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Abstract—The emerging deployment of large-scale cloud applications incurs significant inter-datacenter traffic, which makes the
scarce wide-area bandwidth across data centers become the performance bottleneck. To achieve the desirable network performance,
bandwidth guarantee should be provided for the resulting inter-datacenter traffic. However, the existing bandwidth allocation methods
mainly focus on intra-datacenter traffic, and do not take the bandwidth guarantee requirement and network cost thus cannot achieve
the cost-minimizing bandwidth guarantee across datacenters. In this paper, we focus on the bandwidth guarantee problem for
inter-datacenter traffic and present a novel bandwidth allocation model. Our model can ensure the bandwidth guarantee, minimize the
resulting network cost, and efficiently avoid the potential traffic overload on low cost links. To solve the large-scale optimization problem
in our model, we are motivated to develop a distributed algorithm by blending the advantages of alternating direction method of
multipliers (ADMM) and the auxiliary variable method. Specifically, we efficiently decompose the optimization problem into many small
sub-problems, which are allowed to be processed in a large-scale computing environment, where each server solves a few small
sub-problems. We further present a theoretically proved globally, asymptotically stable algorithm to solve these sub-problems.
Extensive evaluation results demonstrate that our bandwidth allocation method can effectively realize the bandwidth guarantee for
inter-datacenter traffic with reduced network cost and outperforms the prior method PS-L. In particular, the total network cost is

reduced by 59.57% on average.

Index Terms—Inter-datacenter Network, Bandwidth Guarantee, ADMM.

1 INTRODUCTION

Cloud computing is being a common paradigm in to-
day’s business. Due to abundant resource availability and
reduced management costs, cloud providers can offer an
economical choice for enterprises to create and run their
respective applications independently in data centers [1, 2].
In the meanwhile, many cloud providers construct a large
number of datacenters across the world [3], to provide low
latency (e.g., <35ms RTT [4]) for connecting their services.
This indirectly causes that a single application may even run
on multiple datacenters such as Netflix [5, 6]. Consequently,
such applications incur not only large volume of traffic
inside a datacenter but also increasing amount of inter-
datacenter traffic. As reported in [7], inter-datacenter traffic
may result from client’s request, periodic data back-up, and
routine background computation. A recent survey further
highlights that the amount of inter-datacenter traffic will
double or triple in the next two to four years [8].

The enormous growing traffic across datacenters leads
to two main consequences from the perspectives of appli-
cations and cloud providers. First, the wide area network
across datacenters is usually the bottleneck resource, which
is shared by a large number of flows. Consequently, such
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applications suffer variable and unpredictable network per-
formance, if they are unaware of the allocated bandwidth
[9]. Second, the distribution of traffic loads among inter-
datacenter links is nonuniform and partial links experience
extremely low bandwidth utilization. This severely restricts
the scalability of deployed applications. Moreover, the lack
of any performance guarantee makes service providers un-
willing to deploy applications across multiple datacenters.
Accordingly, it will in turn decrease the revenue of cloud
providers.

Fortunately, bandwidth guarantee can enable the desirable
network performance for applications across datacenter-
s. Prior bandwidth allocation methods [10-13], however,
mainly focus on intra-datacenter traffic and cannot be sim-
ply used to address inter-datacenter traffic for the following
reasons. Firstly, the existing allocation methods do not pro-
vide bandwidth guarantee since they either provide bandwidth
over-guarantee [10] or bandwidth sub-guarantee [11]. Secondly,
they do not consider the network cost for cloud providers.
In reality, charged by Internet Service Providers (ISPs), such
inter-datacenter traffic incurs substantial network cost to a
cloud provider. Since multiple ISPs are employed by cloud
providers to interconnect their geographically distributed
datacenters with varied pricing strategies [14], the usage
costs of such inter-datacenter links are different from each
other. Thus, by carefully choosing optimal routing paths and
assigning flow rates for inter-datacenter traffic, it is feasible
to minimize the network cost for cloud providers.

In this paper, we propose three design rationales of
bandwidth allocation for inter-datacenter traffic and design
a novel bandwidth allocation model. Our model can ensure
the bandwidth guarantee, minimize the resulting network
cost, and avoid potential traffic overload at low cost links.



More precisely, the proposed bandwidth allocation problem
is formulated as an optimization problem, typically with a
large number of variables and constraints in a production
datacenter system. Consequently, the critical obstacle is the
lack of an efficient problem-solving method. To address
this challenge, we design a novel distributed method, with
the auxiliary variable method and the alternating direction
method of multipliers (ADMM) [15]. Specifically, we effi-
ciently decompose the optimization problem into many
sub-problems. Thus, our algorithm allows for processing
such sub-problems in a large-scale computing environment,
where each server solves a few small sub-problems by
using a theoretically proved globally asymptotically stable
algorithm. We further propose the solutions for these sub-
problems, and tackle two critical implementation issues of
our method. Comprehensive evaluation results demonstrate
that the proposed allocation method is capable of guarantee-
ing bandwidth for inter-datacenter traffic with reduced net-
work cost. It outperforms the prior method of proportional
sharing at link-level (PS-L) [11], which allocates bandwidth
along link in proportion to communication pairs of VMs. In
particular, the total network cost is reduced by 59.57% on
average.
The main contributions of this paper are as follows:

o We address the challenging bandwidth guarantee prob-
lem for inter-datacenter traffic with the minimum
network cost. Moreover, the formulated large-scale
optimization model can efficiently avoid the poten-
tial traffic overload at low cost links.

e Instead of directly applying the original ADMM that
leads to a centralized solution, we design an efficient
distributed method by blending the advantage of the
auxiliary variable method and ADMM. Theoretical
analysis proves that the optimization problem can
be well-addressed after decomposition. We further
tackle the implementation and message exchanging
issues in a large-scale computing environment.

e We conduct extensive experiments to evaluate the
performance of our bandwidth allocation method.
The performance results demonstrate that our pro-
posed method can effectively guarantee the band-
width requirements with reduced network cost and
outperforms the prior method PS-L.

The rest of this paper is organized as follows. Section 2
presents the motivation and problem formulation. In Section
3, we design an efficient distributed method for the pro-
posed bandwidth allocation model. In Section 4, we analyze
and evaluate the performance of the proposed method.
Section 5 summarizes the related work. The conclusions are
discussed in Section 6.

2 MOTIVATION AND PROBLEM FORMULATION

We first present the motivation, and then formulate cost-
minimizing bandwidth guarantee problem.

2.1 Motivation

It is well-known that cloud providers deploy many geo-
graphically distributed datacenters and usually rent band-
width from multiple ISPs for their inter-datacenter traffic
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Fig. 1. An inter-datacenter network across 4 datacenters, where each
inter-datacenter link is equipped with given bandwidth capacity and cost
of per unit bandwidth.

[14]. Due to the competition, ISPs are evolving their business
models and selling bandwidth to customers in many ways
for retaining profits. Consequently, those inter-datacenter
links differ in the usage cost. So, it is feasible to reduce
or even minimize the cloud providers” costs by careful-
ly designing the routing for inter-datacenter traffic. More
preciously, inter-datacenter flows can be — and should be
— split and transmitted along multiple-hop paths, each
of which can be more cost-effective than the direct and
short paths. In fact, such multi-paths can be technically
implemented by applying MPTCP in the inter-datacenter
network, which is an extension of TCP to handle multiple
paths between endpoints [16]. The only problem is how to
guarantee network performance for inter-datacenter traffic.
We believe that bandwidth guarantee can enable desirable
network performance, as it provides strong isolation for
applications. Such bandwidth guarantee means that the
allocated bandwidth to each inter-datacenter flow must be
exactly equal to the corresponding bandwidth demand.

However, prior bandwidth allocation methods do not
provide such bandwidth guarantee, because they provide
either bandwidth over-guarantee or bandwidth sub-guarantee. To
have a comprehensive understanding, we simply extending
two existing allocation methods, i.e., PS-L [11] or Per-Flow
[17], to the scenario of inter-datacenter traffic. The PS-L
method allocates bandwidth to each flow between a VM-
pair X-Y on the link based on the flow weight that is
defined as Wxy = WX + VA‘;", where Wx is the weight
of VM X (similarly for Wy) and N x is the number of other
VMs X is communicating with on this link (similarly for
Ny). The Per-Flow method fairly allocates bandwidth to
each flow on the link. Figure 1 depicts an inter-datacenter
network, where there are two applications. Application A
deploys VM A; and VM A3 on datacenters DCy and DCs,
respectively. Application B deploys VM B; on datacenter
DCy and VM B,, VM Bj; on datacenter DC3. In this setting,
A; communicates with A, while B; communicates with By
and Bj. By sending traffic through direct path, application
A and B actually compete bandwidth on link DCy—DCs.
Consider that each VM has one unit weight. Then, by
applying the PS-L method, the allocated bandwidth per
flow to applications A and B is 400Mbps and 300M bps,
respectively. By applying the Per-Flow method, the allocated
bandwidth per flow is 192 Mbps for both applications A
and B. Given the bandwidth demand by, the allocation
results of bandwidth face the following results:



e If by<300Mbps for the above flows, the PS-L and
Per-Flow methods provide bandwidth over-guarantee
for applications A and B.

o If 300Mbps<by< %% Mbps for the above flows, the
PS-L method provides bandwidth over-guarantee for
application A while bandwidth sub-guarantee for ap-
plication B. The Per-Flow method provides bandwidth
over-quarantee for the two applications.

o If @M bps<by<400Mbps for the above flows, the
PS-L method provides bandwidth over-guarantee for
application A while bandwidth sub-guarantee for ap-
plication B. The Per-Flow method provides bandwidth
sub-guarantee for both applications.

e 1If by>400Mbps for the above flows, both PS-L and
Per-Flow methods provide bandwidth sub-guarantee
for the two applications.

These results imply that for any bandwidth demand,
both PS-L and Per-Flow methods are insufficient to provide
bandwidth guarantee for the inter-datacenter traffic.

2.2 Problem Formulation

We consider an inter-datacenter network across multiple
geographically distributed datacenters, operated by a single
cloud provider. Let a directed graph G=(N, M) represent
such an inter-datacenter network, where N represents the
set of vertexes corresponding to the set of datacenters and
M is the set of inter-datacenter links. Let u; ; represent the
bandwidth capacity on inter-datacenter link (4, j)€M. Note
that we focus on providing bandwidth guarantee to the
inter-datacenter traffic. We therefore using a rate pricing, in-
stead of using the volume pricing (i.e., the well-known pay-
as-you go model) based on the number of bytes transferred,
which is however insufficient to pricing such bandwidth
guarantees [18]. The simplistic way to understand such
rating pricing is that the traffic is charged based on the
bandwidth allocated to it [19]. Hence, to characterize the
cost diversity of inter-datacenter links, let ¢; ; be the cost of
per unit bandwidth on link (7, j)eM. Let F denote the set
of inter-datacenter flows. For each flow f=(ss,dy,bs)EF,
let s; be the source datacenter, dy be the destination data-
center, and by denote the bandwidth demand between them.
Fmally, ; is a fraction variable which means that :17 ;xby
of the bandw1dth capac1ty over link (7, j)eM is allocated to
flow f. Clearly, ; should be limited from 0 to 1:

We consider three design rationales for allocating band-
width to inter-datacenter traffic: bandwidth guarantee, min-
imizing the total network cost, and avoiding potential over-
load at low cost links.

Bandwidth guarantee: To provide the desirable network
performance, bandwidth guarantee, rather than over-guarantee
or sub-guarantee is essential for an effective bandwidth allo-
cation method. The bandwidth guarantee is formally defined
as follows:

Definition 1. a) Bandwidth guarantee. The bandwidth al-
located to flow f is exactly equal to its demand by;
b) Bandwidth over-guarantee. The bandwidth allocated to
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flow f is higher than its demand by; ¢) Bandwidth sub-
guarantee. The bandwidth allocated to flow f is lower
than its demand by.

It should be noted that inter-datacenter flows transmit-
ted along multiple paths may obtain an amount of band-
width on each path. In this case, the aggregate bandwidth
allocated to a flow should exactly equal to its demand, such
that bandwidth guarantee can be enforced for this flow. So,
we formulate the requirement of bandwidth guarantee as

1 Z':Sf,
Z xzf)j— Z m;:i:gif: —1i=ds,VieN VfeF.
{4lG,5)em} {3lG,H)em} 0 else,
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Equation (7) ensures flow conservation. Specifically, for each
flow feF, if datacenter i is an intermediate datacenter, the
traffic volume entering into it equals to that leaving from
it; if datacenter 7 is the source datacenter sy, the traffic
volume coming from it is exactly the demand of the flow;
if datacenter i is the destination datacenter dy, the traffic
volume entering into it is exactly the demand of the flow.
Minimize the total cost of bandwidth guarantee: Inter-
datacenter traffic incurs substantial network cost to cloud
providers, due to the bandwidth rent from ISPs. As reported
in [20], wide area transit bandwidth is expensive and costs
more than the intra-network of a datacenter. It also reports
that the cost of network resources amounts to around 15%
of the total cost afforded by a cloud provider. The cost is
usually similar to the power cost. Thus, the network cost
caused by inter-datacenter traffic must be considered, when
choosing the routing paths and assigning transmission rate
for each flow. Figure 1 shows an illustrative example of
the diverse cost on inter-datacenter links. If the bandwidth
demand is by=500Mbps for each flow among VM-pairs, the
following allocation strategies can minimize the network
cost as well as achieve bandwidth guarantee for each flow:
§><5OOM bps and %X5OOM bps are allocated to each flow
along path {DC4—DC3} and path {DCy—DCy—DCs},
respectively. To this end, the total network cost of bandwidth
guarantee is calculated as follow:

=> > Ci,jbfxf,j« 3)

FeF (i,5)em

. is the network cost on link (i,7) after

allocating b fx : bandwidth to flow f.

Avoiding potentlal overload at low cost links: The
cost diversity of inter-datacenter links is likely to cause
the potential overload at low cost links. For example, the
bandwidth of link { DCy— DC5} in Figure 1 is fully utilized,
and thus overload is possibly to happen on this link when
many other flows are arriving one by one. To avoid potential
overload at low cost links, we introduce a weight factor w;_;
for each inter-datacenter link (4, j)€M. The weight factor
w ; is defined to be inversely proportional to the square of
the cost of per unit bandwidth on the corresponding link

(i,4) € M:

where ¢; jbfx

)

Wi, j=




We can easily check that }_; ;e wi,; = 1. The ratio-
nale for this weight definition is that a link with a lower
cost leads to a higher weight, hence should be relative
less desirable compared with no weight considered when
minimizing network cost. This means that the introduction
of w; ; efficiently shifts some traffic from the links with low
cost to the links with relative higher cost, thus results in
a more balanced traffic distribution among inter-datacenter
links. Now, we can re-formulate the total network cost
associated with weight factors, called the total weighted
network cost as follow:

wc(x)zz Z wi7jci7jbfx£j, (5)

fEF (i,5)eM

where w; ;c; ;b fx . is the weighted network cost on link
(i,4) after allocatmg b fxf bandwidth to flow f.
Given the three de51gn rationales, we formulate the cost-

minimizing bandwidth guarantee problem as follows:

Definition 2. Given an inter-datacenter network G=(N, M),
each inter-datacenter link is assigned the cost c; ;, the weight
w;j, and the bandwidth capacity w; ;. A set of inter-
datacenter flows F with source, destination and bandwidth
demand for each flow, are injected into the network. We design
a bandwidth allocation method such that the three rationales
are all achieved. It can be formalized as:

min E E wi,jci,jbfxlfj
P )

fEF (i,5)eM
s.t. Equations (7), (7), 6)

feF

where the last constraint means that the bandwidth allocation
on each link can not exceed the link capacity.

Note that this optimization problem has |M|x|F| vari-
ables. Thus, the computational complexity significantly in-
creases as the number of traffic flows and inter-datacenter
links grows. As reported in [7, 21], the number of datacen-
ters is around O(10?), and the number of inter-datacenter
flows is around O(10°) in some production clouds. To solve
the large-scale optimization problem, we present a scalable
and practical distributed method, by blending both advan-
tages of the auxiliary variable method and the alternating
direction method of multipliers (ADMM [15]).

3 DISTRIBUTED BANDWIDTH ALLOCATION

METHOD

This section starts with presenting the problem decompo-
sition. We then focus on a distributed method for the opti-
mization problem and address two implementation issues.

3.1 Problem decomposition

The primer on ADMM can be found in [15], which has
extensively studied the performance of such ADMM opti-
mization technique in solving large scale convex problems.
However, the original ADMM can not be simply applied
to solve our problem in Equation (7), due to the following
two facts. First, problems in the original ADMM are usu-
ally decomposable while in our problem, all variables are
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tightly coupled by Equation (7) and the bandwidth capacity
constraint. Second, the original ADMM has high complexity
and low scalability since it can lead to a centralized solu-
tion, while an efficient problem-solving method for such a
large-scale optimization problem should aim to reduce the
computational complexity as far as possible.

To tackle these challenges, we re-formulate the optimiza-
tion problem by introducing a new set of auxiliary variables
y, which satisfy the following constraints:

- f
mn DD wigeisbsal,
feEF (i,j)eM

0<wz];<1,V(i,j)eM,VfEF.

1 i:Sf,
Z xzf’j— Z l‘;:i:ng: —1i=ds,VieN VfeF.
{41(i,5)eM} {715, 1)eM} 0 else,
S bpyl i <ui g, V06, §)EM, )
feF
0<y! ,<1,V(i,j)EM,VfEF, 8)
xl =yl ;96 )eM,VfEF. ©

Then, we have

min E E wi,jcivjbfa:ifj
e >

fEF (i,5)eM
s.t.  Equations (7), (7), (7), (8), (9).

Clearly, this optimization problem and Equation (7) have
the same optimal solution. The new formulation is now
separable over the two sets of variables x and y. This is
the key step towards decomposing the problem. The aug-
mented Lagrangian associated with Equation (10) is defined
as:

(10)

L,(z,y, /\):Z Z w,;7jcv;7jbfx{7j+

feF (i,j)eM

Z Z >‘ (Zj_yzj)+g(m£j_y£j)2’

feF (i,j)eM

)

where )\f is the lagrangian multiplier and p is the penalty
parameter With augmented Lagrangian, we obtain:

min L,(z,y,\) st. Equations (7), (7), (7), (8). (12)

For any feasible 2 and y, the penalty term added to the
objective is zero. Thus, this problem is clearly equivalent to
Equation (10). The benefit of introducing the penalty term is
that L, (z, y, \) is strictly convex, since the objective function
is the sum of a set of convex and linear functions. The
penalty term is also called a regularization term and will
help to substantially improve the convergence through the
following iterations:

k+1

" =argmin L,(z, y*, ), (13)
x

y*T1=argmin Lp(ka, y, AF), (14)
y

ARHL_N\R (xk+1_yk+1) _ (15)

We observe that this method operates recursively. In each
iteration, it minimizes the Augmented Lagrangian over x



while keeping y fixed, minimizes it over y while keeping x
fixed, and then carries out a multiplier update. Thus, x and
y are updated in an alternating or sequential manner, which
accounts for the term alternating direction multiplier method
for this type of algorithm.

According to Equation (13), the method first solves the
following problem at the (k+1)-th iteration:

miny Y ( (ym ) - e)) +

fEF (i,7) EM
oyl ,)")

> X5

fEF (i ,j)eM
s.t.  Equations (7), (7).

T3 5 (widci,jbf_'_(/\f )

(16)

Equation (16) is now decomposable over flows, since the
objective function and constraints are separable over flow
f. The following per-flow sub-problem needs to be inde-
pendently solved.

min  Ly(a”, (y7)", (V)¥)=

> (5 (6)r) -0l +

(i,5)EM

( )Z (g(l{,j)2+1’{j (wi,jci,jbfnt()\f ) (ylf,])k))
i,j)EM
2

s.t. Z xﬁjf
{31(E,5)em} {jl(j,i)eM}

0<a] ;<1,%(4, j)eM.

fgz ,VZEN

17)

Equation (17) is of a much smaller scale than Equation (16),
with | M| variables and | M|+|N| constraints. Thus it can be
solved efficiently as proved in Theorem 1.

Theorem 1. At the (k+1)-th iteration, the optimal solution
to the per-flow sub-problem in Equation (17) for a given
flow f is as follow:

Ik
(Ef-:p<y27j)

,J

—w; jci,5bp— (M )"
p

where a;7#0, 3; ;20 and v; ;>0 are Lagrangian multipli-
ers.

—aitay B~

Proof: Please refer to the supplementary file. O

By decomposing Equation (16) into |F| per-flow sub-
problems in Equation (17), the z-minimization step can then
be solved distributively across multiple servers of the large-
scale computing environment, as to be shown in Section 3.2.
Moreover, once z**! is obtained, the problem in Equation
(14) can also be solved in a similar way. According to this
equation, the y-minimization step consists of solving the
following problem:

mln Z Z

ul; (W) ol ) +

(,_])EM fe}-
Z Z k+1 —|—((L‘£j)k+1(wiﬁjci’jbf—'_()\{j)k)
(,J)EM feJ:

s.t. FEquations (7), (8).
(18)
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This problem can also be decomposable over the set of inter-
datacenter links M into | M| sub-problems. Specifically, the
following per-link sub-problem needs to be independently
solved:

min  L,(z ”1,yi,j,)\fj):

Yi,j
p
feF
P (19)
) 5((95{])’“’1) +($5,j)k+1(wmcmbﬁ()‘{j)k)
feF
st > byl <uijand 0<y! ;<1,¥feF.
ferF

Theorem 2 also presents the optimal solution to Equation

(19).

Theorem 2. At the (k 4 1)-th iteration, the optimal solution
to the per-link sub-problem in Equation (19) for a given
inter-datacenter link (i, j)eM is as follow:

f _P(%g)kHJr()\f VK —8bp+pp— Vf
Yii=
p
where 6 > 0, uy > 0 and vy > 0 are Lagrangian
multipliers.

Proof: Please refer to the supplementary file. O

These sub-problems are all convex problems, and can be

solved by using a primal-dual approach derived from the

primal-dual approach to internet congestion control [22]. As
a result, Equation (17) can be solved as follows:

f _ a(_LP(xf’ (yf)k> ()‘f)k))

f
Tig = ;TP =g (20)
5J 8%7{] 5] J J
of = —gf, e1)
Bij=—al,, (22)
vij=xl; -1, (23)
where
q; ;= —qy,
f_ f f
%= Z Tig — Z Tiie
{31(.5)eM {3l em}
Similarly, we solve Equation (19) as follows:
o O=Ly(ai] " yig, AF)))
ply= T T Sy vy @Y
vl
0= Z bfxzf,j — U5, (25)
fer
i =yl (26)
vp =yl — 1. 27)

The algorithms specified by those equations are both glob-

ally, asymptotically stable. The proof process is as follow.

Theorem 3. The algorithms specified by Equations (20) - (23)
and Equations (24) - (27) are both globally, asymptotical-
ly stable.

Proof: Please refer to the supplementary file. O
In the following, we will present our distributed algorithm.



Algorithm 1 Distributed Algorithm
Input:
Flow specification: <s¢,dy¢,by>,VfeF;
Bandwidth capacity: u; ;, V(i, j)EM;
Cost of per unit bandwidth: ¢; ;,V(i, j)eM;
Weighted cost of per unit bandwidth: w; ;,¥(4, j)eM;
Parameter setting: p, &;
The rounds of iteration: K;
Output:
Fraction variable: x{j, Y(i,7)eEM,VfEF;
1: Initialize 2°=0, y°=0, \°=0;
2: while k<K do
3:  foreach flow f € F do
4: Given auxiliary variables (y/)* and dual variables
(A)E, resolve the per-flow sub-problem in Equa-
tion (17) by applying the primal-dual algorithm
specified by Equations (20) - (23);

5. end for
6:  for each link (¢,7) € M do
7: Given xfj‘l and )\f, ., resolve the per-link sub-

problem in Equation (19) through the primal-dual
algorithm specified by Equations (24) - (27);

8  end for

9:  Update Nt =)k p(2F+1—yk+1) (Equation (15));

10:  k++;

11: end while

3.2 Distributed algorithm

The key idea is to select the cost-effective paths, so as to
reduce the cost of inter-datacenter traffic. Such cost-effective
paths may turn out to be multi-hop paths, which may lead
to relatively long end-to-end delays compared to the direct
and short paths. Fortunately, we observe that the inter-
datacenter traffic typically have different time-sensitivities
[7]. Examples include interactive traffic that is most sensitive
to delay, larger data transfers which require delivery within
several hours, and background traffic without strict time re-
quirements [3, 23]. So, we mainly focus on the delay-tolerant
traffic (e.g., large transfers and background traffic). In the
following, we design a distributed algorithm to achieve this
goal.

The distributed algorithm is shown in Algorithm 1.
Given a solution y* computed at the previous iteration, it
first optimizes x for the problem given y* and A*. It then
optimizes y for the problem, given A* and a previously
computed mapping solution z**!. Finally, A is updated to
ensure that  and y converge to the same solution. The dis-
tributed nature of this algorithm allows for simultaneously
solving those sub-problems, across multiple servers in a
large-scale computing environment. Two parameters p and
& can be configured across all servers at the beginning of the
algorithm. As the prerequisites, u; ;, by, ¢; ; and w; ; need
to be gathered. In reality, such prerequisites become feasi-
ble, due to the introduction of software-defined networks.
For example, Google successfully implemented B4 [3], a
globally-deployed software defined WAN, to interconnect
its distributed datacenters. To pertain such an algorithm in a
large-scale computing environment, we discuss two critical
implementation issues.
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Fig. 2. Messages exchange between server S,, solving the per-flow
sub-problem and server S,, solving the per-link sub-problem.

Parallel implementation issues. First, in Step 3-5 of
each iteration, all per-flow sub-problems can be solved in
a parallel fashion on each server in the computing envi-
ronment. Recall that in some production systems [7], the
number of inter-datacenter delay-sensitive flows is around
O(10°). A computing environment typically has O(10%)-
O(10°) servers [20]. Thus, each server only needs to solve
0(10)-O(1) per-flow sub-problems at each iteration. The
computational complexity of our algorithm is low since
the per-flow sub-problem in Equation (17) is a small-scale
convex optimization.

Second, in Step 6-8, we solve the per-link sub problems,
which can be solved in a similar parallel manner. Only
|M]| servers are employed from the computing environ-
ment to solve these per-link sub-problems. It can even be
allocated to the same servers, which host the tasks for
solving the per-flow sub-problems. Those dual variables
ASFE=[(AL)RFE, (A2 ;)F+1 -] are also be updated in these
| M| servers.

Finally, according to xlf ;- the output of Algorithm 1, the
bandwidth allocation process can be really implemented
by forwarding the bandwidth allocation information to the
openflow controllers in the inter-datacenter Software De-
fined Network [3].

Message exchanging issues. Consider that the distribut-
ed algorithm needs to utilize a number of |M|+|F]| servers
in the computing environment. |F| servers are responsible
for solving all per-flow sub-problems, each of which is
denoted by S,,,. The other |M]| servers solve all per-link
sub-problems, each of which is denoted by S,,. All the data
transmission involves in the running time of our algorithm
is that , y, and A should be exchanged between the servers
that solve per-flow sub-problems and the servers that solve
per-link sub-problems. More precisely, to complete the per-
flow sub-problem, S,, needs variables y/ :[y{,Q,y{ﬁ, ]
and /\f:[)\{g, /\{’3, -+ -], which are produced by the servers

solving per-link sub-problems. Thus, yzf ; and )\if’ ; should be
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Fig. 3. An example of inter-datacenter network consists of 20 datacen-
ters.

transmitted from S,, to S, on the granular level.

The message exchanging can be processed in two pat-
terns: pull pattern and push pattern. Each server in the
communication plays two different roles: requestor and
responder. Figure 2 shows the messages exchange between
server S, and S,. We first study the exchange of ylf j

and dual variable )\{ ;- As shown in Figure 2(a), when a

requestor server S,, requests variables ylf ; and /\{ ; from

responder server S, it first checks whether it has élready
received these variables or not. If yes, it will continue the
iteration. Otherwise, it sends a REQUEST message to the
corresponding server S,,. It then waits until it receives an
ACK with VALUE of the requested variables.

Once receiving a request, the response server .5,, will
send back an ACK of WAITING if two variables ylf ; and

)\Z{ ; are not ready. Once the response server completes the
calculation, it will try to send an ACK with the values
of ylf j and )\{ j back to the request server S,,. Otherwise,
as show in Figure 2(b), it will push these variables to the
corresponding server .S, for future use.

On the other hand, with the local variables }; ;, S, only
needs variables x; ; to complete the per-link sub-problem.
More precisely, variable x{ - should be transmitted from S,
to S,, which can also be exchanged in both pull (Figure
2(c)) and push patterns (Figure 2(d)). The difference is that

Sm becomes response server and S, is request server.

4 PERFORMANCE EVALUATION

In this section, we investigate the performance of our band-
width allocation method from four aspects, including the
bandwidth guarantee, total cost, the performance on avoiding
the potential overload, and convergence.

4.1 Experiments settings

The inter-datacenter network in our experiments is built
based on Equinix [24]. As shown in Figure 3, the simulated
inter-datacenter network consists of three modules: 1) 10
datacenters locate in North&South American; 2) 6 datacen-
ters locate in Asia-Pacific; 3) 4 datacenters locate in Europe.
Each datacenter is linked with all other datacenters inside
the same module. Each pair of the module has 3 remote
links. Those links between modules are called as module-
pair links. The bandwidth capacity on each link is set to
be uniformly random within the range [1,10]Gbps, which
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is a commonly WAN bandwidth in many companies [8].
The cost on each link inside the module is set as a random
value in the range [1, 50]. In the meanwhile, the cost on each
link between modules is uniformly set to be a random value
within [50, 100]. The rationale for the cost setting refers to
literature [19], which reports that the cost of intercontinental
traffic is higher than that of intracontinental traffic.

In our experiments, we consider 10 applications, each of
which is deployed across multiple datacenters. Each appli-
cation deploys one VM on each of the 20 datacenters. For
each application k, its VMs communicate with other VMs
in the following way: 77;<—>77§+k (i=1,2,---,20—k), where
7. denotes the i-th VM of application k. Such communica-
tion pattern incurs many communication pairs of VMs for
even one application. For each pair of VMs, it incurs an
inter-datacenter flow, which has a bandwidth demand of
500M bps.

For the purpose of comparison, we also evaluate a
representative allocation method PS-L [11], which allocates
bandwidth based on the weight of communication between
a pair of VMs. Note that this weight refers to the weight
of communication between VMs, and is different from our
weight factor w; ; on (¢,j) € M. Each VM is uniformly
assigned with one unit weight. We set the penalty parameter
p=1 in all our simulation experiments. For the clarity of
presentation, we use CBGA (cost-minimizing bandwidth
guaranteed allocation method) to denote our bandwidth
allocation method. Specifically, CBGA-W represents our
bandwidth allocation method with weight factors being
considered.

Not that we set a ratio £ on each link, which means that
the bandwidth capacity on each link is §u; ;. Such that we
are able to investigate the impact of different bandwidth
capacity on the performance of our bandwidth allocation
method. The performance evaluation focuses on verifying
whether our bandwidth allocation method can satisfy the
proposed three design rationales, under different numbers
of applications and values of £. Moreover, the evaluation
aims to quantify the convergence of our distributed algo-
rithm.

4.2 Evaluation results and analysis
4.2.1 Bandwidth guarantee

Bandwidth guarantee is the fundamental requirement of our
bandwidth allocation method. Since module-pair links are
most likely to become congested links, the network-wide
allocation is insufficient to show the network performance
on these module-pair links. As a result, we evaluate the
performance of bandwidth guarantee at both network-wide
level (contains all inter-datacenter links) and module-pair
link level (contains those module-pair links). Figure 4(a) first
presents the bandwidth allocation per flow at the network-
wide level as the number of applications increases. As the
similar results are achieved under other settings of work-
load threshold &, we only plot CBGA-W in the case that
£=0.9. It can be seen that the allocated bandwidth per flow
by our method is always retained around 5000 bps. That
is, CBGA-W can provide bandwidth guarantee for each flow,
irrespective of the applications. We can see from Figure 4(a)
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that PS-L provides bandwidth over-guarantee. More precise-
ly, the allocated bandwidth per flow is more than at least 4
times of the bandwidth demand (5000 bps).

To understand the performance of bandwidth quarantee at
the module-pair link level, we conducted related evaluation-
s and plot Figure 4(b) to indicate the bandwidth allocation
per flow on module-pair links. To ease the presentation, we
only plot the bandwidth allocation per flow in the setting of
& = 0.9. We find that CBGA-W enables the bandwidth al-
location per flow to maintain around 5000/ bps, irrespective
of the number of applications. On the contrary, the allocated
bandwidth per flow significantly decreases as the number
of applications goes up for PS-L method. Note that, PS-L
always provides bandwidth over-guarantee when the number
of applications is less than 3, and delivers bandwidth sub-
guarantee after the number of applications exceeds 3. For
the latter case, traffic congestion will appear and become
more serious when the number of applications continues to
increase.

Specifically, we study the impact of varying workload
threshold & on the performance of bandwidth guarantee. Fig-
ure 4(c) plots the bandwidth allocation per flow at network-
wide level, with variable workload threshold £ and a fixed
number of 5 applications. We can find that both CBGA and
CBGA-W methods maintain the bandwidth allocation per
flow closely around 5000 bps, which is just equal to the
bandwidth demand of each flow. Thus, it is clear that our
CBGA method can provide bandwidth guarantee, irrespective
of the workload threshold . We also plot the allocated

bandwidth per flow on those module-pair links in Figure
4(d). Clearly, both CBGA and CBGA-W can provide closely
around 500M bps bandwidth per flow, with varying work-
load threshold &. Thus, it is clear that our method can
provide bandwidth guarantee for the flows on those module-
pair links.

In a summary, our bandwidth allocation method can
provide bandwidth guarantee for each inter-datacenter flow at
both network-wide level and module-pair level, irrespective
of the number of applications and parameter &.

4.2.2 Total cost

In this section, we measure the total network cost of band-
width guarantee with different numbers of applications and
workload threshold &, after using our bandwidth allocation
method. Figure 5(a) presents the total network cost with
both PS-L and our CBGA-W methods, under variable num-
ber of applications, where the workload threshold £ = 0.9
in CBGA-W. It is obvious that the total network cost signif-
icantly increases as the number of applications grows. This
implies that those application providers, typically tenants
in cloud, have to pay more in turn for the usage of inter-
datacenter links. We can further find that PS-L results in the
higher network cost than CBGA-W. More precisely, CBGA-
W achieves a total network cost reduction of 59.57% on
average; hence, our bandwidth allocation method is more
cost-effective than prior PS-L method.

Figure 5(b) reports the total network cost caused by
five applications, when the workload threshold ¢ ranges
from 0.6 to 0.9. It can be seen that the total network



cost significantly descends as £ grows under our CBGA
method. The root cause is that a larger workload threshold
¢ leads to more flows scheduled on low cost links. Note
that the weighted cost on link (i,j) € M for CBGA-W is

%, which first decreases along with
the increasing c; ; and then increases after a threshold. This
implies that a lower ¢; ; may not necessarily leads to a
lower w; jc; ;. The introduction of w; jc;; can efficiently
shift some traffic from those low cost links to other high cost
links. Besides, the larger workload threshold & causes more
traffic on all inter-datacenter links. This is the reason why
the total network cost under our CBGA-W method always
decreases until & exceeds 0.7. We can further find that the
total network cost under our CBGA-W method is larger than
that under our CBGA method, but is always lower than that
under the prior PS-L method.

Wi,jCij=

4.2.3 The performance on avoiding potential overload

To efficiently avoid the potential overload at low cost links,
the proposed method in this paper introduces a weight
factor w; ; on each link, and shifts some workload from low
cost links to a little higher links, so as to achieve a more
balanced traffic distribution. Hence, we simply use square
deviation of link bandwidth utilization as the performance
metric since a more balanced traffic distribution has a lower
square deviation of link bandwidth utilization. To evaluate
the effectiveness, we investigate the behaviors of the pro-
posed allocation method under different numbers of appli-
cations and workload threshold &. Figure 6(a) presents the
changing trend of the square deviation of link bandwidth
utilization along with the increasing number of applications
for both PS-L and CBGA-W where £=0.9. It is obvious that
the square deviation of link bandwidth utilization increases
significantly with the increasing number of applications
for both PS-L and CBGA-W. This further verifies that the
overloading problem definitely appears along with the in-
creasing bandwidth demand of inter-datacenter traffic. Ad-
ditionally, our CBGA-W method achieves the better effects
when avoiding the overloading problem compared to PS-L.
The root cause is that the square deviation of link bandwidth
utilization in CBGA-W is lower than that in PS-L. Moreover,
the square deviation for CBGA-W with 10 applications is
even lower than that for PS-L with one application.

To understand the impact of £ and weight on over-
loading, we also demonstrate the square deviation of the
link bandwidth utilization with different £ for both CBGA
and CBGA-W methods in Figure 6(b). The square deviation
of link bandwidth utilization significantly increases along
with the increase of workload threshold ¢ for CBGA. This
is because a higher workload threshold ¢ leads to more
bandwidth demand on low cost links. Consequently, the
overloading problem occurs since a large amount of traffic
causes congestion on these links. Nevertheless, if weight
w ; is considered and the workload threshold £ is low, the
overloading problem can be efficiently avoided. This is why
the line CBGA-W is always lower than that of CBGA.

4.2.4 Convergence

In this section, we investigate the convergence rate of our
proposed algorithm. Due to the similar results achieved
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under different settings, we only plot the convergence rate
for some settings in Figure 7. We can find that the conver-
gence rate changes quickly at the beginning of iterations.
The root cause is that the variables x and y are set to 0 at
the beginning of our implementation. As shown in Figure
7(a), the convergence rate fluctuates around the stable value
along with the increase of iterations, and finally converges
at a stable value when considering five applications. The
convergence rate also quickly converges to the stable value
for ten applications, as shown in Figure 7(b). It is clear that
our algorithm takes at most 50 iterations before converging
at a stable value for all cases in Figure 7.

4.2.5 Impact of different settings of link cost
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work cost. CBGA with PS-L.

In order to evaluate the impact of link cost on the total
network cost, we conduct our experiments 10 times. Each
time simulates different per unit bandwidth cost on inter-
datacenter links. Specifically, for each experiment time ¢
(=1,2---,10), the per unit bandwidth cost on each link is
set as a random value within the range [(¢—1)x10,¢x10].
It should be noted that in the running process of each
experiment time, the total network cost is recorded as the
total bandwidth cost for transmitting a same set of inter-
datacenter flows. Fig. 8 first plots the total network cost for
both CBGA and PS-L in different experiments. Clearly, the
total network cost of both CBGA and PS-L increase as the
growth of per unit bandwidth cost on links. Additionally,
CBGA can reduce the total network cost at each experiment
time. To quantitatively characterize such cost reduction, we
also plot the reduction ratio on the total network cost across
the 10 experiment times in Fig. 9, by comparing CBGA with
PS-L. We observe that despite some minor fluctuations, the
cost reduction ratio is always larger than 84%, across all



experiment times. To be more precise, the maximum, min-
imum and average cost reduction over the 10 experiment
times is 88.18%, 84.84%, 84.05%. These results imply that
CBGA is always more cost-effective than PS-L, irrespective
of the change of per unit bandwidth cost on inter-datacenter
links. The root reason is that CBGA can find more cost-
effective paths than PS-L.

5 RELATED WORK
5.1 Intra-datacenter traffic

Towards achieving predictable network performance for
intra-datacenter traffic, researchers have proposed numbers
of methods to share bandwidth in datacenter networks.
The proposed methods so far can be generally classified
into two categories: bandwidth reservation during the VM-
s placement process and bandwidth allocation after VMs
placement.

5.1.1 Bandwidth reservation

The proposed methods on bandwidth reservation main-
ly includes reservations, time-varying reservations, mini-
mum bandwidth reservations. For example, SecondNet [25]
proposes VDC (virtual data center) as the abstraction for
resource allocation and distributes bandwidth reservation
state at the hypervisors of servers, thus provides VM-to-
VM bandwidth guarantee. Lee et al. present CloudMirror, a
solution that provides bandwidth guarantees to cloud appli-
cations based on a new network abstraction TAG (tenant ap-
plication graph) and workload placement algorithm which
can meet bandwidth requirements specified by TAGs [26].
Oktopus [27] presents a VOC model (virtual oversubscribed
cluster) and uses VM placement to provide bandwidth guar-
antees. It enforces static rate limits to reserve bandwidth
for VMs with homogeneous bandwidth demand. While
Oktopus can provide predictable performance for VMs, it
ignores the highly variable bandwidth demand of VMs. Zhu
et al. [28] focus on the problem of VM allocation under the
consideration of providing bandwidth guarantees with both
homogeneous and heterogeneous bandwidth demand con-
sidered, while they ignore the dynamic feature of datacenter
traffic. Xie et al. [29] proposes TIVC, which makes time-
varying bandwidth reservations based on the requirements
of specific Mapreduce applications. EyeQ [30] makes mini-
mum bandwidth reservations for each endpoint at provision
time. Gatekeeper [31] reserves link bandwidth, and provides
minimum bandwidth guarantee for VMs of tenants by using
a distributed mechanism based on hypervisor’s rate limit
and feedback.

5.1.2 Bandwidth allocation

The other idea for sharing datacenter network is to allo-
cate bandwidth for VMs after their palcement. Faircloud
presents the basic bandwidth requirements of bandwidth
allocation problem and proposes three kinds of sharing
methods, i.e., PS-L, which allocates bandwidth on congested
links based on the weights of the communication between
the pairs of VMs [11]. Faircloud focuses on achieving the
VM-pair level fairness. Guo et al. propose an allocation
strategy based on game theory, which achieves the Nash
bargaining solution for sharing datacenter network and
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the bargaining solution guarantees minimum bandwidth,
while keeping fairness among VMs [10]. Seawall establishes
hypervisor-to-hypervisor tunnels among physical servers,
then realizes the communication between VMs by using
these tunnels, and finally achieves the per-source fair shar-
ing of congested links [12]. NetShare [13] provides tenant-
level fairness on congested links and achieves proportional
bandwidth sharing by using weighted fair queues. Chen et
al. focus on application-level fairness and they introduce
a rigorous definition of performance-centric fairness with
the guiding principle that the performance of data par-
allel applications should be proportional to their weights
[32]. ElasticSwitch is an efficient and practical method for
providing bandwidth guarantees since it utilizes the spare
bandwidth and it can be fully implemented in hypervisors,
but it has fluctuations under bursty traffic when the rate
limit is beyond the guarantee [33]. Guo et al. design a novel
distributed bandwidth allocation algorithm based on the
Logistic Model, to cope with highly dynamic traffic in the
datacenter network [34].

5.2

Although many efforts have been made on the bandwidth
allocation for intra-datacenter traffic, researchers only pay
few attentions to the inter-datacenter traffic. For example,
Feng et al. present Jetway, which minimizes the cost on
inter-datacenter video traffic [35]. Liu et al. [36] present SD3,
where a datacenter jointly considers update rate and visit
rate to select user data for replication, making sure that
a replica always reduces inter-datacenter communication.
Laoutaris et al. [37] present the NetStitcher to exploit the
unutilized bandwidth to transfer bulk traffic among data-
centers, it gathers information about leftover resources, uses
a store-and-forwoard algorithm to schedule data transfers,
and adopts to resource fluctuations. Sushant et al. [3] pro-
pose B4, which leverages the common ownship (by Google)
of all the applications, servers and data center networks all
the way up to the edge of the backbone. For the bandwidth
allocation, B4 delivers the max-min fair allocation to appli-
cations.

Inter-datacenter traffic

6 CONCLUSION

This paper presents a novel bandwidth allocation model
for inter-datacenter traffic, which can ensure the band-
width guarantee, minimize the network cost, and efficiently
avoid potential traffic overload. We model the design of
bandwidth allocation model under three rationales as an
optimization problem. To solve the large scale optimization
problem, we incorporate the advantages of both auxiliary
variables and the original ADMM to design a distributed
method. Theoretical proof shows that the optimization prob-
lem can be well-addressed after decomposition into many
sub-problems, which can be addressed simultaneously. We
further tackle the implementation of our model in the
large-scale computing environment. The evaluation results
demonstrate that the proposed method can effectively guar-
antee the bandwidth requirements of inter-datacenter traffic
with reduced network cost; hence, it outperforms the prior
method PS-L.
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APPENDIX A

PROOF OF THEOREM 1

Leta; #0,Vi € N, ﬂ@j >0, V(Z,j) e M, Yij =0, V(Z,]) S
M denote the Lagrange multipliers. Then, the Lagrangian
of Equation (17) is shown as follow:

w(mfaavﬁv’y):LP(xfa(y‘f)kv(Af)k)_ Z ﬁi,jx£j+
(i,j)e/\/l
>0 v~ el 3o wl= 30 afi-a)
(i,5)emM ieN  {jl(i,5)eM} {il(G,5)em}

The Karush-Kuhn-Tucker (KKT) conditions for Equation
(17) are:

oz 0B _
Oxf -

a; 20, Y xzf)j— > @ l—gl f VieN,
UlGnemy — {ilG)em}
ﬁi,jxij - 07 ﬁi,j Z O,V('L,j) Ma
Yi,i (1 — Jﬁfj) =0, vi,; >0,V(,j5) €
(28)
Then we can obtain a: ; by solving Equation (28).
APPENDIX B
PROOF OF THEOREM 2
The Lagrangian of Equation (19) is:
w(yidv 57 Hs V) :Lp(xfjlv yz,jaAf] + 6( Z bfyzfd - ui,j)
fer
- Z :ufy{j + Z Vf(yzf,j - 1),

fer feF

where § > 0, uy > 0, and vy > 0 are Lagrange multipliers.
The Karush-Kuhn-Tucker (KKT) conditions are:

6"[’(sz sH V) — O

Yi,j
(u%] Z_f bfyl _]) - 0 6 Z 07 (29)
ufyf,J 0, py >0, VferF,

Vf(l—yzf’j)zo, vg >0, VfeF.

Then we can obtain ylf ; by solving Equation (29).

APPENDIX C
PROOF OF THEOREM 3

We prove the stability of the primal-dual algorithm by
using the theory of Lyapunov stability. The function
U, (x/,y*, A\F) in the equivalent per-flow sub-problem in
Equation (17) is strictly concave, so there exists an optimal
solution which has been proved in Theorem 1. Suppose
that (z7, &, B, %) is an equilibrium point of the primal-dual
algorithm for problem in Equation (17). Now, we prove
that this point is globally, asymptotically stable. Let the
Lyapunov function be defined as follow:

f — Yo _
V(x 1aa57’7)_ Z /f a ZL’ dU+Z/ € a
(i,5)eEM
Yi,j
> / o-gigdo+ S [ n—nisan
(i,7)eEM (i,5)EM Y Vi

FoA B AN =0 if ol f
Note that V(z/, &, 3,9) = 0. if z; ; # x; ;, we have

P 0, 9 \Ti T g
2,7

f
1?1] A 1 ~

/ o—z! do==(zf —z! )?>0.

This argument can be extended to the other terms as

well. Thus, whenever (z/, a, 8,7) # (zf, &, 3,%), we have

V(:lcf ,a, B,7) > 0. Now we get the differential of Lyapunov

function as follow:

Vel o B,9)= > (@, —al)al;+ (Bi; - 8i;)B:,
(i,5)eM
+ Z ('Yi,J Vi 71,J+Z a; 7O‘f) {
(i,j)EM ieEN
_ (0% N 0%, (af Yk, A (! —aF)
ozf 0%

+ (@l —af)(zf —=N)~(¢/ ~¢)(a! —a7)

- Z <5i,j$i,j + 71— 37;@))) ,

(i,7)EM
where the last line follows from the Karush-
Kuhn-Tucker conditions in Equation (28) and

(af —al)(zf —2F)—(¢f ¢/ ) (z! —2F)=0 follows the fact
that

SEDSIED SRECIEND SR
ieEN 7:(4,5)EM j:(4,4)eEM
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Also, we get

U, (xf, y* N) W, (), yF, N .
( p(axf )2 i H -

=p(a! —af )@/ —2)<0

by substituting the differential. This result can also be veri-
fied by the strictly concavity of ¥, (z7, y*, \¥). As a whole,
we have V(xf,a,ﬁﬁ) <0.

Similarly, suppose that (y; ;,d, fi, ) is the optimal so-
lution to equivalent per-link sub-problem in Equation (19).
The Lyapunov function is:

yz et

V(yi,ja57M7V):/ "i_é‘dﬁ“v‘Z/

feR y7 23

¥
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Obviously, whenever (y; ;,6, i1, v) # (vi 5, 5, i1, ), we have



V(i 9, b, v) > 0. The differential is as follow:

V(i 10,v) = > (Wig — vij)yi + (6 = 0)o+

fEF
Sy — iy + 3 vy — vp)vy
fer fer
O (M g1 AF) O (aH Y i N )
= ( 8yi,j - 3y{,j > (yi,j - ym-)

fer
(according to Equation (29))
= p(Yij = ¥i3)Wij —vij) <0
Thus, it follows by the theory of Lyapunov stability that the
algorithm is indeed globally, asymptotically stable.
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