
2168-7161 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2021.3076229, IEEE
Transactions on Cloud Computing

1

A Novel Data Placement and Retrieval Service
for Cooperative Edge Clouds

Junjie Xie, Chen Qian, Deke Guo, Xin Li, Ge Wang, Honghui Chen

Abstract—Mobile edge computing is a new paradigm in which the computing and storage resources are placed at the edge of the
Internet. Data placement and retrieval are fundamental services of mobile edge computing when a network of edge clouds
collaboratively provide data services. These services require short-latency and low-overhead implementation in network and computing
devices and load balance on edge clouds. However existing methods such as distributed hash tables (DHTs) are not enough to achieve
efficient data placement and retrieval services for cooperative edge clouds. This paper presents GRED, a novel data placement and
retrieval service for mobile edge computing, which is efficient in not only the load balance but also routing path lengths and forwarding
table sizes. GRED utilizes the programmable switches to support a virtual-space based DHT with only one overlay hop. Data location
can be easily implemented on top of the GRED by associating a virtual position with each data by hashing, and storing the data at the
edge server connected to the switch whose position is the nearest to the position of the data in the virtual space. We implement GRED
in a P4 prototype, which provides a simple and efficient solution. Results from theoretical analysis, simulations, and experiments show
that GRED can efficiently balance the load of edge clouds, and can fast answer data queries due to its low routing stretch.

Index Terms—Data placement, Data retrieval, Cooperative edge clouds, Mobile edge computing.

F

1 INTRODUCTION

C LOUD computing is a common solution to provide
resources for computation, storage, and bandwidth to

massive mobile computing devices such as those of the
Internet of Things (IoT). However, many modern applica-
tions such as augmented reality (AR), wearable cognitive
assistance, and real time monitoring/control are latency-
sensitive and may suffer the long round-trip delay to the
Cloud. A recent trend is to offload computing and stor-
age to the network edges so as to enable computation-
intensive and latency-critical applications. This technology,
called Edge Computing [1], [2], has been proposed to shift
computing and storage capacities from the remote Cloud to
the network edge in close proximity to mobile devices, sen-
sors, and end users . Edge computing promises the dramatic
reduction in network latency and traffic volume, tackling
the key challenges for materializing the 5G vision.The edge
of the Internet offers ideal placement for low-latency offload
infrastructure to support emerging applications. Terms such
as ‘cloudlets’, ‘micro data centers’, and ‘fog computing’ have
been used in the literature to refer to similar edge-located
services [3] [4].

In edge computing, each edge cloud consisting of mul-

• Junjie Xie is with the Institute of Systems Engineering, AMS, PLA,
Beijing, 100141, P.R. China. E-mail: xiejunjie06@gmail.com.

• Deke Guo and Honghui Chen are with the Science and Technology
Laboratory on Information Systems Engineering, National University of
Defense Technology, Changsha Hunan, 410073, China. E-mail: {guodeke,
chh0808}@gmail.com.

• Chen Qian and Xin Li are with the Department of Computer Science
and Engineering, University of California Santa Cruz, CA 95064, USA.
E-mail: cqian12@ucsc.edu.

• Ge Wang is with the Department of Computer Science and Engineering,
Xi’an Jiaotong University, China. Email: wangge@stu.xjtu.edu.cn.

tiple edge servers has certain computation and storage
resources, and this provides a chance to offload part of the
workload from the remote Cloud. On the one hand, the
edge clouds would cache the data from the remote Cloud
[5]. On the other hand, the edge users would store their ap-
plication data in edge clouds. Meanwhile, sharing the com-
putation and storage resources among those edge clouds
can balance the uneven distribution of the computation and
storage workloads and capabilities over edge clouds. Un-
like Cloud datacenters, edge clouds are usually geographi-
cally distributed and have heterogeneous computation and
storage capacities [1]. Those ad hoc-like connected edge
clouds provide the opportunity for stakeholders to share
and cooperate data and resources where the edge clouds
of multiple stakeholders are geographically distributed [6].
Always offloading the data and computation of users at the
closest edge cloud may not be a valid solution because 1)
the user may be mobile and 2) one edge cloud has limited
resources. Hence we consider a large number of edge clouds
in an interconnected edge network that collaboratively serve
the resource pool of storage and computation offloading for
users.

A core operation for the cooperative edge clouds is
to support the efficient data placement and retrieval when
multiple edge clouds work together [7]. In this work, we
define ”data placement” as the process of delivering a given
data item to an edge server for storage and ”data retrieval”
as the process of finding the storage server of a given data
item and requesting the server to deliver the data to a user.
Hence they are essentially overlay services with network-layer
implementation. More importantly, the data placement and
retrieval services will efficiently support a large number of
upper-layer applications in the environment of mobile edge
computing. The data problems in edge computing are very
fundamental and urgent. However, the data placement and

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on July 31,2021 at 22:55:25 UTC from IEEE Xplore. Restrictions apply.

2168-7161 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2021.3076229, IEEE
Transactions on Cloud Computing

2

retrieval services in mobile edge computing face at least two
challenges. First, these services should have short-latency
and low-overhead implementation on the user side and
network routers/switches. For example, it is impractical to
maintain a complete index of all data-to-location mappings
at an edge device or inside a router. Second, achieving
load balance among edge clouds is very important, which
requires that no server should be overloaded when there is
the available resource on other servers. The limited and het-
erogeneous computation and storage capacities of different
edge clouds further complicate the problem.

To solve these problems, we propose short-latency and
low-overhead data placement and retrieval services for co-
operative edge clouds, called Greedy Routing for Edge Data
(GRED). GRED includes two innovative ideas. First, GRED
supports a DHT of edge clouds with only one overlay hop.
Second, GRED utilizes the Software Defined Networking
(SDN) paradigm [8], [9], [10] to implement efficient routing
support of the one-hop DHT on programmable switches1.
In particular, the SDN controller maintains a virtual space.
Switches and data items are mapped to different positions
in the space according to their IDs. The data will be stored
in an edge server connected to the switch whose position is
nearest to the data position in the virtual space.

GRED is efficient in terms of both routing path lengths
and forwarding table sizes. Each data placement/retrieval
request in GRED only needs one overlay hop. In detail,
in the control plane of GRED, we design a virtual space
construction algorithm to assign the switches to the points in
the virtual space, such that the Euclidean distance between
two switches is proportional to their network distance. It is
proved that under this circumstance, the routing stretch of
the network can be optimized. Furthermore, to achieve the
load balance among edge clouds, we further optimize the
switches’ positions considering that the data is stored in the
network based on their positions in the virtual space.

Meanwhile, to minimize the forwarding table size, the
data plane of GRED does not need a new flow entry for
every placement/retrieval request. Instead, the data plane
performs greedy forwarding based on the next-hop switch’s
position determined by greedy forwarding, which is imple-
mented in P4 [11], a programmable data plane development
tool. Hence the forwarding table size is independent of
the network size and the number of flows in the network.
However, some edge servers with low capacities would be
overloaded when switches connects to the heterogeneous
edge servers. To solve this problem, we further design the
extended-GRED protocol to enlarge the management range
of switches. More precisely, the control plane would update
the flow entries of the related switches, which can redirect
the data to an edge server that still has the remaining ca-
pacity. Although the extended-GRED protocol would incur
a little higher routing stretch, it can completely eliminate
the overload of edge servers. We conducted extensive ex-
periments, using both P4 implementation and simulations,
to evaluate the performance of GRED. Theoretical analysis
shows the correctness and efficiency of GRED. Experimen-
tal results show that GRED uses <30% routing cost and

1. Hereafter we use “switches” to denote network forwarding devices
for the compatibility to the SDN conetxt, although they can be routers.

achieves better load balance among edge clouds compared
to using Chord [12], a well-known DHT.

We summary our contributions as follows.

1) We study the data placement and retrieval problem
among edge-clouds in the edge computing environ-
ment with the aim to provide low-latency and low-
overhead data services.

2) We propose a greedy data routing approach to effi-
ciently provide a feasible routing path with shorter
lengths and smaller table sizes, comparing with
other DHTs-based approaches, i.e. Chord.

3) We evaluate the performance of the GRED protocol
using an implementation on our testbed and mas-
sive simulations. The results of those experiments
show the efficiency and effectiveness of the GRED
protocol.

The rest of this paper is organized as follows. In section
2, we introduce the motivation and preliminaries of this
paper. Section 3 presents the system overview. In Section 4,
we describe the virtual position construction in the control
plane, which is the base of the GRED. Section 5 details the
placement and retrieval mechanism. We discuss the network
dynamic and the data copies in Section 6. In Section 7
we evaluate the performance of the GRED. We introduce
the related work and conclude this paper in Section 8 and
Section 9, respectively.

2 MOTIVATION AND PRELIMINARIES

In this section, we first present the motivation of this paper
and then introduce some preliminaries about the Delaunay
Triangulation (DT) graph [13].

2.1 Motivation
A recent trend is to offload computing and storage to
the network edges so as to enable computation-intensive
and latency-critical applications. Edge computing promises
dramatic reduction in latency and energy consumption,
tackling the key challenges for materializing 5G vision.
The promised gains of edge computing have motivated
extensive efforts in both academia and industry on de-
veloping the technology [14]. This work focuses on the
core function in edge computing: data placement and re-
trieval, which provide efficient support for a large number
of emerging applications. First, these services should have
the efficient implementation on the user side and network
routers/switches. The efficiency discussed in this work aims
at both network efficiency such as short routing path lengths
that imply short latency and low bandwidth cost, and for-
warding efficiency such as small forwarding table size that
achieves low infrastructure cost. The second challenge is the
load balance when a large amount of data [15] are stored
in those edge servers. Load balance requires that no edge
server should be overloaded when there is the available
resource on other servers. The limited and heterogeneous
computation and storage capacities of different edge clouds
further complicate the problem.

However, the data placement and retrieval services are
confront with two key challenges. First, an unavoidable
issue involves the edge computing is the user mobility.

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on July 31,2021 at 22:55:25 UTC from IEEE Xplore. Restrictions apply.

2168-7161 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2021.3076229, IEEE
Transactions on Cloud Computing

3

26

22 20 15

11

7

3

1030

key = 12

28

24

finger table - node 24
start int. succ.

1 [25, 26) 26
2 [26, 28) 26
3 [28, 0) 28
4 [0 , 8) 0
5 [8 , 24) 11

finger table - node 11
start int. succ.

1 [12, 13) 15
2 [13, 15) 15
3 [15, 19) 15
4 [19, 27) 20
5 [27, 11) 28

Fig. 1. Finger tables and key locations in DHT-based storage system.

That is, a user hopes to continue to use the data when the
user moves from one location to another location. Another
scenario is that a user could hope to share the data with
other users who are in different locations. Meanwhile, the
edge servers need to cache the data from the remote Cloud
for the edge users. However, it is very hard to estimate the
distribution of potential users. Therefore, the edge clouds
need to provide efficient data lookup services for the edge
users that access the network from any edge server. To
enable those scenarios, the critical problem is to locate the
data wherever a user acesses the network.

Another important issue involves the edge computing is
the load balance when a large amount of data are stored in
those edge nodes. Although the edge servers can conduct
the computing and storage tasks, the edge servers are with
limited computing and storage resources. Furthermore, the
computing and storage tasks could be uneven distributed
in those edge clouds. Sharing and cooperating data among
multiple edge clouds is an efficient solution to the above
problems. However, how to achieve the load balance among
multiple edge clouds is another challenge that we need to
solve in this paper.

To enable the data placement and retrieval services, we
recall that there has been some related work in peer-to-
peer (P2P) networks. However, existing approaches in P2P
can not meet the low-latency routing requirement in edge
computing. In those systems, a data object is associated with
a key and each node in the system is responsible for storing
a certain range of keys. For example, Chord [12] is a widely
used DHT solution for the data storage and lookup in P2P
networks. As shown in Fig. 1, an edge network consists
of 12 edge servers where each edge server has a unique
identifier. The data with the key 12 is stored in server 15
based on the storage principle in Chord [12]. When a user
accessing server 24 needs to retrieve the data with the key
12 located in the interval [8, 24), the lookup request is first
sent to server 11 based on the finger table of server 24. Note
that the finger table indicates the successor node to find a
data. Then, server 11 will continue to forward the lookup
request to sever 15 based on its finger table. In this case, the
path length of the lookup request is 11, which is significantly
longer than the shortest path between server 24 and server
15 with only 5 physical hops.

In the DHT-based storage systems, the overlay routing
takes up toO(log n) overlay hops for n nodes and each over-
lay hop may include multiple network-layer hops [16][17].
The main reason is the mismatch between the overlay net-

1 32

4

8

6 7

109

5

(a) A physical connectivity graph. (b) A multi-hop DT graph.

Fig. 2. An illustration of a physical network and the multi-hop DT

work and the physical network. That is, the path length for
locating a data item is heavily longer than the shortest path.
Furthermore, such mismatch causes a high routing stretch,
which results in the long response delay. Note there has been
some research proposed to improve the overlay-network
mismatch problem [18] [19]. However experimental results
show that they are not able to maintain a routing stretch
lower than 2 for large networks [13]. Although some work
can achieve O(1) DHT, such as Structured Superpeers [20]
and Beehive [21], they need to store a large amount of
indexing information or add many data duplicates in edge
servers. In addition, the load balance in Chord [12] is not
good enough. Although Chord can achieve a better load
balance by adding more virtual nodes to each real node, it
also increases the routing table space usage and makes the
system more complicated. Therefore, in this paper, we look
for a better design with low routing stretch and better load
balance to enable the data placement and retrieval service
for cooperative edge clouds.

2.2 Guaranteed delivery on a DT Graph
In our design, each switch does a greedy forwarding. To
achieve the guaranteed delivery, a virtual DT graph is
maintained in the control plane of the network. Note that
greedy routing on an arbitrary graph is prone to the risk
of being trapped at a local optimum, i.e., routing stops at a
non-destination node that is closer to the destination than
any of its neighbors. However, on a DT, it is guaranteed that
greedy routing always succeeds to find the node closest to
destination p. For a given set P of discrete points (called
nodes) in a plane is a triangulation DT (P) such that no
point in P is inside the circumcircle of any triangle in
DT (P). If two nodes share a DT edge, they are called DT
neighbors. One important property of DT is that greedy
routing to a destination location p on a DT graph always
stops at a node that is closest to p among all nodes [22].

Note the main difficulty of maintaining a DT graph in
a network of edge nodes is that two DT neighbors may
not be connected by a physical link. Hence they cannot
directly forward messages between them. For an arbitrary
layer-2 network, the MDT [13] protocol was designed for
nodes to construct a distributed multi-hop DT graph. As
shown in Fig. 2(b), there is a DT graph of 10 nodes in a
2D Euclidean space, and the physical connectivity of those
10 nodes is shown in Fig. 2(a). In Fig. 2(b), Nodes 5 and
1 are both physical neighbors and DT neighbors. However,
DT neighbors, nodes 1 and 2, are not connected directly in
Fig. 2(a). Hence in a multi-hop DT graph, node 1 transfers
packets to node 2 by the multi-hop path {1, 5, 2} in Fig.

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on July 31,2021 at 22:55:25 UTC from IEEE Xplore. Restrictions apply.

2168-7161 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2021.3076229, IEEE
Transactions on Cloud Computing

4

User Plane

Edge Plane

Switch Plane

Control Plane

Control channel

Controller

Switch

Edge server

Base station

Wireless channel

Mobile

phone

Autonomous

vehicle

IoT

device

AR/VR

device

Fig. 3. General architecture of software-defined edge network.

2(a). Therefore, node 2 is called the multi-hop DT neighbor
of node 1. For a set of nodes that maintain a correct multi-
hop DT, given a destination p, it is proved that MDT-greedy
forwarding always succeeds to find a node that is closest
to p, for nodes located in a Euclidean space (2D, 3D, or a
higher dimension) [13].

3 SYSTEM OVERVIEW

The GRED protocol specifies how to place a data item and
to retrieve it from the edge servers given a data identifier.
We design the GRED protocol while utilizing the advantage
of software-defined networking [8], which centralizes the
network intelligence in the network controller. The switches
in the data plane only forward packets according to the re-
lated forwarding entries derived from the controller. When
we apply the principle of SDN to the edge computing,
the network is called a Software-Defined Edge Network
(SDEN). As shown in Fig. 3, we define the general hierar-
chical architecture of an SDEN, which consists of the control
plane, the switch plane, the edge plane and the user plane.
The user plane includes the mobile users and various edge
devices, such as autonomous vehicles and IoT devices. In
SDEN, the users access the network by wireless Access
Points (APs). Those APs and edge servers are connected
to network switches and constitute the edge plane. The
switches provide data communication services among edge
servers based on the forwarding entries derived from the
controller in the control plane [9], [10].

The GRED protocol mainly consists of the functions in
the control plane and the switch plane.

Control plane associates each switch to a point in the
virtual space and computes a DT graph of all points. It then
inserts related forwarding entries into switches based on
their DT neighboring relationships in the virtual space. It is
worth noting that the control plane proactively distributes
forwarding entries to switches, which perform greedy for-
warding based on the destination position rather than per-
flow information. The mechanism can efficiently reduce the
load of the control plane and the size of forwarding tables,
because the switches can forward data requests based on
the pre-installed rules without the interaction of the control
plane.

Switch plane consists of switches and transfer links.
The switch greedily forwards a data request to the correct
edge server based on the installed rules. More precisely, the

switch first achieves the data position in the virtual space
by hashing the data identifier. Then the switch finds a DT
neighbor that is closest to the data position and forwards
the packet to it, by either a direct link or a multi-hop path.

When placing a data item to an edge server, the hash
value H(d) of the data identifier d is firstly calculated. In
this paper, we adopt the hash function, SHA-256 [23], which
outputs a 32-byte binary value. Furthermore, the hash value
H(d) is reduced to the scope of the 2D virtual space, which
is constructed by the control plane. We only use the last
8 bytes of H(d) and convert them to two 4-byte binary
numbers, x and y. We limit so that the coordinate value
ranges from 0 to 1 in each dimension. Then, the position of
a data in 2D is (x

232−1 ,
y

232−1). The position can be stored in
decimal format, using 4 bytes per dimension. Hereafter, for
any data identifier, d, we use H(d) to represent its position.
Last, the data is greedily forwarded to the switch whose
position is the nearest to the data position in the virtual
space, and further, the switch determines a unique edge
server to store the data.

We design the GRED protocol keeping the following
three goals in mind:

1) Guaranteed delivery: Given a data identifier, the
GRED forwarding protocol always succeeds to find
a switch closest to the data location. Furthermore,
the switch determines a unique edge server for the
data.

2) Low routing stretch: The GRED forwarding path is
close to the shortest path between the edge server
storing the data and the edge server sending the
data request wherever the data request is sent.

3) Load balance: GRED should place data among all
cooperative edge servers such that no server is
overloaded.

The GRED protocol greedily forwards the data request
based on the data position and the switches’ positions in
the virtual space. Determining the positions of switches is
the key to achieve the advantages of GRED. It is because
bad virtual positions will result in long routing path and
bad load balance among edge servers. Therefore, we first
detail the procedure of the virtual position construction in
the next section.

4 VIRTUAL POSITION CONSTRUCTION

The control plane of GRED first determines the positions of
all switches in a virtual 2D Euclidean space, then constructs
a multi-hop DT [22] based on those virtual positions. After
that, the control plane inserts the forwarding entries into the
switches. Then, switches perform greedy forwarding based
on those forwarding entries. The key point is to determine
the positions of the switches, which affect the routing stretch
and the load balance of the GRED protocol.

4.1 Calculating the coordinates of switches
Note that the network topology and state can be obtained
in the control plane by collecting switch, port, link, and host
information [10][24]. Then, the control plane can compute
the shortest path matrix between switches. To ensure the
low routing stretch of greedy routing, it is required that

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on July 31,2021 at 22:55:25 UTC from IEEE Xplore. Restrictions apply.

2168-7161 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2021.3076229, IEEE
Transactions on Cloud Computing

5

the Euclidean distance of two switches in the virtual space
is proportional to their network distance, which is called
greedy network embedding [25]. Therefore, the key chal-
lenge is how to achieve the coordinate matrix of n points
where the shortest path lengths between n switches can be
indirectly reflected by the distances between n points in the
virtual space. To achieve this goal, we design Scoord algo-
rithm to calculate the switches’ coordinates in the virtual
space.

The Scoord algorithm utilizes the Multidimensional Scal-
ing (MDS) technique [26]. The MDS aims to place each
object in m-dimensional space such that the between-object
distances in the distance matrix are preserved as well as
possible in the Euclidean distances in the space. Each object
is then assigned coordinates in the m dimensions. The
number of dimensions m of MDS can exceed 2 and is
specified in advance. Choosing m=2 optimizes the object
locations for a 2D Euclidean space. Inspired by the MDS,
we design the Scoord algorithm to calculate the positions of
switches in the virtual space while preserving the network
distances between switches. The Scoord algorithm takes an
input matrix giving network distances between pairs of
switches, which is known to the control plane.

In the control plane, the shortest path matrix Γ between
switches is first calculated. The Scoord algorithm utilizes the
fact that the coordinate matrix can be derived by eigenvalue
decomposition from B=QQ′ where matrix B can be com-
puted from the distance matrix Γ [27]. Then, the matrix Q
can be uniquely determined by matrix B. Therefore, the
Scoord algorithm first constructs the scalar product matrix
B by multiplying the squared distance matrix Γ(2) with the
matrix Θ=I− 1

n∆, where ∆ is the squared matrix with all
elements are 1, and n is the number of switches. Then,
B=− 1

2ΘΓ(2)Θ. This procedure is called double centering
[28]. Furthermore, the m largest eigenvalues λ1, λ2, ..., λm
and the corresponding eigenvectors e1, e2, ..., em of the ma-
trix B is determined, where m is the number of dimen-
sions. Last, the coordinates of the switches Q=EmΛ

1/2
m are

achieved, where Em is the matrix of m eigenvectors and
Λm is the diagonal matrix of m eigenvalues of the matrix
B, respectively. After that, each switch will be assigned a
coordinate in the virtual space from the coordinate matrixQ.
When the control plane maintains a 2D Euclidean space, Λm

is the diagonal matrix of 2 largest eigenvalues of the matrix
B, and Em is the matrix of 2 corresponding eigenvectors.

4.2 Refining the positions of switches

One potential problem is that the Scoord algorithm deter-
mines the positions of switches without considering the
load balance among edge nodes. Fig. 4(a) shows a Voronoi
Diagram [29] of 10 crosses where each cross is associated
with a Voronoi cell. In each cell, the distance from a point
to the corresponding cross in the same region is not greater
than its distance to the other crosses in the diagram. Recall
that a data item is stored at an edge server connected to
the switch whose position is nearest to the data position
in the virtual space. Assume that the switches are located
in those crosses in Fig. 4(a). Then, when data items are
mapped into the whole space evenly, it is obvious that there
would be load imbalance among those switches because

(a) A generic Voronoi diagram. (b) A centroidal Voronoi diagram.

Fig. 4. The Voronoi tessellation of 10 points.

those Voronoi cells have different sizes. To achieve the load
balance among those switches, we introduce the theory of
Centroidal Voronoi Tesselation (CVT) [30] to further refine
the coordinates of switches so that each Voronoi cell [29] has
the equal size.

In Fig. 4(a) the crosses are the Voronoi sites and the cir-
cles are the centroids of the corresponding Voronoi regions.
Note that the sites and the centroids do not coincide in
Fig. 4(a). However, Fig. 4(b) shows a 10-point CVT, which
can be viewed as an optimal partition corresponding to
an optimal distribution of sites. That is, the circles are the
sites for the Voronoi tessellation and the centroids of the
corresponding Voronoi regions. Further, we hope that the
coordinates of switches are also the centroids of the related
Voronoi regions. After that, we can achieve the proper load
balance when those data items are mapped into the virtual
space evenly.

In geometry, a CVT [30] is a special type of Voronoi
tessellation or Voronoi diagram, which is a partitioning
of a plane into regions based on distance to points in a
specific subset of the plane. The constraint for the CVT is
simply that each Voronoi site must be the mass centroid for
its corresponding Voronoi region. Given a region R and a
density function ρ, defined in Ω , the mass centroid r∗ of the
region R is defined by

r∗ =

∫
R
rρ(r)dr∫

R
ρ(r)dr

(1)

Given the number of sites n, a CVT is a minimizer (or a
local minimizer) of the CVT energy, defined to be the square
of the distance between each point in the region and its
nearest site. Let Ω be a metric space with distance function φ.
Assume that there are n sites, and (qk)1≤k≤n be a site in the
space Ω. If φ(r, P)=inf{φ(r, q)|q∈P} denotes the distance
between the point r and the subset P , then we define a
region Rk associated with the site qk as follows.

Rk={r∈Ω|φ(r, qk)≤φ(r, qj), j = 1, . . . , n, j 6=k} (2)

That is, the region Rk is the set of all points in Ω whose
distance to qk is not greater than their distance to the other
sites qj , where j is any index different from k. Accordingly,
these regions are called Voronoi cells, and the diagram is
a general Voronoi diagram. Furthermore, given a density

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on July 31,2021 at 22:55:25 UTC from IEEE Xplore. Restrictions apply.

2168-7161 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2021.3076229, IEEE
Transactions on Cloud Computing

6

Algorithm 1 C-regulation: refine the coordinates of switches
in the virtual space while achieving the load balance.
Require: The coordinates of the switches Q achieved in Section

4.1.
Ensure: The updated coordinates of the switches Q∗.

1: Set Q∗←Q; set ji=1 for i=1, . . . , n where qi∈Q;
2: Obtain a random sample W of 1000 points from the virtual

space Ω that is constructed by the control plane with
uniform probability;

3: For each point w∈W , find the qi that is closest to w; denote
the index of that qi by i∗;

4: Set qi∗← ji∗qi∗+w

ji∗+1
and ji∗←ji∗+1; this new qi∗ , along with

the unchanged qi, i6=i∗, form the new set of points Q∗. Note
that ji−1 equals the number of times that the point qi has
been updated.

5: If this new set of points meets some convergence criterion,
terminate; otherwise, go back to step 2.

function ρ(·) defined on Ω, the formulation of the CVT
energy is as follows:

F ((qi, Ri), i=1, . . . , n)=

n∑
i=1

∫
r∈Ri

ρ(r)|r − qi|2dr (3)

Inspired by the CVT, we design the C-regulation method,
as shown in Algorithm 1, to further refine the positions of
switches obtained by the Scoord algorithm in Section 4.1.
The C-regulation algorithm is a sampling technique, which
supplies a discrete estimate of this CVT energy. Theorem
1 gives a necessary condition for the CVT energy F to
be minimized, which means that the Ri is the Voronoi
region corresponding to the switch’s coordinate qi and,
simultaneously, the switch’s coordinate qi is the centroid
of the corresponding Voronoi region Ri, for all 1≤i≤n.
Based on Theorem 1, each time this C-regualtion iteration
is carried out, an attempt is made to modify the coordinates
of switches in such a way that they are closer and closer
to being the centroids of the Voronoi cells they generate.
After that, the C-regualtion algorithm can efficiently balance
the Voronoi cell, and further achieve the load balance of
switches, where the coordinates of switches are the sites of
Voronoi cells.

The iteration will terminate when the CVT energy is
lower than a given threshold. We set that the number of
sample points is 1000 in each iteration, and that can be
more. Note that the C-regulation method could require fewer
iterations when more points are sampled in each iteration.
However, more sample points will incur more computing
time in each iteration. In addition, the number of iterations
can also be set as the termination condition. During a
iteration of the C-regulation algorithm, it should generally
be the case that the CVT energy decreases from step to
step. Furthermore, the impact of the number of iterations on
the load balance is evaluated in Section 7.5.3. When the C-
regulation algorithm terminates, we can achieve the updated
coordinates of switches, which are indicated by the set of
points Q∗ in Algorithm 1.
Theorem 1. A necessary condition for the CVT energy F

to be minimized is that the Ri is the Voronoi region
corresponding to the switch’s coordinate qi, and the
switch’s coordinate qii is the centroid of the correspond-
ing Voronoi region Ri, for all 1≤i≤n.

Proof:
Given a region Ω, a positive integer n, and a density

function ρ(·) defined on Ω, let {qi}ni=1 denote the set of n
switches’ coordinates belonging to Ω and let {Ri}ni=1 denote
any tessellation of Ω into n regions. let

F ((qi, Ri), i=1, . . . , n)=
n∑

i=1

∫
r∈Ri

ρ(r)|r − qi|2dr (4)

First, examine the first variation of F with respect to a
single coordinate, say, qj :

F (qj+εν)−F (qj)=

∫
r∈Rj

ρ(r){|r − qj − εν|2−|r − qj |2}dr

(5)
where we have not listed the fixed variables in the argument
of F and where ν is arbitrary such that qj+εν∈Ω. Then,
when the CVT energy F is minimized, one easily finds that

qj =

∫
Rj
rρ(r)dr∫

Rj
ρ(r)dr

, (6)

by dividing Equation (5) by ε and taking the limit as ε→0.
Thus, according to the sense of Equation (1), the switch’s

coordinate qj are the centroids of the regions Rj when the
energy F is minimum. Next, let us hold the switches’ coor-
dinates {qi}ni=1 fixed and see what happens if we choose
a tessellation {Ri}ni=1 other than the Voronoi tessellation
{R̂j}nj=1. Let us compare the value of F ((qi, Ri), i=1, . . . , n)
given by Equation (4) with that of

F ((qj , R̂j), j=1, . . . , n)=
n∑

j=1

∫
r∈R̂j

ρ(r)|r − qj |2dr (7)

At a particular value of r,

ρ(r)|r − qj |2 ≤ ρ(r)|r − qi|2 (8)

According to the sense of Equation (2), this result follows
because r belongs to the Voronoi region R̂j corresponding
to qj and possibly not to the Voronoi region corresponding
to qi; i.e., r∈Ri but Ri is not necessarily the Voronoi region
corresponding to qi. Since {Ri}ni=1 is not a Voronoi tessella-
tion of Ω, Equation (8) must hold with strict inequality over
some measurable set of Ω. Thus,

F ((qj , R̂j), j=1, . . . , n) < F ((qi, Ri), i=1, . . . , n) (9)

so that F is minimized when the subsets Ri, i=1, . . . , k,
are chosen to be the Voronoi regions associated with the
switches’ coordinates ri, i=1, . . . , n.

Thus, Theorem 1 is proved.

4.3 Multi-hop DT construction
To achieve the guaranteed delivery, the control plane con-
structs a multi-hop DT in the virtual space. As shown
in Fig. 2(b), that is a multi-hop DT graph of 10 points.
Furthermore, greedy routing in a multi-hop DT provides
the property of guaranteed delivery [13], which is based on
a rigorous theoretical foundation. For a given set of nodes
in a 2D space, a triangulation is to construct edges between
pairs of nodes such that the edges form a non-overlapping
set of triangles that cover the convex hull of the nodes.
Furthermore, a DT [31] in a 2D space is usually defined as a

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on July 31,2021 at 22:55:25 UTC from IEEE Xplore. Restrictions apply.

2168-7161 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2021.3076229, IEEE
Transactions on Cloud Computing

7

triangulation such that the circumcircle of each triangle does
not include any node other than the vertices of the triangle.

After obtaining the switches’ positions in a set of points
Q∗, a randomized incremental algorithm is designed to
construct the DT DT (Q∗) in the 2D virtual space [32]. We
first add an appropriate triangle boundingbox to contain P .
The points in P are inserted in random order, and a DT
corresponding to the current point set is maintained and
updated throughout the whole process. Last, we remove the
boundingbox and relative triangles which cotains any vertex
of the boudingbox triangle. Meanwhile, it is necessary to
ensure that the union of all simplices in the triangulation is
the convex hull of those points. Furthermore, greedy routing
on a DT graph can achieve the guaranteed delivery [22].
That is, given a destination location p, the data packets
always stop at a node that is closest to p among all nodes.

Considering the case of inserting vi,
DT (v1, v2, . . . , vi−1) formed by inserting all previous
points v1, v2, . . . , vi−1 is already a DT. The change caused
by inserting vi is adjusted and DT (v1, v2, . . . , vi−1) ∪ vi is
made a new DT (v1, v2, . . . , vi). The adjustment process is
as follows. First, we determine which triangle (or edge) vi
falls on, and then connect vi with the three vertices of the
triangle to form three triangles (or connect the vertices of
two triangles of the common edge to form four triangles).
Since the newly generated edges and the original edges
may not be Delaunay edges, a flipping [31] is conducted to
make them all Delaunay edges to get DT (v1, v2, . . . , vi).
Take DT (A,B,C,D) for example, we change the common
edge <B,D> to the common edge <A,C> to produce two
triangles that do meet the Delaunay condition when two
original triangles do not meet the Delaunay condition [31].
This operation is called a flipping.

However, a key challenge is to ensure that each switch
can transfer data packets to its DT neighbors note that a DT
neighbor of a switch may not be the physical neighbor of the
switch. Therefore, to achieve the guaranteed delivery, each
switch maintains two kinds of flow entries in the GRED
protocol, one makes it can forward requests to its physical
neighbors, and another makes it forward requests to its
multi-hop DT neighbors. Note that the switches that are not
directly connected to some edge servers will not participate
in the construction of the DT. Those switches are just used
as the intermediate nodes to transfer data to the multi-hop
DT neighbors. For a node u, each entry in its forwarding
table Fu is a 4-tuple as follows.

<sour, pred, succ, dest>,

which is a sequence of nodes with sour and dest being the
source and destination nodes of a path, and pred and succ
being node u’s predecessor and successor nodes in the path.
Fu is used to forward packets to multi-hop DT neighbors.
For a specific tuple t, we use t.sour, t.pred, t.succ, and
t.dest to denote the corresponding nodes in the tuple t.
Although greedy routing does not always find a shortest
route, the quality of the greedy route is often very good.
The length of an optimal route between a pair of nodes on a
DT is within a constant time of the direct distance [33].

Algorithm 2 GRED(u, d) forwarding at switch u.
1: For each physical neighbor v, Rv←ED(v, d), Euclidean

distance between v and d;
2: For each DT neighbor ṽ, Rṽ←ED(ṽ, d);
3: Let v∗ be the neighbor where Rv∗= min{Rv, Rṽ};
4: if Rv∗<ED(u, d) then
5: Send the packet to v∗ directly or by the multi-hop path;
6: else
7: Switch u is closest to d, and determines a unique edge

server to place the data;
8: end if

5 DATA PLACEMENT AND RETRIEVAL USING
GRED
In this section, we detail how the GRED is designed to
support data placement and retrieval services. The GRED
protocol would first forward data packets to the switch,
which is closest to the data position in the virtual space.
Then, the switch would determine a unique edge server to
place the data. Furthermore, we introduce how to use the
GRED protocol to retrieve a data item.

5.1 Placing data in the edge network

In GRED, the switches are associated with their coordinates
in the virtual space, which is maintained by the control
plane. A switch knows its own coordinates, its physical
neighbors’ coordinates, and the coordinates of its DT neigh-
bors. The Euclidean distance between any two switches can
be calculated from their coordinates where the network-
wide distance has been embedded in Section 4.1. The key
idea of GRED forwarding at a switch, say u, is conceptually
simple: For a data with ID d, the place to store the data is
position H(d), which will be converted to the coordinate
in the virtual space, as shown in Section 3. u forwards
the packet to the DT-neighbor switch closest to H(d). If
the neighbor is a physical neighbor, the packet is directly
forwarded; else, the packet is forwarded via a virtual link,
to a DT neighbor closest to H(d). If there is no neighbor
of u closer to H(d) than u itself, it is proved that u is the
switch closest to H(d) [33]. When the data arrives at the
switch closest to H(d), the switch determines a unique edge
server to place the data. The detailed algorithm is presented
in Algorithm 2.

Transfer in a virtual link. Consider a switch u that
has received a data d to forward. Switch u stores it with
the format: d=<d.dest, d.sour, d.relay, d.data> in a local
data structure. When d.relay 6=null, data d is traversing
a virtual link. Note that d.dest is the end switch of the
virtual link, d.sour is the source switch, d.relay is the relay
switch, and d.data is the payload of the data. When switch
u receives a packet that is being forwarded in a virtual
link, the packet is processed as follows. When u=d.dest,
switch u is the endpoint of the virtual link, and continues to
forward the data based on Algorithm 2. When u=d.relay,
switch u first finds tuple t from the forwarding table Fu

with t.dest=d.dest where Fu is defined in Section 4.3. Then,
switch u revises d.relay=t.succ based on the matched tuple
t. The last step in switch u is to transmit the data to d.relay.
Based on this setting, messages can be forwarded to a DT
neighbor of a switch. However, it is worth noting that a

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on July 31,2021 at 22:55:25 UTC from IEEE Xplore. Restrictions apply.

2168-7161 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2021.3076229, IEEE
Transactions on Cloud Computing

8

h1

p5
p3p1 p1 p2

p4
p3

h3 h4 h5 h6

switch 1 switch 2

p2
p4 p5

h2

Fig. 5. Data item that should be placed in server h3 is placed in server
h6 when server h3 would be overloaded.

global minimum may not be unique, for those data mapped
to a Voronoi edge in Fig. 4(b). The tie can be broken by
ranking the x coordinate, then y coordinate.

5.2 Determining the placement server

Based on the above analysis, GRED can ensure that a data
item can be forwarded to a unique switch, whose position is
closest to the position of the data. Furthermore, the switch
determines a unique server to place the data. Assume that
switch u is closest to the data position in the virtual space,
and switch u is directly interconnected with s edge servers.
In GRED protocol, switch u maintains a serial number for
each edge server from 0 to s−1. Then, switch u transmits the
data with the identifier d to the server whose serial number
is [H(d) mod s] where we still use a uniform hash function
[23]. Furthermore, the method to determine the server can
efficient balance the load among those edge servers since
the hash function can map the expected inputs as evenly as
possible over its output range.

The range extension. Consider that edge servers could
be heterogeneous. Some edge servers with low storage
capacity would be overloaded when switches connect to dif-
ferent numbers of edge servers with heterogeneous capacity.
To solve this problem, we further extend the management
range of the switches. The management range of a switch
is determined by the edge servers that the switch can
place data. In prior discussion, the management range is
one-hop. That is, the data whose position is closest to a
switch position would be placed in the edge server directly
connected to the corresponding switch. Furthermore, GRED
allows that a switch can manage servers with more than
one hop. When the upper layer application finds that an
edge server would be overloaded, the corresponding switch
sends an extending request to the control plane, which
can be achieved in the context of SDN [8]. Accordingly,
the control plane assigns the edge server with the most

TABLE 1
The flow entry in switch 1 before updating.

Match Action
1 d.dest=h3.address Output: port p3

TABLE 2
The flow entry in switch 1 after updating.

Match Action
1 d.dest=h3.address Set: d.dest=h6.address;

Output: port p5

remaining capacity from the physical neighbor switches to
take over the corresponding storage load. To enable this, the
control plane needs to update the corresponding forwarding
entries into the related switches.

As shown in Fig. 5, when the server h3 that connected
to switch 1 would be overloaded, the switch 1 sends an
extending request to the control plane. Then, the control
plane assigns server h6 to take over the load of server h3
where the edge server h6 is connected to switch 2. Before
that, for switch 1, the data that should be placed in server
h3 would be forwarded to port p3 based on the flow entry
in Table 1. However, the data is forwarded to port p5 after
that the control plane replaces the forwarding entry in Table
1 with the flow entry in Table 2. Table 2 shows that switch
1 first sets the destination address of the data as the address
of server h6, and then forwards the data to port p5, when
the destination address of the data is the address of server
h3. Meanwhile, switch 2 also receives the corresponding
forwarding entry, which indicates to forward the related
data to its edge server h6. Furthermore, when some edge
servers in switch 2’s range would be overloaded, switch 2
will also send an extending request to the control plane.
Therefore, the range extension can efficiently avoid the
overload of edge servers and share the resources of multiple
edge servers.

In addition, consider that the data placement in edge
servers is not everlasting. That is, the overloaded edge
server could become underloaded again since some data
could be invalid or migrated to the Cloud. In this case,
the edge server will first retrieve the data, which should
be placed in the edge server, but is placed in other edge
servers. When all the corresponding data has been retrieved,
the corresponding extended forwarding entries will also be
deleted from the related switches.

5.3 Data retrieval using GRED

So far, we have introduced the procedure of data place-
ment. The data retrieval using GRED is similar to the data
placement. The retrieval is also to use the data identifier,
and each switch greedily forwards the retrieval request to
the switch whose position is closest to the data position in
the virtual space. Furthermore, the switch uses the same
method shown in Section 5.2 to determine the edge server
for responding to the retrieval request. However, the key
challenge is how to determine the edge server that has
stored a data when the correponding switch has extended
its management range.

As shown in Fig. 5, the data that should be placed in
server h3 that is connected to switch 1 is forwarded to
server h6 connected to switch 2 when switch 1 extends
its management range. In this case, when we retrieve a
data that is directed to the edge server h3 based on the
value of [H(d) mod s], we could not determine that the
data has been placed in server h3 connected to switch 1
or server h6 connected to switch 2. Therefore, to efficiently
retrieve a data, the retrieval request is forwarded to the two
edge servers at the same time, and the edge server that
has stored the data will respond to the retrieval request.
Note that a tag is used in the packet header to indicate a
placement/retrieval request. After that, we can ensure to

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on July 31,2021 at 22:55:25 UTC from IEEE Xplore. Restrictions apply.

2168-7161 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2021.3076229, IEEE
Transactions on Cloud Computing

9

efficiently locate a data that has been placed in the edge
network when a data retrieval request is received.

6 DISCUSSION

The network dynamic. Consider that some edge nodes
could be added into the edge network. Meanwhile, some
failures of switches or edge nodes could result in that some
edge nodes leave from the edge network. Therefore, the
GRED is required to accommodate the network dynamic.
Recall that we utilize an incremental method to construct
the DT graph in the control plane in Section 4.3. When an
edge node is added in the edge network, some edges will
be added in the DT graph to connect the new edge node
and its neighbors, which have existed in the DT graph. It
is worth noting that the new edge node has no effect on
the other edge nodes. It only affects its neighbors. First,
the control plane will add the corresponding forwarding
entries into the new edge nodes and its neighbors. Then,
those data in the neighboring edge nodes of the new edge
node will be calculated again. If those data is closest to the
new edge node, they will be forwarded to the new edge
node. Furthermore, when an edge node leaves from the edge
network, the related edges between it and its neighbors will
be deleted, and then some new edges will be added between
those neighbors to form a new DT graph. After that, those
related data will be stored in those neighbors based on their
positions in the virtual space, which has been described in
Section 5.1.

Data copies. The data copies are fundamental for the
fault tolerance. Meanwhile, multiple data copies can also
help to achieve better performance. Therefore, it is necessary
for the GRED to support multiple data copies in the edge
network. Recall that we store a data item in the edge
network by hashing its ID. Furthermore, when there exists
multiple data copies, it is required to add a serial number
for each data copy. Then, the ID and the serial number are
concatenated to form a new string. By hashing the new
string, we can achieve the position of the corresponding data
copy in the virtual space. After that, the data copy can be
stored in the edge network based on the scheme in Section
5.1. An advantage of the GRED is that it is easy to determine
which copy is cloeset to the access point. Consider that
we have embedded the network-wide distance between
switches into the Euclidean distance between the related
two points in the virtual space in Section 4.1. Therefore,
we can know which copy is closest to the access point by
calculating their distances to the access point in the virtual
space after embedding the network distance in Section 4.1.

7 PERFORMANCE EVALUATION

In this section, we first introduce the implementation and
evaluation of the GRED on a small-size testbed. Then, we
conduct large-scale simulations to evaluate the performance
of the GRED.

7.1 Implementation using P4
We have implemented a prototype of GRED, including all
switch data plane and control plane features described in
Section 3, where the switch data plane is written in P4 [11],

controller

s1

s3

s2

s5

s4

s6

h2

h8h7h4h3

h10h9h6h5

h1 h11

h12

P4 switch server

Fig. 6. Prototype with 1 controller, 6 P4 switches and 12 servers.

100 500 900
The number of data items

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

A
ve

ra
ge

 ro
ut

in
g

st
re

tc
h

1.00 1.02 1.021.00 1.01 1.02

GRED-NoCVT
GRED

(a) Routing stretch.

100 500 900
The number of data items

0.0

0.5

1.0

1.5

2.0

2.5

Lo
ad

 b
al

an
ce

 (m
ax
/a
vg
)

1.80 1.70 1.68
1.44

1.25 1.15

GRED-NoCVT
GRED

(b) Load balance.

Fig. 7. The performance of the GRED protocol under different settings.

and the function in the control plane is written in Java. The
P4 compiler generates Thrift APIs for the controller to insert
the forwarding entries into the switches. The P4 switch
supports a programmable parser to allow new headers to
be defined. Meanwhile, multiple match+action stages [11]
are designed in series to achieve the neighboring switch
whose position is closest to the position of the data. The P4
switch calculates the distance from a neighbor to the data in
the virtual space in a match+action stage. The topology of
our prototype is shown in Fig. 6. Our testbed consists of 1
controller and 6 P4 switches, where each switch connects to
2 servers. We use those servers to generate data requests
including the data placement/retrieval requests. Further-
more, we evaluate the routing stretch and the load balance
of the GRED protocol on our prototype. We implemented
two variants of the GRED protocol including the GRED-
NoCVT protocol and the GRED protocol on our testbed.
The GRED protocol sets the number of iterations is 50 for
the C-regulation method, which is introduced in Section 4.2.
GRED-NoCVT indicates the positions of switches are only
generated by the Scoord algorithm in Section 4.1, and not
refined by the C-regulation method.

We first evaluate the performance of the GRED protocol
based on our testbed. Fig 7(a) shows that the average
routing stretches of GRED-NoCVT and GRED are close to 1,
which is the optimal value of the routing stretch. However,
Fig 7(b) shows that GRED achieves significantly better load
balance than GRED-NoCVT due to the lower max/avg
value, which is used to quantify the load balance of a
networked storage system. The value of max is the number
of data items received by the most loaded edge server, and
the value of avg means the average load of all edge servers.
The optimal value of max/avg is 1, which indicates perfect
load balancing.

Furthermore, we test the average response delay of the
GRED protocol where we have placed some data items

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on July 31,2021 at 22:55:25 UTC from IEEE Xplore. Restrictions apply.

2168-7161 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2021.3076229, IEEE
Transactions on Cloud Computing

10

200 300 400 500 600 700 800 900 1000
The number of edge servers in the network

1

2

3

4

5

6

7

R
ou

tin
g

st
re

tc
h

Chord
GRED
GRED-NoCVT

(a) The impact of the network size.

3 4 5 6 7 8 9 10
The minimal degree of switches for interconnection

1

2

3

4

5

6

7

8

R
ou

tin
g

st
re

tc
h

Chord
GRED
GRED-NoCVT

(b) The impact of the minimal degree of
switches.

200 300 400 500 600 700 800 900 1000
The number of edge servers in the network

1

2

3

4

5

6

7

R
ou

tin
g

st
re

tc
h

Chord
Extended-GRED
GRED

(c) The impact of the range extension.

Fig. 8. Routing stretch comparison under different schemes.

100 500 900
The number of retrieval requests

0.0

0.2

0.4

0.6

0.8

1.0

A
ve
ra
ge
 re
sp
on
se
 d
el
ay
 (m
s)

0.66 0.68 0.680.64 0.66 0.67

GRED-NoCVT
GRED

Fig. 9. The response delay under different number of retrieval requests.

in our testbed and then generated some data retrieval re-
quests. Fig 9 shows that the average response delay of those
retrieval requests. We can find that the average response
delays of the two GRED variants are similar, and the average
response delay has a modest change when we send the
different number of retrieval requests. The routing stretch
would affect the average response delay. Recall that the two
GRED variants all have low routing stretches in Fig 7(a).
Therefore, we can find that the response delay is low in Fig
9. That is, the GRED protocol can quickly respond to those
retrieval requests in edge computing. However, it is worth
noting that the network size is small since our testbed just
consists of 6 P4 switches and 12 edge servers. So, we further
conduct massive simulations to evaluate the performance
of the GRED protocol including the routing stretch and the
load balance in the next section.

7.2 The setting of large-scale simulations
In simulations, unless otherwise specified, we use BRITE
[34] with the Waxman model to generate synthetic topolo-
gies at the switch level where each switch connects to 10
edge servers. Switches could connect to different numbers
of edge servers or servers with different capacity. Then, we
compare the GRED protocol with the Chord [12] protocol,
which can locate data in a peer-to-peer network. The GRED
protocol includes two variants: GRED and GRED-NoCVT
(without CVT). We use two performance metrics to evaluate
the performance of GRED as follows.

• Routing stretch. The routing stretch value is defined
to be the ratio of the hop count in the selected route
to the hop count in the shortest route between a pair
of source and destination nodes.

• Load balance. The max/avg metric quantifies the load
balance, defined as the ratio of the number of data
items received by the most loaded edge server (max)
to the average load of all edge servers (avg).

We evaluate the routing stretch of GRED by varying the
number of switches and the minimal degree of switches
for interconnection. In each setting of the network, we ran-
domly generate 100 data items to be placed in the network
and randomly select an access point for each data. Each
point in Fig. 8 is the average of 100 routing stretches where
each error bar is constructed using a 90% confidence interval
of the mean. Furthermore, we evaluate the load balance of
GRED varying the number of switches and the amount of
data. Meanwhile, we evaluate the impact of the number of
iterations of the C-regulation method on the load balance of
GRED.

7.3 Routing stretch

7.3.1 Varying network size
We first evaluate the impact of the network size on the
routing stretch. Fig. 8(a) shows the routing stretches of
Chord, GRED, and GRED-NoCVT. In Fig. 8(a), GRED and
GRED-NoCVT achieve significantly lower routing stretches
than Chord. It is because that the Chord takes O(log n)
overlay hops to retrieve the data while the GRED costs
only one overlay hop to get the data. The average routing
stretch of Chord is higher than 3.5 under any network size
in our experiments. However, the average routing stretches
of GRED and GRED-NoCVT are all lower than 1.5. It means
that GRED uses <30% routing path lengths compared to
using Chord. It is worth noting that shorter routing path
indicates less bandwidth consumption and lower latency to
place/retrieve data. Meanwhile, we can see that GRED has
a little higher routing stretch than GRED-NoCVT in some
cases. It is because the C-regulation method has influence
on the distances between switches, which can be preserved
as well as possible after using the Scoord algorithm in Section
4.1.

7.3.2 Varying the minimum degree of switches
We evaluate the impact of the minimal degree of switches
for interconnection on the routing stretch. The network em-
ploys 100 switches and 1000 edge servers, and the minimal
degree of switches for interconnection varies from 3 to
10. Fig. 8(b) shows that GRED and GRED-NoCVT achieve
obviously lower routing stretches than the Chord protocol.
In Fig. 8(b), we can see that the degree of switches for
interconnection has a modest impact on the routing stretch
for the same protocol. Meanwhile, Fig. 8(b) shows that
the routing stretch slightly decreases as the increase of the
minimal degree of switches. When the switches provide

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on July 31,2021 at 22:55:25 UTC from IEEE Xplore. Restrictions apply.

2168-7161 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2021.3076229, IEEE
Transactions on Cloud Computing

11

(a) Storage utilization.

×103

(b) Storage amount.

Fig. 10. The performance of the GRED protocol with the range exten-
sion.

more ports for interconnection, greedy routing has a higher
possibility to find the shortest path.

7.3.3 Range extension
When an edge server will be overloaded, the corresponding
switch needs to extend its management range. That is,
the switch forwards data to the edge server connected to
the neighboring switch. Range extension may increase the
routing stretch. We compare the routing stretch achieved by
GRED and the extended-GRED protocol where the num-
ber of iterations is 50 for the C-regulation method. The
extended-GRED denotes the data would be placed in the
edge server connected to the neighbor switch of the destina-
tion switch. We placed 100 data items to achieve the average
routing stretch under each setting of the network size.
Fig. 8(c) shows that the extended-GRED protocol achieves
slightly higher routing stretch than GRED. However, the
routing stretch of the extended-GRED is still significantly
lower than Chord.

Furthermore, we evaluate how the range extension im-
prove the storage utilization of edge servers. 1 million
data items are stored in the edge computing environment
where 20 switches exist in the network, and the storage
capacities of edge servers connected with switches vary
from 10K to 200K. Note that the edge servers will drop
the received data when it is overloaded under the GRED
without the range extension. From Fig. 10(a), we can see
that the storage utilizations of edge servers connected with
switches {8, 12, 15, 18, 19} are significantly improved. The
storage utilization in switch 12 increases 60% more under
the extended-GRED compared to the GRED in Fig. 10(a). Be-
cause the switch will forward the data items to its neighbors
when those edge servers connected to the corresponding
switch are overloaded under the extended-GRED. Fig. 10(b)
shows that the corresponding edge servers store more data
items under the extended-GRED than that of the GRED.
Meanwhile, we can find that the improvement to the edge
servers with full storage is small. Therefore, the extended-
GRED can efficiently utilize the left storage resources in
some edge servers, and further improve the service capacity
of edge infrastructure for cooperative edge clouds.

7.4 The number of forwarding table entries
In this section, we show the number of forwarding table
entries per switch for the GRED protocol under different
network sizes. In Figure 11, each point indicates the aver-
age number of forwarding table entries over all switches,
where the error bar is constructed using a 90% confidence

200 300 400 500 600 700 800 900 1000
The number of edge servers in the network

20

40

60

80

100

A
vg

 n
um

be
r o

f e
nt

rie
s

Chord
GRED-NoCVT
GRED

Fig. 11. The number of forwarding table entries under different schemes.

interval of the mean. Figure 11 shows that the number
of forwarding table entries goes up as the increase of the
network size under the Chord protocol. However, we can
see that the increase of the average number of forwarding
entries is modest as the increase of the network size under
the GRED and GRED-NoCVT protocols from Figure 11.
That is, the GRED protocol only needs a few forwarding
entries to achieve the data placement and retrieval services.
In addition, under the Chord protocol, not only switches
employ forwarding entries to support the data placement
and retrieval service, but also edge servers need to maintain
finger tables to achieve data location. Therefore, GRED has
the obvious advantage in scalability since the number of
forwarding table entries is independent of the network size
and the number of flows in the edge network.

7.5 Load balance

7.5.1 Varying the network Size
We first evaluate the impact of the network size on the load
balance under different protocols where the number of edge
servers varies from 200 to 1000. Fig. 12(a) shows that GRED
(T=10) and GRED (T=50), T is the number of iterations,
achieve significantly better load balance than Chord due
to the lower value of max/avg. In Fig. 12(a), the value of
max/avg goes up as the increase of the network size in Chord.
However, we observe very little increase for GRED (T=10)
and GRED (T=50) in Fig. 12(a). Fig. 12(a) shows that GRED
(T=50) achieves better load balance than GRED (T=10),
which means that the GRED protocol can achieve better load
balance by increasing the number of iterations.

7.5.2 Varying the amount of data
We vary the amount of the placed data from 100,000 to
1,000,000 where 1000 edge servers are deployed in the
network. Fig. 12(b) shows that GRED (T=50) achieves the
best load balance among the three protocols. We can see
that the Chord protocol has the worst load balance because
the value of max/avg is higher that 6. Meanwhile, we can
also see that the value of max/avg for GRED (T=10) is lower
than 2.5, and further the value of GRED (T=50) is lower
than 2. Note that the value of max/avg is lower and better,
and the optimal value for load balance is 1. Therefore, the
GRED protocol can achieve the proper load balance among
edge servers.

7.5.3 Varying the number of iterations
In this section, we test the impact of the number of iterations
T on the load balance. Note that the number of iterations

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on July 31,2021 at 22:55:25 UTC from IEEE Xplore. Restrictions apply.

2168-7161 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2021.3076229, IEEE
Transactions on Cloud Computing

12

200 300 400 500 600 700 800 900 1000
The number of edge servers in the network

1
2
3
4
5
6
7
8
9

Lo
ad

 b
al

an
ce

 (m
ax
/a
vg
)

Chord
GRED(T=10)
GRED(T=50)

(a) The impact of the network size.

200000 400000 600000 800000 1000000
The number of data items

2

3

4

5

6

7

Lo
ad
 b
al
an
ce
 (m

ax
/a
vg

)

Chord
GRED(T=10)
GRED(T=50)

(b) The impact of the number of data items.

20 40 60 80 100
The number of iterations

2

3

4

5

6

7

Lo
ad

 b
al

an
ce

 (m
ax

/a
vg
)

Chord
GRED-NoCVT
GRED

(c) The impact of the number of iterations.

Fig. 12. Comparison of load balance under different schemes.

T for the C-regulation method will affect the positions of
switches in the virtual space, and further affect the load
balance of the GRED protocol. The setting of the network
is the same as the setting in Section 7.5.2, and we placed
100,000 data items in the network. Note that the Chord
and the GRED-NoCVT are independent of T . Therefore,
Fig. 12(c) shows that T has no influence on Chord and
GRED-NoCVT. Furthermore, we can see that the value
of max/avg decreases as the increase of T for the GRED
protocol in Fig.12(c). That means that the GRED protocol can
achieve better load balance when T increases. Meanwhile,
Fig. 12(c) shows that GRED-NoCVT can also achieve better
load balance than Chord even if GRED-NoCVT did not use
the C-regulation method to refine the positions of switches.
Furthermore, we can see that the value of max/avg is lower
than 2 when T is more than 20 in Fig. 12(c). We also find
that the value of max/avg stops to decrease when T is more
than 70 in Fig. 12(c). It means that the C-regulation method
has found the optimal positions of switches in the virtual
space to achieve the proper load balance when T=70. After
that, the increase of T has little improvement on the load
balance of GRED.

8 RELATED WORK

In recent years, a new trend in computing is happening with
the function of Clouds being increasingly moving towards
the network edges [35]. It is estimated that tens of billions
of edge devices will be deployed in the near future [36].
The computing and storage resources are placed at the
edge of the Internet to provide low-latency services for
those edge devices. Zeng et al. study how to effectively and
economically utilize the idle resources in volunteer vehicles
to handle the overloaded tasks in VEC servers [37]. Chen
et al. propose a light-weight radio frequency fingerprinting
identification (RFFID) scheme to realize authentications for
a large number of resource-constrained terminals under the
mobile edge computing (MEC) scenario without relying
on encryption-based methods [38]. Liao et al. investigate
the security threats in mobile edge computing (MEC) of
Internet of things, and propose a deep-learning (DL)-based
physical (PHY) layer authentication scheme [39]. Wu et al.
discuss the roles and opportunities that information and
communications technologies play in pursuing the sustain-
able development goals [40]. Atat et al. present the cyber-
physical systems taxonomy via providing a broad overview
of data collection, storage, access, processing, and analysis
[41].

In edge computing, edge servers perform computing
offloading, data storage, caching and processing, as well as

distribute request and delivery service [1]. Yang et al. pro-
pose a data centric design where data become self-sufficient
entities that are stored, referenced independently from their
producers [2]. However, a number of challenges need to be
addressed in edge computing. First, Mobility is an intrinsic
trait of many mobile applications. In those applications, the
edge servers could exploit the movement and trajectory
of edge users to improve the efficiency of handling users’
computation requests. Some mobility models were pro-
posed [42], which characterize the mobility by a sequence of
networks that users can connect to and a two-dimensional
location-time workflow, respectively. In addition, mobility
management for edge computing was integrated with traffic
control in [43] to provide better experience for users. Note
that most of the existing works focused on optimizing
mobility-aware edge server selection. However, to achieve
better user experience and higher network-wide profit, we
propose the GRED protocol to efficient locate data for edge
users wherever users access the network.

On the other hand, edge servers with limited computa-
tional resources may be overloaded when they have to serve
a large number of edge users. In such cases, The burdens on
an edge server can be lightened via peer-to-peer cooperative
edge servers [36]. Xia et al. investigate the collaborative
caching problem in the EC environment with the aim to
minimize the system cost including data caching cost, data
migration cost, and quality-of-service (QoS) penalty [44].
Gharaibeh et al. study the collaborative caching problem
for a multicell-coordinated system from the point of view of
minimizing the total cost paid by the content providers [45].
Resource sharing via the cooperation of edge servers can not
only improve the resource utilization, but also provide more
resources for edge users to enhance their user experience.
The resource sharing framework was originally proposed in
reference [46], which includes components such as resource
allocation, revenue management and service provider co-
operation. The framework was extended in [47], which
considered both the local and remote resource sharing.
Server cooperation can significantly improve the computa-
tion efficiency and resource utilization at edge servers. More
importantly, it can balance the computation and storage
load distribution over the networks so as to reduce sum
response latency. Therefore, in this paper, we propose the
GRED protocol to efficient distribute and locate the data
over the cooperative edge clouds.

9 CONCLUSION

Mobile edge computing needs to provide the data place-
ment and retrieval services for many emerging applications

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on July 31,2021 at 22:55:25 UTC from IEEE Xplore. Restrictions apply.

2168-7161 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2021.3076229, IEEE
Transactions on Cloud Computing

13

such as IoT. However, it remains an open problem. A key
challenge to enable this is to efficiently locate the data in the
edge network. GRED solves this challenging problem by
offering a powerful primitive: given a data identifier, it de-
termines the edge server responsible for the data placement
and retrieval, and does so efficiently. Attractive features of
GRED include its routing simplicity, provable correctness,
low routing stretch, and proper load balance. Our theoreti-
cal analysis, simulations, and experimental results confirm
that the effectiveness and efficiency of GRED. GRED uses
<30% routing cost and achieves better load balance among
edge clouds compared to using Chord, a well-known DHT.
We believe that GRED will be a valuable component for
mobile edge computing considering the user mobility and
the cooperation among edge clouds.

ACKNOWLEDGMENTS

This work is partially supported by the National Key Re-
search and Development Program of China under Grant No.
2018YFE0207600, the National Natural Science Foundation
of China under Grant No. U19B2024 and 62002284, and the
Tianjin Science and Technology Foundation under Grant
No. 18ZXJMTG00290.

REFERENCES

[1] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp.
637–646, 2016.

[2] Y. Yang, “A vision towards pervasive edge computing,” in Proceed-
ings of the 22nd International ACM Conference on Modeling, Analysis
and Simulation of Wireless and Mobile Systems, ser. MSWIM 19, 2019,
p. 1.

[3] M. Chiang and T. Zhang, “Fog and IoT: An Overview of Research
Opportunities,” IEEE Internet of Things Journal, vol. 3, no. 6, pp.
854–864, 2016.

[4] Y. Elkhatib, B. Porter, H. B. Ribeiro, M. F. Zhani, J. Qadir, and
E. Rivire, “On using micro-clouds to deliver the fog,” IEEE Internet
Computing, vol. 21, no. 2, pp. 8–15, 2017.

[5] Y. Zeng, Y. Huang, Z. Liu, and Y. Yang, “Joint online edge caching
and load balancing for mobile data offloading in 5g networks,”
in 2019 IEEE 39th International Conference on Distributed Computing
Systems (ICDCS), 2019, pp. 923–933.

[6] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and
its role in the internet of things,” in Proc. of the 1st MCC Workshop
on Mobile Cloud Computing, August 2012.

[7] J. Xie, C. Qian, D. Guo, X. Li, S. Shi, and H. Chen, “Efficient data
placement and retrieval services in edge computing,” in Proc. of
IEEE ICDCS, July 2019.

[8] D. Kreutz, F. M. V. Ramos, P. E. Verssimo, C. E. Rothenberg,
S. Azodolmolky, and S. Uhlig, “Software-defined networking: A
comprehensive survey,” Proceedings of the IEEE, vol. 103, no. 1, pp.
14–76, 2015.

[9] Y. Zeng, S. Guo, G. Liu, P. Li, and Y. Yang, “Energy-efficient device
activation, rule installation and data transmission in software
defined dcns,” IEEE Transactions on Cloud Computing, pp. 1–1, 2019.

[10] J. Xie, D. Guo, Z. Hu, T. Qu, and P. Lv, “Control plane of software
defined networks: A survey,” Computer Communications, vol. 67,
pp. 1–10, Aug. 2015.

[11] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming protocol-independent packet processors,” SIG-
COMM Comput. Commun. Rev., vol. 44, no. 3, pp. 87–95, Jul. 2014.

[12] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrish-
nan, “Chord: A scalable peer-to-peer lookup service for internet
applications,” in Proceedings of ACM SIGCOMM, 2001, pp. 149–
160.

[13] S. S. Lam and C. Qian, “Geographic routing in d-dimensional
spaces with guaranteed delivery and low stretch,” IEEE/ACM
Trans. Netw., vol. 21, no. 2, pp. 663–677, 2013.

[14] P. Mach and Z. Becvar, “Mobile edge computing: A survey on
architecture and computation offloading,” IEEE Communications
Surveys Tutorials, vol. 19, no. 3, pp. 1628–1656, 2017.

[15] Y. Huang, J. Zhang, J. Duan, B. Xiao, F. Ye, and Y. Yang, “Resource
allocation and consensus on edge blockchain in pervasive edge
computing environments,” in 2019 IEEE 39th International Confer-
ence on Distributed Computing Systems (ICDCS), 2019, pp. 1476–
1486.

[16] R. Cox, A. Muthitacharoen, and R. T. Morris, “Serving dns using a
peer-to-peer lookup service,” in International Workshop on Peer-To-
Peer Systems. Springer, 2002, pp. 155–165.

[17] E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, S. Lim et al., “A survey
and comparison of peer-to-peer overlay network schemes.” IEEE
Communications Surveys and tutorials, vol. 7, no. 1-4, pp. 72–93,
2005.

[18] Y. Liu, X. Liu, L. Xiao, L. M. Ni, and X. Zhang, “Location-aware
topology matching in P2P systems,” in Proc. of IEEE INFOCOM,
2004.

[19] M. Caesar, M. Castro, E. B. Nightingale, G. O’Shea, and A. Row-
stron, “Virtual Ring Routing: Networking Routing Inspired by
DHTs,” in Proceedings of ACM Sigcomm, 2006.

[20] A. T. Mizrak, Y. Cheng, V. Kumar, and S. Savage, “Structured
superpeers: Leveraging heterogeneity to provide constant-time
lookup,” in Proc. of the Third IEEE WIAPP, 2003, pp. 104–111.

[21] V. Ramasubramanian and E. G. Sirer, “Beehive: O (1) lookup
performance for power-law query distributions in peer-to-peer
overlays.” in Proc. of USENIX NSDI, 2004, pp. 99–112.

[22] C. Qian and S. S. Lam, “ROME: Routing On Metropolitan-scale
Ethernet,” in Proc. of IEEE ICNP, 2012, pp. 1–10.

[23] A. Biryukov, M. Lamberger, F. Mendel, and I. Nikolić, “Second-
order differential collisions for reduced sha-256,” in Advances in
Cryptology – ASIACRYPT, 2011, pp. 270–287.

[24] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,
B. Lantz, B. O’Connor, P. Radoslavov, W. Snow, and G. Parulkar,
“Onos: Towards an open, distributed sdn os,” in Proceedings of the
Third Workshop on Hot Topics in Software Defined Networking, ser.
HotSDN, 2014, pp. 1–6.

[25] C. Qian and S. S. Lam, “Greedy routing by network distance
embedding,” IEEE/ACM Transactions on Networking, vol. 24, no. 4,
pp. 2100–2113, 2016.

[26] I. Borg and P. J. Groenen, Modern multidimensional scaling: Theory
and applications. Springer Science & Business Media, 2005.

[27] J. Xie, C. Qian, D. Guo, M. Wang, S. Shi, and H. Chen, “Efficient
indexing mechanism for unstructured data sharing systems in
edge computing,” in Proc. of IEEE INFOCOM, April 2019, pp. 1–9.

[28] F. Wickelmaier, “An introduction to mds,” Sound Quality Research
Unit, Aalborg University, Denmark, Tech. Rep., 2003.

[29] S. Fortune, “Voronoi diagrams and Delaunay triangulations,” in
Handbook of Discrete and Computational Geometry, 2nd ed., J. E.
Goodman and J. O’Rourke, Eds. CRC Press, 2004.

[30] Q. Du, V. Faber, and M. Gunzburger, “Centroidal voronoi tessella-
tions: Applications and algorithms,” SIAM Review, vol. 41, no. 4,
pp. 637–676, 1999.

[31] J. A. De Loera, J. Rambau, and F. Santos, Triangulations Structures
for algorithms and applications. Springer, 2010.

[32] L. J. Guibas, D. E. Knuth, and M. Sharir, “Randomized incremental
construction of delaunay and voronoi diagrams,” Algorithmica,
vol. 7, no. 1, pp. 381–413, 1992.

[33] D. Y. Lee and S. S. Lam, “Protocol design for dynamic delaunay
triangulation,” in Proc. of 27th IEEE ICDCS, June 2007.

[34] A. Medina, A. Lakhina, I. Matta, and J. Byers, “Brite: An approach
to universal topology generation,” in Proc. 9th International Sympo-
sium on MASCOTS, Cincinnati, OH, USA, August 2001.

[35] K. Poularakis, J. Llorca, A. M. Tulino, I. Taylor, and L. Tassiulas,
“Joint service placement and request routing in multi-cell mobile
edge computing networks,” in Proc. of IEEE INFOCOM, April
2019, pp. 10–18.

[36] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey on
mobile edge computing: The communication perspective,” IEEE
Communications Surveys Tutorials, vol. 19, no. 4, pp. 2322–2358,
2017.

[37] F. Zeng, Q. Chen, L. Meng, and J. Wu, “Volunteer assisted col-
laborative offloading and resource allocation in vehicular edge
computing,” IEEE Transactions on Intelligent Transportation Systems,
pp. 1–11, 2020.

[38] S. Chen, H. Wen, J. Wu, A. Xu, Y. Jiang, H. Song, and Y. Chen,
“Radio frequency fingerprint-based intelligent mobile edge com-

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on July 31,2021 at 22:55:25 UTC from IEEE Xplore. Restrictions apply.

2168-7161 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2021.3076229, IEEE
Transactions on Cloud Computing

14

puting for internet of things authentication,” Sensors, vol. 19,
no. 16, p. 3610, 2019.

[39] R. Liao, H. Wen, J. Wu, F. Pan, A. Xu, H. Song, F. Xie, Y. Jiang,
and M. Cao, “Security enhancement for mobile edge computing
through physical layer authentication,” IEEE Access, vol. 7, pp.
116 390–116 401, 2019.

[40] J. Wu, S. Guo, H. Huang, W. Liu, and Y. Xiang, “Information and
communications technologies for sustainable development goals:
State-of-the-art, needs and perspectives,” IEEE Communications
Surveys & Tutorials, vol. 20, no. 3, pp. 2389–2406, 2018.

[41] R. Atat, L. Liu, J. Wu, G. Li, C. Ye, and Y. Yang, “Big data meet
cyber-physical systems: A panoramic survey,” IEEE Access, vol. 6,
pp. 73 603–73 636, 2018.

[42] K. Lee and I. Shin, “User mobility model based computation
offloading decision for mobile cloud,” Journal of Computing Science
and Engineering, vol. 9, no. 3, pp. 155–162, 2015.

[43] A. Prasad, P. Lundén, M. Moisio, M. A. Uusitalo, and Z. Li, “Ef-
ficient mobility and traffic management for delay tolerant cloud
data in 5g networks,” in Personal, Indoor, and Mobile Radio Commu-
nications (PIMRC), 2015 IEEE 26th Annual International Symposium
on, 2015, pp. 1740–1745.

[44] X. Xia, F. Chen, Q. He, J. Grundy, and H. Jin, “Online collaborative
data caching in edge computing,” IEEE Transactions on Parallel and
Distributed Systems, vol. 32, no. 2, pp. 281–294, 2020.

[45] A. Gharaibeh, A. Khreishah, B. Ji, and M. Ayyash, “A prov-
ably efficient online collaborative caching algorithm for multicell-
coordinated systems,” IEEE Transactions on Mobile Computing,
vol. 15, no. 08, pp. 1863–1876, 2016.

[46] R. Kaewpuang, D. Niyato, P. Wang, and E. Hossain, “A framework
for cooperative resource management in mobile cloud comput-
ing,” IEEE JSAC, vol. 31, no. 12, pp. 2685–2700, 2013.

[47] R. Yu, J. Ding, S. Maharjan, S. Gjessing, Y. Zhang, and
D. Tsang, “Decentralized and optimal resource cooperation in
geo-distributed mobile cloud computing,” IEEE Transactions on
Emerging Topics in Computing, vol. 6, no. 1, pp. 72–84, 2018.

Junjie Xie received the B.E. degree in computer
science and technology from the Beijing Insti-
tute of Technology, Beijing, China, in 2013. He
received the M.E. and Ph.D. degrees in manage-
ment science and engineering from the National
University of Defense Technology, Changsha,
China, in 2015 and 2020, respectively. He is
currently an engineer with the institute of sys-
tems engineering, AMS, PLA, Beijing, China. His
research interests include distributed systems,
software-defined networking and mobile edge

computing.

Chen Qian is an Associate Professor at the De-
partment of Computer Science and Engineering,
UC Santa Cruz. He received the B.Sc. degree
from Nanjing University in 2006, the M.Phil. de-
gree from the Hong Kong University of Science
and Technology in 2008, and the Ph.D. degree
from the University of Texas at Austin in 2013,
all in Computer Science. His research interests
include computer networking, data-center net-
works and cloud computing, Internet of Things,
and software defined networks. He has pub-

lished more than 60 research papers in a number of top conferences and
journals including ACM SIGMETRICS, IEEE ICNP, IEEE ICDCS, IEEE
INFOCOM, IEEE PerCom, ACM UBICOMP, ACM CCS, IEEE/ACM
Transactions on Networking, and IEEE Transactions on Parallel and
Distributed Systems. He is a member of IEEE and ACM.

Deke Guo received the B.S. degree in indus-
try engineering from the Beijing University of
Aeronautics and Astronautics, Beijing, China, in
2001, and the Ph.D. degree in management sci-
ence and engineering from the National Univer-
sity of Defense Technology, Changsha, China, in
2008. He is currently a Professor with the Col-
lege of System Engineering, National University
of Defense Technology, and a Professor with the
School of Computer Science and Technology,
Tianjin University. His research interests include

distributed systems, software-defined networking, data center network-
ing, wireless and mobile systems, and interconnection networks. He is
a senior member of the IEEE and a member of the ACM.

Xin Li is currently a software engineer at
VMware Inc. He obtained his Ph.D. in Computer
Engineering from University of California Santa
Cruz in 2018. Before that, he received the B.Eng.
degree in Communication Engineering from Uni-
versity of Electronic Science and Technology of
China and M.S. degree in Electrical Engineer-
ing from University of California Riverside. His
research interests include network security, IoT,
SDN/NFV, distributed systems.

Ge Wang is an Assistant Professor at Xian Jiao-
tong University. She received her Ph.D degree
at Xian Jiaotong University in 2019. She was a
visiting student at University of California, Santa
Cruz from 2017 to 2019. Her research interests
include wireless sensor network, RFID and mo-
bile computing.

Honghui Chen received the MS degree in oper-
ational research and the PhD degree in manage-
ment science and engineering from the National
University of Defense Technology, Changsha,
China, in 1994 and 2007, respectively. Currently,
he is a professor of College of System Engineer-
ing, National University of Defense Technology,
Changsha, China. His research interests include
information system, cloud computing and Infor-
mation Retrieval.

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on July 31,2021 at 22:55:25 UTC from IEEE Xplore. Restrictions apply.

