza, Suite 701
New York, NY 10121-0701

Phone: +1-212-626-0500
Fax: +1-212-944-1318
Email: acmhelp@acm.org
Catalog: http://www.acm.org/catalog

Subscription rates for ACM Transactions on Architecture and Code Optimization are, for print: $ 40 per year for ACM
members and $35 for students; and for print and online: $48 for members and $42 for students. Single copies are
$18 each for ACM members and $40 for nonmembers. Your subscription expiration date is coded in four digits
at the top of your mailing label; the first two digits show the year, the last two show the month of expiration.

Notice to Past Authors of ACM-Published Articles. ACM intends to create a complete electronic archive of all
articles and/or other materials previously published by ACM. If you have written a work that was previously pub-
lished by ACM in any journal or conference proceedings prior to 1978, or any SIG Newsletter at any time, and
you do NOT want this work to appear in the ACM Digital Library, please inform permission@ acm.org, stating the
title of the work, the author(s), and where and when published.

About ACM. ACM is the world’s largest educational and scientific computing society, uniting educators,
researchers and professionals to inspire dialogue, share resources and address the field’s challenges. ACM strength-
ens the computing profession’s collective voice through strong leadership, promotion of the highest standards,
and recognition of technical excellence. ACM supports the professional growth of its members by providing oppor-
tunities for life-long learning, career development, and professional networking.

Visit ACM’s Website: http://www.acm.org.

Change of Address Notification. To notify ACM of a change of address, use the addresses above or send an
email to coa@acm.org.

Please allow 6-8 weeks for new membership or change of name and address to become effective. Send your old
label with your new address notification. To avoid interruption of service, notify your local post office before
change of residence. For a fee, the post office will forward 2nd- and 3rd-class periodicals.

ACM Transactions on

Architecture and
Code Optimization

47

TL-Plane-Based Multi-Core Energy-Efficient Real-Time Scheduling
Algorithm for Sporadic Tasks

DONGSONG ZHANG, National Laboratory of Parallel and Distributed Processing, National
University of Defense Technology
DEKE GUO and FANGYUAN CHEN, National University of Defense Technology
FEI WU, Shanghai University of Engineering Science
TONG WU, National University of Defense Technology
TING CAO, Australian National University
SHIYAO JIN, National Laboratory of Parallel and Distributed Processing, National University of Defense
Technology

As the energy consumption of multi-core systems becomes increasingly prominent, it’s a challenge to design
an energy-efficient real-time scheduling algorithm in multi-core systems for reducing the system energy
consumption while guaranteeing the feasibility of real-time tasks. In this paper, we focus on multi-core
processors, with the global Dynamic Voltage Frequency Scaling (DVFS) and Dynamic Power Management
(DPM) technologies. In this setting, we propose an energy-efficient real-time scheduling algorithm, the Time
Local remaining execution plane based Dynamic Voltage Frequency Scaling (TL-DVFS). TL-DVFS utilizes
the concept of Time Local remaining execution (TL) plane to dynamically scale the voltage and frequency of
a processor at the initial time of each TL plane as well as at the release time of a sporadic task in each TL
plane. Consequently, TL-DVFS can obtain a reasonable tradeoff between the real-time constraint and the
energy-saving while realizing the optimal feasibility of sporadic tasks. Mathematical analysis and extensive
simulations demonstrate that TL-DVFS always saves more energy than existing algorithms, especially in
the case of high workloads, and guarantees the optimal feasibility of sporadic tasks at the same time.

Categories and Subject Descriptors: C.3 [Special-Purpose and Application-Based Systems]: Real-time
and embedded systems; D.2.2 [Software Engineering]: Design Tools and Techniques

General Terms: Algorithms, Design, Performance

Additional Key Words and Phrases: Real-time system, energy-efficient scheduling, multi-core, sporadic task

This work was supported in part by the National Science Foundation of China under Grant Nos. 60903206,
61170284, 61173045, 61103084, and 61100075; the National Research Foundation for the Doctoral Program
of Higher Education of China under Grant No. 20104307110005; the China Postdoctoral Science Foundation
under Grant Nos. 20100480898 and 201104439; the Hunan Provincial Innovation Foundation for Postgradu-
ate of China under Grant No. CX2010B026; and the Research Foundation of National University of Defense
Technology under Grant No. JC10-05-01, and the Innovation Program of Shanghai Municipal Education
Commission under Grant No. 12ZZ182.
Authors’ addresses: D. S. Zhang, F. Y. Chen, and S. Y. Jin, PDL, School of Computer, National University
of Defense Technology, China; email: dszhang@nudt.edu.cn; D. K. Guo, School of Information System and
Management, National University of Defense Technology, China; F. Wu, College of Electronic and Electrical
Engineering, Shanghai University of Engineering Science, China; T. Wu, Center for National Security and
Strategic Studies, National University of Defense Technology, China; T. Cao, Research School of Computer
Science, Australian National University, Australia.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2012 ACM 1544-3566/2012/01-ART47 $10.00

DOI 10.1145/2086696.2086726 http://doi.acm.org/10.1145/2086696.2086726

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 47, Publication date: January 2012.

47:2 D. Zhang et al.

ACM Reference Format:
Zhang, D., Guo, D., Chen, F., Wu, F., Wu, T., Cao, T., and Jin, S. 2012. TL-plane-based multi-core energy-
efficient real-time scheduling algorithm for sporadic tasks. ACM Trans. Architec. Code Optim. 8, 4, Article 47
(January 2012), 20 pages.
DOI = 10.1145/2086696.2086726 http://doi.acm.org/10.1145/2086696.2086726

1. INTRODUCTION

With the rapid development of semiconductor technology, multi-core processors
(On-chip Multiprocessors or CMP) have been increasingly adopted by chip designers.
Most chip manufacturers (Intel, AMD, etc) have embedded two, four and eight-core pro-
cessors into one single chip [Dorsey 2007; Naveh 2006; Kumar and Hinton 2009]. Fur-
thermore, many efforts are moving toward integrating hundreds or thousands of cores
on a single chip (called many-core processors [Mosley 2008]). Multi-core processors
are increasingly being used in high-end real-time systems for achieving high perfor-
mance/throughput, such as the robot control, image processing, and automatic target
recognition. Energy consumption, however, is one of the primary design objectives in
many embedded real-time fields, especially in the field of portable computing. With the
increasing requirements of green computing, energy-efficient real-time scheduling is
becoming increasingly important in multi-core systems.

To reduce the energy consumption, modern multi-core processor systems utilize a
wide variety of hardware energy-efficient technologies, such as DPM [Rele et al. 2002]
and DVFS [Chandrakasan et al. 1992]. The energy-efficient real-time scheduling tech-
nologies can take advantages of DPM and DVFS to dynamically adjust the operating
mode and decrease the supply voltage and frequency [Dorsey 2007; Naveh 2006] of each
processor. Those energy-efficient scheduling technologies implemented by hardware-
based approaches, however, do not take account of the real-time constraint in real-time
systems. The decreased frequency is likely to incur the increase in the execution time
of a task, thus violating the constraint of real-time [Pillai and Shin 2001]. Therefore,
the goal of an energy-efficient real-time scheduling scheme is to achieve energy-saving,
as many as possible, and satisfy all real-time constraints simultaneously.

Recently, researchers have presented many energy-efficient real-time scheduling al-
gorithms [AlEnawy and Aydin 2005; Aydin and Yang 2003; Chen et al. 2006; Yang
et al. 2009] for real-time embedded systems running on traditional multiprocessor
platforms. The methods adopted by these algorithms usually first assign each task to
one designated processor and then use the EDF algorithm to implement an energy-
efficient scheduling on a single processor. Each processor in such a multiprocessor
system has an individual voltage level. Many modern multi-core processor platforms
have a remarkable feature compared to traditional multiprocessor platforms, that
is, all cores share the same voltage and frequency [Herbert and Marculescu 2007;
Kim et al. 2008]. For example, Intel’s Itanium [McGowen et al. 2006], Core Duo [Naveh
2006], i7 [Intel 2011], and IBM’s Power 7 Series [McCreary et al. 2007] support the
global DVFS on-chip technology [Kim et al. 2008].

More and more researchers have focused on the energy-efficient real-time scheduling
on multi-core platforms, with the global DVFS on-chip technology. With the constraints
of global voltage and frequency, a core with the maximum workload at the scheduling
time plays a dominant factor [Seo et al. 2008; Yang et al. 2005]. The current study
on multi-core platforms with the global DVFS technology focuses on the load balanc-
ing across cores, so as to minimize the energy consumption. Existing research efforts
[Seo et al. 2008; Yang et al. 2005; Devadas and Aydin 2010; Huang et al. 2009], however,
still face three challenging issues: (1) most of energy-efficient scheduling algorithms
are based on the partitioning scheduling method or the non-optimal global schedul-
ing method; hence, the optimal feasibility of a set of real-time tasks could not be

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 47, Publication date: January 2012.

Real-Time Scheduling Algorithm for Sporadic Tasks 47:3

guaranteed. Aydin and Yang [2003] have proved that the task-to-processor assignment
with the optimal load balancing and feasibility is an NP-hard problem. (2) The existing
algorithms often utilize the method of turning off one or more cores for reducing energy
consumption. Although such method can obtain more energy-saving for low workloads,
it is not suitable for high workloads. (3) Recent research efforts are based on the frame
task model or periodic task model. However, they paid little attention to the sporadic
task model which is more general compared to the frame and periodic task models
in reality. In the case of the sporadic task model, the deadline and release time of a
real-time task are uncertain. Moreover, most recent algorithms are static and did not
consider the dynamic releases of sporadic tasks. Thus, it is not efficient and practical
to directly apply existing algorithms to solve the energy-efficient real-time scheduling
problem of sporadic tasks.

In this paper, we propose TL-DVFS, an energy-efficient real-time scheduling algo-
rithm with regard to sporadic tasks running on multi-core processors with the DVFS
and DPM technologies. We also prove the optimal schedulability of the TL-DVFS for
ensuring its advantages in theory. Additionally, the TL-DVFS can not only guarantee
the optimal feasibility of sporadic tasks, but also achieve more energy-saving, even in
the case of high workloads.

The rest of this paper is organized as follows: Section 2 discusses the related work.
Section 3 provides the system model. In Section 4, we propose the idea of energy-
efficient real-time scheduling in a TL plane, which is the basis of the TL-DVFS algo-
rithm presented in Section 5. The evaluation results are presented in Section 6. In
Section 7, we conclude this paper.

2. RELATED WORK

In past decades, many efforts have been done on the energy-efficient real-time schedul-
ing on a single processor [Pillai and Shin 2001; Lee and Shin 2004]. Along with such
research efforts, many researchers began studying the same problem on multiproces-
sor systems [AlEnawy and Aydin 2005; Aydin and Yang 2003; Chen et al. 2006; Yang
et al. 2009].

Energy management of real-time tasks on CMP platforms under the global DVFS
constraint has started to attract the attentions of research communities. Yang et al.
[2005] proved that the energy management of a frame-based system is NP-Hard and
provided a static energy-efficient real-time scheduling algorithm. This algorithm is
only applied to a simple task model with the same deadline and release time; hence, it
is not effective for the periodic and sporadic task models. Bautista et al. [2008] proposed
a power-aware scheduler for soft real-time tasks on multi-core systems, which cannot
guarantee hard real-time constraints. With regard to the energy-efficient scheduling of
periodic hard real-time tasks on CMP systems, Seo et al. [2008] proposed two dynamic
schemes: the Dynamic Repartition (DR) and Dynamic Core Scaling (DCS). The DR
scheme repartitions tasks at runtime by resorting to task migrations, so as to create
a more balanced schedule that can adapt to the dynamic workload. The DCS adjusts
the number of active cores at runtime to reduce static power consumptions under the
assumption that transitions between off and active states can be done instantaneously
without any additional overheads. They, however, ignored the utilization of a critical
frequency due to the impractical consumption that the leakage power consumption
depends on the frequency. Huang et al. [2009] presented a Global EDF-based energy-
efficient real-time scheduling algorithm for periodic tasks in multi-core systems. The
algorithm can decrease the leakage power consumption and achieve more energy-
saving in the case of low workloads. However, the algorithm is not well suitable to
high workloads. Devadas and Aydin [2010] also proposed an online energy-efficient

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 47, Publication date: January 2012.

47:4 D. Zhang et al.

real-time scheduling algorithm, based on a variety of heuristic strategies for periodic
tasks in multi-core systems.

To meet real-time constraints, research efforts usually utilize the real-time schedul-
ing theory. Most of them adopt the partitioning schedule or non-optimal schedule
[Baker 2005] to implement a static or dynamic energy-efficient real-time scheduling for
frame or periodic tasks. Based on the optimal real-time scheduling algorithm LLREF
[Cho et al. 2006] proposed for periodic tasks, Funaoka et al. [2008] presented an optimal
static energy-efficient real-time scheduling algorithm for multi-core platforms with the
global DVFS technology. However, static methods do not take account of the uncertain
release time of a sporadic task; hence, energy-saving can be further improved. For a
sporadic task model, it is difficult to design a real-time scheduling algorithm to guar-
antee the deadlines of all tasks. Fisher et al. [2010] proved that there is no optimal
online scheduling algorithm for sporadic tasks, each with an arbitrary release time.
For sporadic tasks whose deadlines are equal to their periods, Funk and Nadadur
[2009] proposed an optimal online real-time scheduling algorithm, called a LRE-TL. In
this paper, we design an energy-efficient real-time scheduling algorithm, based on the
LRE-TL, to obtain energy-saving while guaranteeing the optimal feasibility.

3. SYSTEM MODEL

3.1. Task Model

We explore the energy-efficient real-time scheduling for a set of sporadic tasks on an
m-core processor with the DVFS technology. Let the task set � = {T1, T2, . . . , Tn} denote
a set of n sporadic tasks, each of which only has a single control thread. Each task Ti is
an infinite sequence of jobs, denoted as Ti1, Ti2,Ti is described using the following
4-tuple (ϕi, aij, Pi, Ci), where ϕi is the offset of Ti1, aij is the release time of the j-th
invocation, Pi is its period or the minimum release interval, and Ci is the amount of
the worst-case execution time at the highest profiling frequency fm. Ti invokes its first
job at the time of ϕi and its remaining jobs are processed at an interval of no less than
Pi time units, i.e., ai1 = ϕi ≥ 0 and aij ≥ ai(j−1) + Pi. The relative deadline of the job
Tij is equal to its period Pi. If the job Tij is released at the time of aij , its absolute
deadline is dij = aij + Pij during [aij, aij + Pi]. All jobs must be completed before their
respective deadlines. That is, if a job Tij is executed on a processor core corek at a
frequency αk(0 ≤ αk ≤ 1), it requires Ci/αk time units at every Pi interval. The ratio
Ci/Pi, denoted as ui, is the task utilization of Ti. Let U =�Ti∈�ui denote the utilization
of a task set. The maximum task utilization is defined as umax = max{ui|Ti ∈ �}. We
assume that all independent tasks may be preempted and migrated among cores at
any time and all tasks will not be given any precedence.

3.2. Power Model

This paper considers the energy-efficient real-time scheduling problem on a homoge-
neous multi-core system. We assume that there are m homogeneous cores, denoted as
{core1, core2, . . . , corem}. The voltages and frequencies of all cores are scaled together.
The design of electronic circuitry is usually done such that different supply voltages
would result in different execution frequencies.

The total power consumption (Ptot) of a CMOS-based processor consists of dynamic
power consumption (Pd), static power consumption (Pl), and an inherent power cost
(Pon) [ACPI 2011]. That is, Ptot = Pd + Pl + Pon. The dynamic power consumption
resulting from charging and discharging gates on a CMOS DVFS processor can be
expressed in terms of the operating voltage Vdd, the clock frequency f , and the switching
capacity Cef f as follows [Jejurikar et al. 2004]:

Pd = Cef f · V 2
dd · f. (1)

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 47, Publication date: January 2012.

Real-Time Scheduling Algorithm for Sporadic Tasks 47:5

Table I. The 70 nm Technology Constants for Transmeta Crusoe Processor

Variable Value Variable Value Variable Value
K1 0.063 K6 5.26 × 10−12 Ld 37
K2 0.153 Vbs −0.7 Lg 4 × 106

K3 5.38 × 10−7 Vth1 0.244 ε 1.5
K4 1.83 Ij 4.8 × 10−10 V1 0.5 × 109

K5 4.19 Cef f 4.3 × 10−10 Vm 1.0 × 109

According to Formula (2), we can see that the clock frequency f is related to several
factors. The threshold voltage Vth is a function of the body bias voltage Vbs, as shown in
Formula (3). Here, ε, Vth1, Ld, K1, K2 and K6 are constants depending on the processor
fabrication technology.

f = (Vdd − Vth)ε

Ld · K6
. (2)

Vth = Vth1 − K1 · Vdd − K2 · Vbs. (3)

The static power dissipation due to the subthreshold leakage (Isubn) and the reverse
bias junction current (Ij) is given by Formula (4), where Lg is the number of components
in the circuit, K3, K4, and K5 are constants determined by the processor fabrication
technology.

Pl = Lg · (Vdd · Isubn + |Vbs| · Ij). (4)

Isubn = K3 · eK4Vdd · eK5Vbs . (5)

The realistic constants based on the 70nm technology for Transmeta Crusoe pro-
cessor are presented in Table I, as given in Jejurikar et al. [2004] and Martin et al.
[2002]. To reduce the leakage power substantially, we assume that Vbs = −0.7V . We
also assume a conservative value of Pon = 0.1W as an existing literature [Jejurikar
et al. 2004] did.

This type of power consumption model has been adopted by many related works
[Jejurikar et al. 2004; Seo et al. 2008; Huang et al. 2009]. Note that the proposed
scheduling algorithm would be applied to multi-core systems with other power con-
sumption models after minimal modifications.

When a core is not executing any instruction, modern multi-core processors usually
adopt the DPM technique to put the core into a dormant mode (or shutdown) [ACPI
2011]. Additionally, each core would be switched from the dormant mode to the active
mode (or wakeup). In this paper, we assume that the overhead of shutdown/wakeup is
neglected because this factor can be treated easily in practical implementations [Seo
et al. 2008]. When a core becomes idle, the DPM can shutdown it and assume that its
power consumption should be zero. Note that those results proposed in this paper still
hold when the power consumption of an idle core is not zero.

3.3. Energy Model

According to Jejurikar et al. [2004], the sum of the static and dynamic energy con-
sumptions per cycle, denoted as f −1 · Ptot, decreases as Vdd scales up to 0.7V , beyond
which the static energy consumption dominates the value of f −1 · Ptot. In other words,
it is more energy-efficient to execute at Vdd = 0.7V and shut down the system than
execute at lower voltage levels. This implies that there is a critical frequency fcrit that
minimizes the energy consumption per cycle. Note that the critical frequency can be
computed by evaluating the gradient of the energy function f −1 · Ptot with respect to

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 47, Publication date: January 2012.

47:6 D. Zhang et al.

Vdd [Jejurikar et al. 2004]. From the relationship between the voltage and frequency
in Formula (2), we can see that Vdd =0.7V incurs a critical frequency of 1.26GHz.

We assume that the processor voltage can be a discrete variable ranging from V1
to Vm, and the corresponding discrete frequency variable ranging from f1 to fm. The
possible values of such two variables are set to be {(V1, f1),. . . ,(Vm, fm)|V1 < · · · < Vm,
f1 < · · ·< fm}, where V1 and Vm represent the lowest and highest voltages, respectively,
while f1 and fm represent the lowest and highest frequencies, respectively. According
to the voltage frequency relation described in Formula (2), Vdd = 0.5V results in the
minimum frequency f1 = 394MHz and the maximum frequency is fm = 3.1GHz when
Vdd = 1.0V .

In this paper, the overhead of voltage and frequency switching is assumed to be
neglected. The execution frequency of a processor corek is assumed to be no less than
the critical frequency. Then we update the computed frequency scaling factor αk= f/ fm
of corek based on the critical frequency. For sporadic tasks running on corek, the energy
consumption Ek(αk) within the interval L can be defined as follows:

Ek(αk) =
⎧⎨
⎩

0, if αk = 0
L· f j

−1 ·Ptot(f j)·αk· fm, if 0 < αk ≤ fcrit/ fm, ∃ j, f j−1 < fcrit ≤ f j

L· fi+1
−1 ·Ptot(fi+1)·αk· fm, if fcrit/ fm<αk ≤ 1, fi < αk· fm≤ fi+1

(6)

Where f j is the lowest discrete frequency among frequencies that are higher than
fcrit, fi is the highest discrete frequency among frequencies that are lower than αk · fm,
and fi+1 is the lowest discrete frequency among frequencies that are higher than αk · fm.
In other words, we choose the lowest frequency fi ∈{ f1, . . . , fm| f1 < · · · < fm} such that
αk ≤ fi/ fm in actual discrete environments.

4. TL-PLANE-BASED ENERGY-EFFICIENT REAL-TIME SCHEDULING

The TL plane is an abstraction technique of real-time scheduling. It is proposed in
the LLREF algorithm [Cho et al. 2006] for periodic tasks and is applied to the LRE-
TL algorithm [Funk and Nadadur 2009] for sporadic tasks. The TL plane is a two
dimensional plane where the horizontal axis represents the time (T) and the vertical
axis represents the local remaining execution (L). Absolute deadlines divide time as the
vertical dotted lines and a TL plane is placed between every two adjacent deadlines.

To implement an energy-efficient real-time scheduling, the dynamic voltage and
frequency scaling technologies are introduced into the optimal real-time scheduling
algorithm LRE-TL which is based on the TL plane. We use the fluid scheduling mode
[Holman and Anderson 2005] to perform an energy-efficient real-time scheduling of
tasks within the same TL plane. The aim is to achieve energy-saving by using the
dynamic voltage and frequency scaling while guaranteeing the optimal feasibility of
tasks in each TL plane, as shown in Figure 1. The identifier token refers to the status
of each task in a TL plane. Its location is marked by the horizontal axis (time) and the
vertical axis (local remaining execution time). The α oblique side is defined as the slope
line from an initial time t0 to the end time tf with the slope of −α, which implies that
the frequency of a processor core is α · fm. It can be seen from Figure 1 that the local
remaining execution time of the task T1 is l1 = α · tf and the effective local laxity time
of the task Tn is defined as (tf − t0 − ln/α).

Figure 1 shows that the α oblique side is not fixed since the execution speed of each
task can be dynamically changed within [f1, fm]. We perform the frequency scaling at
the time when three kinds of events occur: (1) the first event occurs at the time when
a task’s local remaining execution time is 0. In this case the marked token arrives at
the horizontal axis, for example, Tm moves to the time tb, as shown in Figure 1. We
name this kind of event as Event B. Once an event B occurs, a task Tm is finished and

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 47, Publication date: January 2012.

Real-Time Scheduling Algorithm for Sporadic Tasks 47:7

ft

ft

1nl

1l

time

local remaining execution time

ct0t
0

 oblique side

at

diagonal

fluid schedule

bt

ml

nl

Event A

Event B

Event C

ft
1T

mT

nT

1nT

token

neffective local laxity of T

Fig. 1. Energy-efficient real-time scheduling in a TL plane.

the system can schedule other tasks. (2) The second event occurs at the time when
a sporadic task is released in a TL plane. In this case a new marked token is added
into the TL plane. For example, a task Tn+1 is released at the time of ta. This event
is named as Event A. Once an event A occurs, the task set is changed and the system
should reset the frequency. (3) The third event occurs at the time when the effective
local laxity time is 0. In this case the token hits the α oblique side. For example, Tn
moves to the time tc. We name this type of event as Event C. Once an event C occurs, a
task Tn must be selected to run at the frequency of α· fm; otherwise, its local feasibility
will not be guaranteed.

When the schedule and the frequency are determined, the marked token of each task
moves within a TL plane. Each task is allowed to move towards two directions: (1) If
the task is selected to run, the marked token will move along the α oblique side, such
as T1 and Tm. (2) Otherwise, the marked token moves along the horizontal direction,
such as Tn moving in Figure 1. At any time, up to m tasks move along the α oblique
side within each TL plane, where m denotes the number of cores.

At any time t, the local utilization ui,t of task Ti is defined as the proportion of the
local remaining execution time to the remaining time within the current TL plane, that
is ui,t = li,t/(tft − t) [Cho et al. 2006]. If the local remaining execution time of Ti is larger
than 0, that is li,t > 0, Ti is active. To distinguish the active tasks and inactive tasks,
we let Active(t) be the set of active tasks at the time of t [Funk and Nadadur 2009].
Furthermore, the task Ti has an effective local remaining execution time at the time of
t, namely l′i,t = li,t/αi. Task Ti ’s effective local utilization is the proportion of time that Ti
must be executed at a frequency factor αi during the remainder of the current TL-plane,
that is r′

i,t = l′i,t/(tft − t). The total utilization of Active(t), denoted as Ut, is defined to
be the sum of each active task’s utilization at the time of t, that is Ut = ∑

∀Ti∈Active(t) ui.
The maximum utilization ut

max at the time of t is ut
max = max{ui|∀Ti ∈ Active(t)}.

5. ALGORITHM: TL-DVFS

We consider the problem of scheduling sporadic tasks on homogeneous multi-core pro-
cessors. We propose TL-DVFS, an energy-efficient real-time scheduling algorithm based
on LRE-TL, to achieve as many energy-savings as possible while guaranteeing the
optimal feasibility.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 47, Publication date: January 2012.

47:8 D. Zhang et al.

ft

ft

ft

1mT

1, , mT T

effective
critical
moment

time

local remaining execution time

1f mt l0t
0

 oblique side

Fig. 2. Effective critical moment.

5.1. Effective Critical Moment

We assume that U ≤ m and umax ≤ 1 for all sporadic tasks. The following theorems
demonstrate the properties that must be guaranteed at the initial time of a TL plane
for all the active jobs.

THEOREM 5.1. With a frequency scaling factor α, if all jobs within each TL plane can
reach their end times, the initial effective local utilization of each active job Ti ∈ Active(t0)
is computed as: r′

i,0 = ui,0/α.

PROOF. The remaining execution time of any job Ti is li = 0 when the job reaches
the end time of the last TL plane. Therefore, at the initial time t0 of the current TL
plane, these jobs must be restarted from the start time of the fluid scheduling in an
ideal case. In this case, the job’s local remaining execution time is li,0 = ui,0(tf − t0)
at the initial time. With the frequency scaling factor α, each active job Ti ∈ Active(t0)
moves along the α oblique side. The actual local remaining execution time of job Ti
is the effective local remaining execution time, that is l′i,0 = li,0/α. Therefore, we have
r′

i,0 = l′i,0/(tf − t0) = ui,0/α and Theorem 5.1 holds.

All jobs are locally feasible if the local remaining execution time of each job is 0 at the
end time tf of a TL plane [Cho et al. 2006]. In order to analyze the local feasibility, we
propose the concept of effective critical moment to describe the sufficient and necessary
condition of a local unfeasibility within a TL plane.

Definition 5.2. The effective critical moment is the first time that is the time more
than m jobs simultaneously hit the α oblique side of a TL plane with a frequency scaling
factor α. Here m is the number of cores.

As shown in Figure 2, on the right side of the effective critical moment, no more than
m jobs are selected to run along the α oblique side. Those unselected jobs will be off
the α oblique side and leave the TL plane at the time of (tf − lm+1). In this case those
unselected jobs are unable to reach the end time tf . Note that all jobs within the TL
plane are only allowed to move horizontally or along the α oblique side.

THEOREM 5.3. With the frequency scaling factor α, the task set is unfeasible in a TL
plane if and only if at least one effective critical moment occurs.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 47, Publication date: January 2012.

Real-Time Scheduling Algorithm for Sporadic Tasks 47:9

PROOF.
Necessary. We prove it by using the contradiction method. We assume that an ef-

fective critical moment does not occur when the task set is unfeasible. In this case,
according to Definition 5.2 we can conclude that less than m jobs simultaneously hit
the α oblique side of the TL plane at any time. Therefore all jobs on the α oblique side
will be selected to execute until the end time of the TL plane. Thus, by contradictory
an effective critical moment must occur when a task set is unfeasible.

Sufficient. We assume that an effective critical moment occurs. In this case, those
unselected jobs must leave the TL plane. With a frequency scaling factor α, all jobs move
horizontally or along the α oblique side. The slope of their path is 0 or −α. Therefore
the jobs leaving the TL plane can not reach the end time of the TL plane.

The total effective local utilization of a task set is defined as R′
t = ∑n

i=1 r′
i,t. We have

the following corollary.

COROLLARY 5.4. With a frequency scaling factor α, R′
t > m must hold when the

effective critical moment t occurs.

PROOF. Since all jobs move horizontally or along the α oblique side with the frequency
scaling factor α, the local remaining execution time li,t of the m jobs on the α oblique
side must be equal to α(tft − t) at the effective critical moment t. In this case, R′

t =∑N
i=1 r′

i,t =
∑m

i=1
li,t/α
tft −t + ∑N

i=m+1
li,t/α
tft −t =∑m

i=1
tft −t
tft −t + ∑N

i=m+1
li,t/α
tft −t >m, where N = |Active(t)|

and N ≤ n.

5.2. TL Plane Initialization

In order to achieve more energy-saving while guaranteeing the local feasibility of jobs
in each TL plane, we need to choose an initial frequency scaling factor for all active
jobs. At the initial time of each TL plane, not all sporadic jobs are active and only
the feasibility of current active jobs needs to be satisfied; hence, it is not necessary to
choose the highest frequency.

The voltage and frequency of corek can be determined by a frequency scaling factor αk.
Thus, the dynamic scaling of the processor voltage and frequency is equivalent to the
dynamic choice of frequency scaling factor. In this paper the target platform is the multi-
core processors with the on-chip global DVFS and DPM techniques. The frequency
scaling factors of all the m′ running cores must be the same, that is α = α1 = · · · = αm′ .
Here, m′ = min{m, |Active(t)|}, and m is the number of cores. According to the idea
of the fluid scheduling, the job frequency is not less than its task utilization and the
maximum utilization of all active jobs at the initial time t0 of each TL plane (as shown
in lines 3 to 7 in Algorithm 1). Otherwise, the deadline is missed. Meanwhile, in order
to guarantee the local feasibility of all active jobs with the frequency scaling factor α,
we have α ≥ U0/m′ according to the EDF algorithm. Therefore α = α1 = · · · = αm′ =
max{umax,U0/m′} (as shown in lines 8 to 9 in Algorithm 1). We prove this by using
the following corollary.

COROLLARY 5.5. At the initial time t0 of a TL plane, with the frequency scaling factor
α computed by Algorithm 1, the effective local utilization r′

i,0 does not exceed one for any
job Ti ∈ Active(t0). Meanwhile the total effective local utilization is R′

t0 ≤ m.

PROOF. At the initial time t0 of a TL plane, ∀Ti ∈ Active(t0), ui,0 ≤ u0
max. According

to Algorithm 1 we have u0
max ≤ α ≤ 1. We can derive from Theorem 5.1 that r′

i,0 ≤ 1.
Meanwhile, according to Algorithm 1 we have U0/m′ ≤α≤1, where U0 =∑

Ti∈Active(t0) ui,0

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 47, Publication date: January 2012.

47:10 D. Zhang et al.

ALGORITHM 1: TL-Initialize-Frequency-Selection
Input: All jobs in Active(t) task set at the current time t.
Output: The frequency scaling factor α for all the m′ processor cores.
1: U = 0; /*U is a global variable*/
2: umax = 0; /*umax is a global variable*/
3: for each job Ti ∈ Active(t) do
4: ui = Ci/Pi ;
5: U = U + ui ;
6: if umax < ui then
7: umax = ui ;
8: m′ = min{m, |Active(t)|};
9: return α = max{umax,U/m′};

and m′ =min{m, |Active(t0)|}. Without lose of generality, we assume that N=|Active(t0)|,
N≤n. Therefore, R′

t0 =∑N
i=1 r′

i,0 =∑N
i=1 ui,0/α=U0/α≤m′ ≤m.

In order to guarantee the optimal feasibility, all active jobs must be initialized after
scaling the frequency. We adopt two heaps, HB and HC , to initialize all active jobs. HB
and HC consist of running active jobs and suspended active jobs, respectively.

During the process of initialization, all jobs are inserted into HB or HC . We then
set the key term as the amount of time triggering a certain event B or C. When the
frequency is scaled, the local remaining execution time li,t is changed to be the effective
local remaining execution time l′i,t. Therefore, if a job Ti is inserted into HB, the key
term is set to be (t + l′i,t) where t denotes the initial time of the TL plane (as shown
in lines 14 to 20 in Algorithm 2). If a job Ti is inserted into HC , the key term is set to
be (tf − l′i,t) where tf denotes the end time of the TL plane (as shown in lines 21 to 23
in Algorithm 2). Due to the uncertain release time of each sporadic job, the TL-DVFS
algorithm adopts the same method as the LRE-TL algorithm to determine the end time
of the TL plane (as shown in lines 1 to 8 in Algorithm 2).

5.3. Event B or C

An event B refers to the normal completion of a job within the current TL plane. In
other words, the local remaining execution time is 0. An event C refers to the time when
the effective local utilization of a job is 1. When a job triggers an event C, if the job is
not scheduled to be run immediately, it will leave the α oblique side and its effective
local utilization exceeds 1. In this case, the job cannot reach the end time of the TL
plane with the frequency scaling factor α. We adopt the same method as the LRE-TL
algorithm to handle the event B and event C. Due to space limitations, please refer to
Funk and Nadadur [2009] for more information about this issue.

In a TL plane, there is no effective local laxity time when an event B and an event C
occur. Therefore we do not perform frequency scaling. However, the triggering time of
an event B or an event C is changed; hence, the scheduling time is different from that
under the LRE-TL algorithm. We need to prove that the operations of an event B and
an event C will not affect the local feasibility of all jobs within the TL plane.

THEOREM 5.6. � is assumed to be the task set running on an m-core processor. In
each TL plane [t0, tf], the effective local remaining execution time of each active job is
computed in terms of the job utilization and frequency scaling factor α. At the initial
time of each TL plane, we have U0 ≤ m and u0

max ≤ 1. Let s ∈ [t0, tf] denote any time
in the TL plane, ∀Ti ∈ Active(t), R′

s ≤ m, and r′
r,s ≤ 1. Let X be the set of any xs jobs

scheduled in Active(s) at the time of s. If t is the next time when Event B or C occurs,

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 47, Publication date: January 2012.

Real-Time Scheduling Algorithm for Sporadic Tasks 47:11

ALGORITHM 2: TL-DVFS-Initialize
1: t = 0;tf = 0;Pmin = ∞;z = 1;
2: for any job Ti arrived at the time of t do
3: if HD. f ind key(t + Pi) == NU LL then
4: HD.insert(t + Pi);
5: Pmin = min{Pmin, t + Pi};
6: tf = t + Pmin;
7: if HD.min key() ≤ tf then
8: tf = HD.extract min();
9: α =TL-Initialize-Frequency-Selection();
10: for each job Ti in Active(t) do
11: Ti .speed = α;
12: l = ui · (tf − t);
13: l′ = l/Ti .speed;
14: if z ≤ m then
15: Ti .key = t + l′;
16: Ti .proc id = z;
17: z.task id = Ti ;
18: z.speed = Ti .speed;
19: HB.insert(Ti);
20: z = z + 1;
21: else
22: Ti .key = tf − l′; /*all cores are busy*/
23: HC .insert(Ti);
24: for all cores z′ s.t. m ≥ z′ > z do
25: z′.task id = NU LL;

then ∀�, 0 ≤ � ≤ t − s, R′
t ≤ R′

s+� ≤ R′
s. Furthermore, if R′

s < m, then R′
t < R′

s+� < R′
s.

In addition, if R′
s = m, then R′

t = R′
s+� = R′

s.

PROOF. With the frequency scaling factor α, for any � such that 0 ≤ � ≤ t − s, the
load completed by all xs jobs during a time interval [s, s + �] is equal to xs × � × α. So
we have

∑N
i=1 li,s+� = ∑N

i=1 li,s − xs × � × α and
∑N

i=1 l′i,s+� = ∑N
i=1 l′i,s − xs × �, where

N is the number of jobs from Active(s), namely N = |Active(s)|. Thus, we have R′
s+� =

∑N
i=1 r′

i,s+� = ∑N
i=1

l′i,s+�

tf −s−�
=

∑N
i=1 l′i,s−xs×�

tf −s−�
= ∑N

i=1
l′i,s

tf −s × tf −s
tf −s−�

− xs×�

tf −s−�
= R′

s + �(R′
s−xs)

tf −s−�
. To

prove R′
s+� ≤ R′

s, we further discuss the following two cases:

(1) If Active(s) ≥ m, then xs = m. According to Corollary 5.5 and its induction, we can
derive that R′

s ≤m; hence, R′
s−xs = R′

s−m ≤0 is available.
(2) If Active(s) < m, then xs = |Active(s)|. According to Corollary 5.5 and its induction,

we can derive that r′
s ≤1; hence, R′

s−xs ≤0 is available.

Thus, R′
t ≤ R′

s+� ≤ R′
s is available. If R′

s <m, there must be r′
i,s <1 and R′

s−xs <0; hence,
we have R′

t < R′
s+� < R′

s. If R′
s = m, then r′

i,s = 1 and R′
s −xs = 0 because of r′

i,s ≤ 1. In
summary, R′

t = R′
s+� = R′

s.

According to Theorem 5.6 and Algorithm 1, if U0 ≤ m and only an event B or an
event C occurs, the total utilization of the task set will remain unchanged at any time
t in the current TL plane. That is, Ut = U0.

5.4. Event A

We further introduce a new event, namely Event A (arrival event). An event A is
triggered when a sporadic task invokes a new job. When an event A occurs, the system’s

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 47, Publication date: January 2012.

47:12 D. Zhang et al.

ALGORITHM 3: TL-A-Event-Frequency-Selection
Input: A sporadic job not in Active(t) at time t, triggers an event A, whose utilization is us.
Output: The frequency scaling factor α for all the m′ processor cores.
1: U = U + us; /*U is a global variable*/
2: umax = max{us, umax}; /*umax is a global variable*/
3: m′ = min{m, |Active(t)|};
4: return α = max{umax,U/m′};

workload increases and the number and properties of active jobs are changed. We try
to reset the frequency scaling factor to achieve more energy-saving while guaranteeing
the local optimal feasibility of sporadic jobs, as shown in Algorithm 3. When a sporadic
task Ts invokes a new job at the time of ts, it triggers an event A. According to Theorem
5.6, the total effective local utilization of the active task set is at most (m−us) before the
release of Ts. Moreover, the local remaining execution time of Ts is proportional to its
utilization, namely, ls,ts =us(tfts −ts). To guarantee the local feasibility of all active jobs
in the current TL plane, we need to add the utilization of Ts into the total utilization
of all jobs, that is Uts = Uts +us. Meanwhile, the maximum utilization of the current
TL plane is umax =max{us, umax}. So we can determine a new frequency scaling factor
αts = max{umax,U/m′} when an event A occurs, where m′ = min{m, |Active(ts)|} (as
shown in lines 1 to 4 in Algorithm 3).

The event A handler is illustrated in Algorithm 4. When a new frequency scaling
factor αts is computed, we also need to update all properties of active jobs, such as
the effective local remaining execution time, execution frequency and the key value
in the heap HB or HC (as shown in lines 3 to 18 in Algorithm 4). If the number of
active jobs is less than that of the processor cores, Ts will be added into the heap HB. If
us < Ts.speed, Ts is added into the heap HC . If us ≥ Ts.speed, Ts is added into the heap
HB, and preempts the job Tb with the minimum key value for executing. Meanwhile,
the job Tb will be added into the heap HC .

In this paper, Theorem 5.7 proves that adding Ts into the list of active jobs at the
time of ts to handle an event A does not make other jobs, within the same TL plane,
miss their deadlines. Furthermore, Ts’s deadline can also be guaranteed.

THEOREM 5.7. � is assumed to be the task set running on a m-core processor. For each
TL plane in [t0, tf], the effective local remaining execution times of all active jobs are
computed in terms of the job utilization and frequency scaling factor α. At the initial
time of each TL plane, we have U0 ≤ m and u0

max ≤ 1. Suppose a task Ts is not active
at the initial time t0, but becomes active at the time of ts ∈ (t0, tf). Let α be the original
frequency scaling factor when the job Ts is released. If ls,ts is computed according to
Algorithm 4, and the frequency of re-scaling factor is determined as αts by Algorithm 3,
the job Ts will not make any other tasks miss their deadlines. Furthermore, the Ts will
finish before the deadline (ts + Ps).

PROOF. We prove by using the induction method.
Initial situation. Assume that Ts denotes the first job released in the time interval

(t0, tf). We prove that Ts cannot make any other jobs or itself miss a deadline.
Since the job Ts is not active at the initial time t0, the total utilization of the active task

set is at most (m−us) before the release of Ts. We have
∑N

i=1
li,t0

tf −t0
= U0 ≤ m−us, where N

is the number of active jobs at the time of t0, that is N = |Active(t0)|. Before the time ts,
only an event B or C occurs. ∀�, 0 < � ≤ ts−t0, R′

ts−� ≤ R′
t0 ≤ mand Uts−� =U0 are avail-

able according to Corollary 5.5 and Theorem 5.6 and Algorithm 1. Therefore, when the
job Ts is released at the time of ts, ls,ts = us(tfts −ts) is available. According to Algorithm 3,

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 47, Publication date: January 2012.

Real-Time Scheduling Algorithm for Sporadic Tasks 47:13

ALGORITHM 4: TL-DVFS-A-Event
1: l = us · (tf − t);
2: α =TL-A-Event-Frequency-Selection();
3: for each job Ti in Active(t) = HB

⋃
HC

⋃{Ts} do
4: if Ti ∈ HB then
5: l′ = Ti .key − t;
6: l′ = l′ × Ti .speed/α;
7: Ti .speed = α;
8: Ti .key = t + l′;
9: (Ti .proc id).speed = Ti .speed;
10: if Ti ∈ HC then
11: l′ = tf − Ti .key;
12: l′ = l′ × Ti .speed/α;
13: Ti .speed = α;
14: Ti .key = tf − l′;
15: if Ti = Ts then
16: l′ = l/α;
17: Ts.speed = α;
18: Ts.key = l′;
19: if HB.size() < m then
20: Ts.key = t + Ts.key;
21: Ts.proc id = z;
22: z.task id = Ts;
23: z.speed = Ts.speed;
24: HB.insert(Ts);
25: else
26: if us < Ts.speed then
27: Ts.key = tf − Ts.key;
28: HC .insert(Ts);
29: else
30: Tb = HB.extract min();
31: Ts.key = t + Ts.key;
32: Tb.key = tf − Tb.key + t;
33: z = Tb.proc id;
34: Ts.proc id = z;
35: z.speed = Ts.speed;
36: HB.insert(Ts);
37: HC .insert(Tb);
38: if HD. f ind key(t + Ps) == NU LL then
39: HD.insert(t + Ps);

(Uts + us) ≥ Uts = U0, max{us, uts
max} ≥ uts

max, αts = max{max{us, uts
max}, (Uts + us)/m′}

and (Uts + us)/m′ ≤ αts ≤ 1, where m′ = min{m, |Active(ts)|}. The occurrence of an
event B will reduce the number of active jobs, that is, |Active(ts)| ≤ |Active(t0)|.
We have

∑|Active(ts)|
i=1 ui,ts ≤ ∑|Active(t0)|

i=1 ui,0 = U0 because of R′
ts−� ≤ R′

t0 . Thus, R′
ts =

∑|Active(ts)|
i=1

l′i,ts ·α
(tf −ts)·αts

+ ls,ts
(tf −ts)·αts

=
∑|Active(ts)|

i=1 ui,ts
αts

+ us
αts

≤ U0+us
αts

= Uts +us

αts
≤ m′ ≤ m. Once the

job Ts is added into the Active task set, Algorithm 3 will compute a new frequency
scaling factor that still meets the local execution time demand of all active jobs. At
the initial time of subsequent TL planes, the initial remaining execution time of the
job Ts is set to be proportional to the job’s utilization. Since U ≤ m and umax ≤ 1, the
total utilization of any TL plane is at most m, and at any time t the total effective local
utilization is also at most m. Therefore, Ts does not cause any other job to miss its
deadline.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 47, Publication date: January 2012.

47:14 D. Zhang et al.

The TL-DVFS algorithm not only adopts the same method as the LRE-TL algorithm
to guarantee that ts + Ps ≥ tf (as shown in lines 38 to 39 in Algorithm 4) but also forms a
number of consecutive and non-overlapping TL planes, which can ensure the existence
of a TL plane that ends at the time of (ts + Ps). Therefore, Ts will meet its deadline at
the time of (ts + Ps).

Inductive proof. Assume that a job Ts+1 is released at the time of ts+1 in a time
interval (t0, tf). Through the induction, conditions of this theorem and consequence are
met before Ts+1. We will prove that the consequence of this theorem is also met at the
time of ts+1.

Suppose that the job Ts+1 is not active at the initial time t0, but becomes active at
the time of ts+1 ∈ (t0, tf). Suppose that the job Ts is released at the time of ts and is
released before the job Ts+1, where the original frequency scaling factor is αts . From
the induction hypothesis and Theorem 5.6, ∀ε, 0 < ε ≤ ts+1 − ts, R′

ts+1−ε ≤ R′
ts ≤ m. Since

there are no other jobs released at the time intervals of ts and ts+1, only an event
B or event C occurs. So ∀ε, 0 < ε ≤ ts+1 − ts, Uts+1−ε = Uts ≤ m. If ls+1,ts+1 = us+1 ·
(tfts+1

− ts+1), and the frequency scaling factor determined by Algorithm 3 is αts+1 , then
(Uts+1 + us+1) ≥ Uts+1 = Uts , max{us+1, uts+1

max} ≥ uts+1
max, αts+1 =max{max{us+1, uts+1

max}, (Uts+1 +
us+1)/m′} and (Uts+1 +us+1)/m′ ≤αts+1 ≤1 are available, where m′ =min{m, |Active(ts+1)|}.
Since |Active(ts+1)| ≤ |Active(ts)| and R′

ts+1−ε ≤ R′
ts ,

∑|Active(ts+1)|
i=1 ui,ts+1 ≤ ∑|Active(ts)|

i=1 ui,ts =
Uts , then R′

ts+1
= ∑|Active(ts+1)|

i=1
l′i,ts+1

·αts

(tf −ts+1)·αts+1
+ ls+1,ts+1

(tf −ts+1)·αts+1
= ∑|Active(ts+1)|

i=1
l′i,ts+1

·αts

(tf −ts+1)·αts+1
+ us+1

αts+1
=

∑|Active(ts+1)|
i=1 ui,ts+1

αts+1
+ us+1

αts+1
≤ Uts+us+1

αts+1
= Uts+1+us+1

αts+1
≤ m′ ≤ m. Once the job Ts+1 is added to the

Active task set, after the frequency scaling factor is calculated by Algorithm 3, this job
will not cause other jobs to miss their deadlines before the time of tf .

From the induction hypothesis, we can derive that ts+1 + Ps+1 ≥ tf ; hence, the task
Ts+1 will not have an earlier deadline than the tf . Meanwhile, the TL-DVFS algorithm
can guarantee the existence of a TL plane that ends at the time of (ts+1+Ps+1). Therefore,
the job Ts+1 will always meet its deadline at the time of (ts+1 + Ps+1).

5.5. Algorithm Description

The main function of the TL-DVFS is similar to that of the Algorithm 1 in Funk and
Nadadur [2009]. At the initial time of each TL plane, the TL-DVFS initializes the TL
plane (Algorithm 2) and computes the frequency scaling factor of a multi-core processor
(Algorithm 1). When a sporadic job is released in a TL plane, the TL-DVFS can handle
the event A to satisfy the requirement of workload augment, so as to obtain energy-
saving under the condition of meeting the feasibility of sporadic jobs (Algorithm 3 and
4). The TL-DVFS adopts the same method as Funk and Nadadur [2009] to handle the
event B or C. Once the initialization or an event handler is finished, the TL-DVFS will
determine the frequency of each core. Furthermore, cores execute the assigned jobs at
the selected frequency.

This paper considers the sporadic jobs whose deadlines equal to the period, and the
absolute deadlines equal to the end time of a TL plane. Therefore, given any TL plane
and any sporadic task Ti, at most one job of Ti overlaps the TL plane. In other words,
because all energy-efficient scheduling strategies are performed within a TL plane, the
scheduled job always overlaps the current TL plane, which does not conflict with which
job of each task scheduled for execution.

5.6. Algorithm Analysis

We formally prove that the TL-DVFS is optimally feasible through the following
theorems.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 47, Publication date: January 2012.

Real-Time Scheduling Algorithm for Sporadic Tasks 47:15

THEOREM 5.8. When n ≤ m, a sporadic task set is always locally feasible within each
TL plane by the TL-DVFS.

PROOF. Proof by contradiction. Assume that when n ≤ m, a sporadic task set is local
unfeasible within a certain TL plane by the TL-DVFS. According to Theorem 5.3, at
least one effective critical moment occurs in this TL plane. As a result, at least one task
is not selected to run, which contradicts our assumptions since all tasks are selected
by the TL-DVFS to run.

When the number of tasks is less than that of a processor’s cores, we assume that
each job will be completed at the cost of the worst-case execution time. In this setting,
the TL-DVFS selects all tasks and executes them until their local remaining execution
times become zero. Meanwhile, whenever an event B occurs, the number of active tasks
is decreasing and the frequency scaling factor remains unchanged. However, when an
event A occurs, the frequency scaling factor will be adjusted according to the additional
active tasks. In this case, the number of events of type B or A is at most n, since it
cannot exceed the number of tasks. Note that an event C never happens when n ≤ m
since all tasks are selected to run and there are no idle tasks.

Now, we discuss the local feasibility when n > m.

THEOREM 5.9. When n > m, a sporadic task set is always locally feasible within each
TL plane by the TL-DVFS.

PROOF. Proof by induction. It is known that the sporadic task set is scheduled by the
TL-DVFS only when a TL plane is initialized or at the time when an event A, B, or C oc-
curs. This basically shows that if the current time t is t0, we can derive from Corollary 5.5
that R′

t0 ≤ m, where R′
t0 is the total effective local utilization of Active(t0) task set. If

t is the time when an event B or C occurs, then ∀�, 0 ≤ � ≤ t − t0, R′
t ≤ R′

t0+� ≤ R′
t0

by Theorem 5.6. If t is the time when an event A occurs, according to Theorem 5.7, we
have R′

t ≤ m if R′
t0 ≤ m.

Therefore, at any time during a TL plane the total effective local utilization is no more
than mby the TL-DVFS. When R′

t is less than m for any time t, there should be no effec-
tive critical moment in the TL plane, according to the contraposition of Corollary 5.4.
By Theorem 5.3, no effective critical moment implies that all sporadic tasks are locally
feasible.

When n > m and R′
t0 is less than m at the initial time t0, no any effective critical

moment happens at an event B, C, and A , according to Theorem 5.9. Whenever an
event B happens, the number of non-selected tasks decreases until m tasks remain. As
such, according to Theorem 5.8, all tasks are selected such that they finish their local
remaining executions at the end time of the TL plane with consecutive event B’s.

Recall that we consider the TL-DVFS’s local feasibility in each TL plane, and the
objective of the TL-DVFS is to complete all tasks before their deadlines.

THEOREM 5.10. Any sporadic task set with U ≤ m and umax ≤ 1 will be scheduled to
meet all deadlines by the TL-DVFS.

PROOF. We prove this theorem using the induction method. With adjacent TL planes,
if U ≤ m and umax ≤ 1 is available to any sporadic task set, then all tasks are locally
feasible in the first TL plane based on Theorems 5.8 and 5.9. The initial R′

t0 for the next
adjacent TL plane is less than m according to Theorem 5.1 and Corollary 5.5; hence,
according to the inductive hypothesis, the TL-DVFS guarantees the local feasibility for
each TL plane, which makes all tasks satisfy their deadlines.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 47, Publication date: January 2012.

47:16 D. Zhang et al.

6. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our algorithm on a multi-core processor
with the global DVFS technology. We use the C language to implement a discrete event
simulator in Linux 2.6. A range of energy-efficient real-time algorithms are evaluated,
including the LRE-TL [Funk and Nadadur 2009], the Uniform RT-SVFS [Funaoka
et al. 2008], the TL-DVFS, and the DVS-EDF [Huang et al. 2009]. The experimental
results are normalized against those of the LRE-TL.

The LRE-TL, Uniform RT-SVFS, and TL-DVFS are all based on the optimal real-
time scheduling approaches; thus, their Feasibility Performance (FP) is the same.
The FP refers to the ratio of feasible tasks to all tasks. In this case we compare
their Normalized Energy Consumption (NEC), which refers to the normalized average
energy consumption of schedulable tasks. However, the DVS-EDF is based on the EDF
which is a non-optimal global scheduling algorithm. In this case, the NEC is not a
fair metric; hence, we perform experiments from three aspects. Firstly, their energy
consumption is compared. Secondly, we compare their FPs. Finally, the ratio of FP to
NEC is used as a metric to make a fair comparison among these algorithms. Clearly,
the algorithm with a higher FP and lower NEC will be the best algorithm.

6.1. Parameters and Performance Metrics

We use the processor power model, described in Section 3, to evaluate the power con-
sumption of the proposed algorithm, which is the same as the literature [Huang et al.
2009] did. We assume that the processor supports discrete voltage levels in steps of
0.05V in the range from 0.5V to 1.0V [Jejurikar et al. 2004]. These voltage levels corre-
spond to discrete frequency scaling factors and each of which is mapped to the smallest
discrete level greater than or equal to it.

To evaluate the performance of all those algorithms, all experiments adopt the pa-
rameters as in the following: usys, m, and n. Here, usys denotes the system utilization,
m indicates the number of cores, while n denotes the number of tasks.

We construct a set of 16 tasks [Qu 2007] which consists of both real benchmark
applications and randomly generated ones. The former ones are extracted from the
FFT1 and FFT2 (Fast Fourier Transform), Laplace (Laplace transform) and Karp10
(Karplus-Strong music synthesis algorithm with 10 voices). The latter ones are ob-
tained from the TGFF suite [Dick et al. 1998]. For each task, there is a makespan that
indicates the lifetime of a task and is in general equivalent to the task’s minimum
release interval time. The makespan for each task used in our simulation is obtained
from Hua et al. [2006]. Due to space limitations we refer the reader to Table 1 in Qu
[2007] for more details.

For each parameter setting, we test 100,000 task sets each of which is randomly
selected from the set of 16 tasks. Assume that the deadline of each task is equal
to the minimum release interval time. The system utilization usys increases from
10% to 100% with 10% per step. The value of m is set to 4, 8, and 16, respec-
tively. Meanwhile, the corresponding value of n is set to 10, 20, and 40, respec-
tively. The total load of a task set is Workloads = usys × m. The utilizations of all
n tasks are generated using the UUnifast algorithm [Bini and Buttazzo 2005; Davis
and Burns 2009], discarding any task set with a task with ui > 1. The UUnifast
can generate an unbiased distribution for the n task utilization values in the range
[0, Workloads]. The minimum release interval time Pi of each task is equal to its
makespan. For each task Ti, the worst-case execution time is Ci = ui × Pi. We as-
sume that the actual execution time of each task is equal to its worst-case execu-
tion time. For each sporadic task set, the simulation time is set to be 6,000,000ms
(100minutes).

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 47, Publication date: January 2012.

Real-Time Scheduling Algorithm for Sporadic Tasks 47:17

0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Workloads

No
rm

al
iz

ed
 E

ne
rg

y
Co

ns
um

pt
io

n

LRE-TL
Uniform RT-SVFS
TL-DVFS
DVS-EDF

(a) m = 4, n = 10.

0.8 1.6 2.4 3.2 4 4.8 5.6 6.4 7.2 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Workloads

No
rm

al
iz

ed
 E

ne
rg

y
Co

ns
um

pt
io

n

LRE-TL
Uniform RT-SVFS
TL-DVFS
DVS-EDF

(b) m = 8, n = 20.

1.6 3.2 4.8 6.4 8 9.6 11.2 12.8 14.4 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Workloads

N
or

m
al

iz
ed

 E
ne

rg
y

C
on

su
m

pt
io

n

LRE-TL
Uniform RT-SVFS
TL-DVFS
DVS-EDF

(c) m = 16, n = 40.

Fig. 3. Normalized energy consumption.

6.2. Evaluation Results

Figure 3 shows the normalized energy consumptions for sporadic tasks scheduled by
the LRE-TL, Uniform RT-SVFS, TL-DVFS, and DVS-EDF algorithms under the same
configurations. We can find from Figure 3(a) that for a quad-core processor and 10-task
sets, the TL-DVFS always outperforms other algorithms, irrespective of how the total
utilization changes.

On the one hand, when the system utilization is less than 0.3, the energy-saving
of the TL-DVFS is as much as that of the DVS-EDF. Both of such algorithms achieve
more energy-saving than the Uniform RT-SVFS. The root cause is that the Uniform RT-
SVFS is a static method to implement the voltage and frequency scaling for all tasks.
During the runtime the voltage and frequency will not be changed, consequently, the
dynamic workload resulting from the release of sporadic tasks cannot be well balanced.
The TL-DVFS and DVS-EDF allow task migrations and can achieve a well-balanced
workload among cores. On the other hand, when the system utilization is more than
0.3, the energy-saving of the Uniform RT-SVFS and DVS-EDF decreases continuously
while the energy-saving of the TL-DVFS reduces smoothly from about 25 percent and
steadily up to about 15 percent. This is because when the workload increases, all cores
will start running to guarantee the feasibility of all tasks. However, the Uniform RT-
SVFS is a static method and the DVFS-EDF is a non-optimal global EDF scheduling
algorithm that allows some task migrations. The two algorithms can not achieve a
well-balanced workload among cores and are not suitable to the varied workloads. The
TL-DVFS not only implements the voltage and frequency scaling for all active tasks
at the initial time of each TL plane, but also takes the arrival event of sporadic tasks
into account; hence, it can realize a well-balanced workload among cores through job
migrations. Consequently, although the change of workloads has a little effect on the
TL-DVFS algorithm, the TL-DVFS can still obtain more energy-saving compared to
other algorithms.

Figures 3(b) and 3(c) illustrate the NECs for a 8-core processor with a set of 20
tasks and a 16-core processor with a set of 40 tasks, separately. The experimental
results are similar to that as shown in Figure 3(a). We can conclude that the TL-DVFS
always outperforms other algorithms. Additionally, the energy-saving of the TL-DVFS
decreases tardily from about 25 percent, steadily up to about 15 percent in the case of
high workloads.

Note that in Figures 3(a), 3(b) and 3(c), the NEC of the DVS-EDF is nonexistent
when the system utilization is more than 0.5, for example, when the sum of all task
workloads is 4, 6.4 and 8 for 4-core, 8-core and 16-core processors, respectively. This
is because the DVS-EDF implements the global scheduling based on the EDF which
takes account of the average energy consumption of schedulable tasks. Thus, in the
case of non-feasibility, the NEC cannot be determined, as shown in Figure 4.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 47, Publication date: January 2012.

47:18 D. Zhang et al.

0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4
0

10

20

30

40

50

60

70

80

90

100

Workloads

Fe
as

ib
ili

ty
 P

er
fo

rm
an

ce
 (%

)

LRE-TL
Uniform RT-SVFS
TL-DVFS
DVS-EDF

(a) m = 4, n = 10.

0.8 1.6 2.4 3.2 4 4.8 5.6 6.4 7.2 8
0

10

20

30

40

50

60

70

80

90

100

Workloads

Fe
as

ib
ili

ty
 P

er
fo

rm
an

ce
 (%

)

LRE-TL
Uniform RT-SVFS
TL-DVFS
DVS-EDF

(b) m = 8, n = 20.

1.6 3.2 4.8 6.4 8 9.6 11.2 12.8 14.4 16
0

10

20

30

40

50

60

70

80

90

100

Workloads

Fe
as

ib
ili

ty
 P

er
fo

rm
an

ce
 (

%
)

LRE-TL
Uniform RT-SVFS
TL-DVFS
DVS-EDF

(c) m = 16, n = 40.

Fig. 4. Feasibility performance.

0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

Workloads

FP
/N

EC

LRE-TL
Uniform RT-SVFS
TL-DVFS
DVS-EDF

(a) m = 4, n = 10.

0.8 1.6 2.4 3.2 4 4.8 5.6 6.4 7.2 8
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

Workloads

FP
/N

EC

LRE-TL
Uniform RT-SVFS
TL-DVFS
DVS-EDF

(b) m = 8, n = 20.

1.6 3.2 4.8 6.4 8 9.6 11.2 12.8 14.4 16
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

Workloads

FP
/N

E
C

LRE-TL
Uniform RT-SVFS
TL-DVFS
DVS-EDF

(c) m = 16, n = 40.

Fig. 5. Ratio of feasibility performance to normalized energy consumption (FP/NEC).

With the same configuration used in Figure 3, Figure 4 plots the feasibility of all
algorithms. We can see that both the TL-DVFS and the Uniform RT-SVFS guarantee
the optimal feasibility while the feasibility of DVS-EDF decreases with the increasing
total workloads. This is because that the TL-DVFS and the Uniform RT-SVFS imple-
ment the task scheduling based on the LRE-TL that is an optimal real-time scheduling
algorithm for sporadic tasks, while the DVS-EDF is based on the EDF which is non-
optimal [Baker 2005]. Furthermore, we find that the TL-DVFS can not only achieve
more energy-saving, but also guarantee the optimal feasibility of sporadic tasks, as
shown in Figures 4(a), 4(b) and 4(c).

In Figures 3 and 4, the DVS-EDF takes account of the average energy consumption
of schedulable tasks but ignores that of unfeasible tasks. The TL-DVFS and Uniform
RT-SVFS, however, consider both the two types of tasks. Therefore, it is not fair to
measure which is better simply using the metric NEC or FP; hence, we need to design
a new metric that takes both the NEC and FP into consideration.

Consequently, the ratio of feasibility to normalized energy consumption is defined as
the performance metric which results in a fair measure. In this case, the experiments
are performed in the same settings of Figure 4, and the experimental results are
depicted in Figure 5. As shown in Figure 5(a), the TL-DVFS always outperforms other
algorithms in terms of FP/NEC, irrespective the total utilization of tasks. Furthermore,
the FP/NEC of the TL-DVFS decreases tardily from about 1.3 and is stably maintained
at about 1.2 as the increase of the total workloads. This is because that the TL-DVFS
not only guarantees the optimal feasibility but also achieves more energy-saving. For
the Uniform RT-SVFS, its FP/NEC is close to that of the LRE-TL when the total
workload increases. This is in keeping with the features of the corresponding static
energy-efficient real-time scheduling. For the DVS-EDF, its FP/NEC is close to that of
the TL-DVFS when the system utilization is less than 0.3, while the value of FP/NEC
decreases rapidly when the system utilization is more than 0.3. This is because that the
feasibility of the DVS-EDF decreases along with its energy-saving when the workload
is high. Figures 5(b) and 5(c) illustrate the similar trend as shown in Figure 5(a), which

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 47, Publication date: January 2012.

Real-Time Scheduling Algorithm for Sporadic Tasks 47:19

implies that the TL-DVFS always achieves higher FP/NEC than other algorithms, even
in the case of high workloads.

7. CONCLUSIONS

For multi-core processors with the global DVFS and DPM technologies, this paper
proposes TL-DVFS, which is an energy-efficient real-time scheduling algorithm based
on LRE-TL. TL-DVFS utilizes the concept of the TL plane to dynamically scale the
voltage and frequency of the multi-core processor at the initial time of each TL plane
or at the release time of a sporadic task in each TL plane. Consequently, TL-DVFS
can obtain a reasonable tradeoff between real-time constraint and energy-saving while
meeting the constraints for the optimal feasibility of sporadic tasks. TL-DVFS is also
adaptive to variable workloads due to the dynamic release of sporadic tasks; hence, it
can obtain greater energy-saving. Experimental results show that compared to existing
algorithms, TL-DVFS not only guarantees the optimal feasibility of sporadic tasks, but
also achieves more energy-saving.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers and Dr Cong Liu for their constructive comments.

REFERENCES

ACPI 2011. ACPI. http://www.acpi.info.
ALENAWY, T. AND AYDIN, H. 2005. Energy-aware task allocation for rate monotonic scheduling. In Proceedings

of the IEEE Real Time and Embedded Technology and Applications Symposium (RTAS’05). IEEE, Los
Alamitos, CA, 213–223.

AYDIN, H. AND YANG, Q. 2003. Energy-aware partitioning for multiprocessor real-time systems. In Proceedings
of the 17th IEEE International Parallel and Distributed Processing Symposium. IEEE, Los Alamitos,
CA, 22–26.

BAKER, T. P. 2005. An analysis of EDF schedulability on a multiprocessor. IEEE Trans. Paral. Distrib.
Syst. 16, 8, 760–768.

BAUTISTA, D., SAHUQUILLO, J., HASSAN, H., PETIT, S., AND DUATO, J. 2008. A simple power-aware scheduling for
multicore systems when running real-time applications. In Proceedings of the International Parallel and
Distributed Processing Symposium (IPDPS’08). IEEE, Los Alamitos, CA, 1–7.

BINI, E. AND BUTTAZZO, G. 2005. Measuring the performance of schedulability tests. Real-Time Syst. 30, 1-2,
129–154.

CHANDRAKASAN, A., SHENG, S., AND BRODENSON, R. W. 1992. Low-power cmos digital design. IEEE J. Solid-State
Circuit 27, 4, 473–484.

CHEN, J., HSU, H., AND KUO, T. 2006. Leakage-aware energy-efficient scheduling of real-time tasks in multi-
processor systems. In Proceedings of the IEEE Real-time and Embedded Technology and Applications
Symposium. IEEE, Los Alamitos, CA, 408–417.

CHO, H., RAVINDRAN, B., AND JENSEN, E. 2006. An optimal real-time scheduling algorithm for multiprocessors.
In Proceedings of the 27th IEEE Real-Time System Symposium (RTSS’06). IEEE, Los Alamitos, CA,
101–110.

DAVIS, R. AND BURNS, A. 2009. Priority assignment for global fixed priority pre-emptive scheduling in multi-
processor real-time systems. In Proceedings of Real-Time Systems Symposium. IEEE, Los Alamitos, CA,
398–409.

DEVADAS, V. AND AYDIN, H. 2010. Coordinated power management of periodic real-time tasks on chip multipro-
cessors. In Proceedings of the International Conference on Green Computing (GREENCOMP’10). IEEE,
Los Alamitos, CA, 61–72.

DICK, R., RHODES, D., AND WOLF, W. 1998. Tgff: Task graphs for free. In Proceedings of the IEEE International
Workshop Hardware/Software Codesign. IEEE, Los Alamitos, CA, 97–101.

DORSEY, J. 2007. An integrated quad-core opteron processor. In Proceedings of the IEEE International Solid
State Circuits Conference (ISSCC’07). IEEE, Los Alamitos, CA, 102–103.

FISHER, N., GOOSSENS, J., AND BARUAH, S. 2010. Optimal online multiprocessor scheduling of sporadic real-time
tasks is impossible. Real-Time Syst. 45, 1-2, 26–71.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 47, Publication date: January 2012.

47:20 D. Zhang et al.

FUNAOKA, K., KATO, S., AND YAMASAKI, N. 2008. Energy-efficient optimal real-time scheduling on multiproces-
sors. In Proceedings of the 11th IEEE Symposium on Object Oriented Real-Time Distributed Computing
(ISORC’08). IEEE, Los Alamitos, CA, 23–30.

FUNK, S. AND NADADUR, V. 2009. Lre-tl: An optimal multiprocessor algorithm for sporadic task sets. In Pro-
ceedings of the Symposium on Real-Time and Network Systems (RTNS’09). 159–168.

HERBERT, S. AND MARCULESCU, D. 2007. Analysis of dynamic voltage/frequency scaling in chip-multiprocessors.
In Proceedings of the International Symposium on Low Power Electronics and Design (ISLPED). IEEE,
Los Alamitos, CA, 38–43.

HOLMAN, P. AND ANDERSON, J. 2005. Adapting pfair scheduling for symmetric multiprocessors. J. Embed.
Comput. 1, 4, 543–564.

HUA, S., QU, G., AND BHATTACHARYYA, S. 2006. Energy-efficient embedded software implementation on multi-
processor system-on-chip with multiple voltages. ACM Trans. Embed. Comput. Syst. 5, 2, 321–341.

HUANG, X., LI, K., AND LI, R. 2009. A energy efficient scheduling base on dynamic voltage and frequency
scaling for multi-core embedded real-time system. In Proceedings of ICA3PP. Lecture Notes in Computer
Science, vol. 5574, Springer, Gemany, 137–145.

INTEL 2011. Intel i7 processor specifications. http://www.intel.com/products/processor/corei7/specifications.
htm.

JEJURIKAR, R., PEREIRA, C., AND GUPTA, R. 2004. Leakage aware dynamic voltage scaling for real-time embedded
systems. In Proceedings of the Design Automation Conference. IEEE, Los Alamitos, CA, 275–280.

KIM, W., GUPTA, M., WEI, G., AND BROOKS, D. 2008. System level analysis of fast, per-core dvfs using on-chip
switching regulators. In Proceedings of the IEEE 14th International Symposium on High Performance
Computer Architecture (HPCA’08). IEEE, Los Alamitos, CA, 123–134.

KUMAR, R. AND HINTON, G. 2009. A family of 45nm ia processors. In Proceedings of the IEEE International
Solid State Circuits Conference (ISSCC’09). IEEE, Los Alamitos, CA, 58–59.

LEE, C. AND SHIN, K. 2004. On-line dynamic voltage scaling for hard real-time systems using the edf algorithm.
In Proceedings of the 25th IEEE Real-Time Systems Symposium (RTSS’04). IEEE, Los Alamitos, CA,
319–335.

MARTIN, S., FLAUTNER, K., MUDGE, T., AND BLAAUW, D. 2002. Combined dynamic voltage scaling and adaptive
body biasing for lower power microprocessors under dynamic workloads. In Proceedings of the Conference
on Computer Aided Design. IEEE, Los Alamitos, CA, 721–725.

MCCREARY, H., BROYLES, M., FLOYD, M., ET AL. 2007. Energyscale for ibm power6 microprocessor based systems.
IBM J. Res. Devel. 21, 6, 775–786.

MCGOWEN, R., POIRIER, C., BOSTAK, C., ET AL. 2006. Power and temperature control on a 90-nm itanium family
processor. IEEE J. Solid-State Circ. 37, 8, 229–237.

MOSLEY, L. 2008. Power delivery challenges for multicore processors. In Proceedings of CARTS.
NAVEH, A. 2006. Power and thermal management in the intel core duo processor. Intel Techn. J. 10, 2.
PILLAI, P. AND SHIN, K. 2001. Real-time dynamic voltage scaling for low-power embedded operating systems.

In Proceedings of the 18th ACM Symposium on Operating Systems (SOSP’01). ACM, New York, NY,
89–102.

QU, G. 2007. Power management of multicore multiple voltage embedded systems by task scheduling. In
Proceedings of the IEEE International Conference on Parallel Processing Workshops (ICPPW’07). IEEE,
Los Alamitos, CA.

RELE, S., PANDE, S., ONDER, S., ET AL. 2002. Optimizing static power dissipation by functional units in super-
scalar processors. In Lecture Notes in Computer Science, vol. 2304. Springer, 85–100.

SEO, E., JEONG, J., PARK, S., AND LEE, J. 2008. Energy efficient scheduling of real-time tasks on multicore
processors. IEEE Trans. Parall. Distrib. Syst. 19, 11, 1540–1552.

YANG, C., CHEN, J., AND KUO, T. 2005. An approximation algorithm for energy-efficient scheduling on a chip
multiprocessor. In Proceedings of the ACM/IEEE Conference of Design, Automation, and Test in Europe
(DATE’05). ACM/IEEE, 468–473.

YANG, C., CHEN, J., KUO, T., AND THIELE, L. 2009. An approximation scheme for energy-efficient scheduling of
real-time tasks in heterogeneous multiprocessor systems. In Proceedings of the ACM/IEEE Conference
of Design, Automation, and Test in Europe (DATE). ACM/IEEE, 694–699.

Received July 2011; revised November 2011; accepted January 2012

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 47, Publication date: January 2012.

	frontmatter
	a47-zhang

