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Due to the rapid development of indoor location based services, automatically deriving an indoor semantic
floorplan becomes a highly promising technique for ubiquitous applications. To make indoor semantic
floorplan fully practical, it is essential to handle the dynamics of semantic information. Despite several
methods proposed for automatic construction and semantic labeling of indoor floorplans, this problem has
not been well studied and remains open. In this paper, we present a system called SiFi to provide accurate and
automatic self-updating service. It updates semantics with instant videos acquired by mobile devices in indoor
scenes. First, a crowdsourced-based task models are designed to attract users to contribute semantic-rich
videos. Second, we use the maximum likelihood estimation method to solve the text inferring problem as the
sequential relationship of texts provides additional geometrical constraints. Finally, we formulate the semantic
update as an inference problem to accurately label semantics at correct locations on the indoor floorplans.
Extensive experiments have been conducted across nine weeks in a shopping mall with more than 250 stores.
Experimental results show that SiFi achieves 84.5% accuracy of semantic update.
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1 INTRODUCTION
Location based services (LBS) have been developed for various applications, including navigation
[30], geo-social networks [14], and location-based advertising [9]. The aim of LBS is to provide a
service using the geographic location of a person [24]. Outdoor LBS using GPS and Google maps
are well studied and has been adopted over the world. However, similar LBS are unavailable in
indoor environments due to the lack of GPS signals. Therefore, it is essential to provide indoor LBS
applications.
The availability of indoor floorplan is a major factor for practical applications of indoor LBS.

Consequently, the automatic construction of detailed indoor floorplan becomes an important
technique for ubiquitous indoor LBS. Extensive investigation has been conducted to construct
indoor floorplans using crowdsourced data (e.g., motion trajectories, images, and WiFi signals)
[2, 8, 15, 23, 31, 37]. The constructed indoor floorplan, however, is unaware of various semantics in
indoor scenes. On the contrary, the appearance of semantic-rich indoor floorplan can be used to
improve existing indoor LBS methods and to design new indoor LBS applications.

Recently, several techniques have been proposed to manually label or learn semantics for objects
in an indoor floorplan [10, 11, 17, 22, 27]. For example, SemSense [10] requires each user to actively
assign a semantic name to a physical location during check-in operations. Mobile sensing data
(e.g., images and WiFi signals) are required by ShopProfiler [17] and AutoLabel [27] to label store
names in a shopping mall with learning methods. TransitLabel [11] is developed to recognize user
activities in transit stations and to infer the functionalities around the physical areas of users.
Despite the progress made, existing works do not account for dynamically changing semantics in
indoor environments. For example, when a store closes and a new one opens in the exact same
location of a shopping mall, the performance of LBS applications may deteriorate or even break
down, due to the out-of-date semantics (e.g. name label). This problem is known as semantic
updating of indoor floorplan.

A straightforward approach is to ask crowd to manually label changed semantics. Unfortunately,
this method is high-cost and cannot guarantee high accuracy due to the uncertainty of crowd
behavior. To make things worse, some trick users are deliberate to label incorrect semantics
in the indoor semantic floorplans. An alternative solution is to use existing semantic labeling
methods [10, 11, 17, 22, 27] during each particular period. This updating strategy, however, is
very labor-intensive and time-consuming, and may introduce unnecessary updates for unchanged
environment. Additionally, such labeling methods are designed for automatic construction of the
complete floorplan. They are unsuitable for continuous semantics updating with high accuracy in
complex indoor spaces.

This paper presents SiFi as a mobile crowdsourcing system to update indoor semantic floorplans
automatically, continuously, and accurately. An indoor semantic floorplan has semantic-rich labels
for those indoor objects in the floorplan. Thus, it represents both the spatial structures and their
semantics (e.g., categories, functionalities, and other non-spatial attributes) of an indoor space.
An indoor objects can refer to any location, area, or general entities. Such indoor objects can be
divided into two types: annotated objects and non-annotated objects. An annotated object implies
that its semantic information has been manually labeled with texts. For example, the name and
functionality of an indoor object are usually labeled with texts in complex commercial places. A
non-annotated object (e.g., a fine-grained general entity) still lacks accurate semantic labels. This
paper focuses on automatic and continuous updating of annotated objects in indoor space, i.e.,
texts.

Instant videos are the latest and short (e.g., 30 seconds) videos captured in indoor scenes. They
provide sufficient semantics for indoor objects and are easy for users to record and share. Users are
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motivated by dedicated task models to capture instant videos in a large open indoor environment,
which incurs low mobile device power consumptions (Section 4.1). The recorded instant videos
are loaded to SiFi server for further processing in an online or offline manner, which requires
only a small amount of network resources. Texts are extracted from videos and sequential rela-
tionships are established among texts to generate text sequences. Compared to uncorrelated texts,
it is demonstrated by SiFi that the sequential relationships among texts provide more valuable
information in the indoor crowdsourced settings. The accurate text inferring task is formulated
as a Maximum Likelihood Estimation (MLE) problem since the sequential relationships provide
additional geometrical constraints (Section 4.2). These text sequences can be matched with the
indoor floorplans and then the changed semantics can be updated. Consequently, starting from
a pre-established indoor semantics floorplan of a general indoor environment, SiFi detects and
removes the out-of-date semantics and localizes the new semantics in the indoor floorplan timely
(Section 4.3). Therefore, the quality of indoor LBS can be persistently maintained after long-term
deployment. Moreover, SiFi does not rely on any indoor localization system or extra dedicated
hardware. Our method is orthogonal to existing semantic labeling methods for indoor floorplans
[10, 11, 17, 22, 27]. They can be combined to achieve indoor LBS even for long-term deployment.

The major contributions of this paper can be summarized as follows.
• We propose an automatic and continuous method (namely SiFi) to update indoor semantic
floorplan using instant videos. Our method does not require any dedicated device or additional
indoor localization system.

• We investigate the sequential relationships among texts and use the MLE method to improve
the update performance of texts. We further propose localization algorithm of text sequence
to update out-of-date texts on indoor floorplans.

• A SiFi prototype system is implemented and extensive experiments have been conducted in
a shopping mall. Experimental results demonstrate that SiFi achieves promising performance
for indoor semantic floorplan updating.

The rest of this paper is organized as follows. Section 2 presents the related work. Section 3
gives an overview of SiFi. Section 4 describes the design details of SiFi. Section 5 presents the
implementation and evaluation of SiFi, followed by technical discussions and limitations in Section
6. We conclude this paper in Section 7.

2 RELATEDWORK
Our work constructs a model to update indoor semantic floorplans with crowdsourced data. It is
closely related to works that address the following three problems.

Digital Indoor Floorplan Construction. Several systems have been proposed to construct
digital indoor floorplans using the general layout of a building. FootSLAM [3] was proposed using
a Simultaneous Localization and Mapping (SLAM) based approach for pedestrians to generate a
probabilistic map. Puyol et al. [32] proposed an autoregressive integrated moving average model
for the odometry error along the vertical component to extend FootSLAM to multistory buildings.
CrowdInside [2] constructed the floorplan of the building using a mass of walking traces of humans
in an indoor space. MapGENIE [31] was proposed to perform indoor mapping using the exterior
information and the grammar generator [5] to encode structural information about the building.
Jiang et al. [23] used WiFi fingerprints and user motion information to propose an automatic
indoor map construction system. Shen et al. [37] proposed an indoor pathway mapping system,
called Walkie-Markie, to automatically reconstruct internal pathway maps of buildings. They used
novel landmarks, i.e., WiFi-defined landmarks, to calibrate the partial walking traces collected by
different users. Jigsaw [15] used a computer vision approach to extract the location and orientation
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of landmarks from images taken by users. It then used the walking traces of users and the location
of cameras to reconstruct the indoor floorplans. However, we cannot assume that all edges and
corners of the room could be covered with user traces [8]. CrowdMap [8] reconstructed indoor
floorplans using videos and inertial sensor data from users. It employed computer vision algorithms
to exploit the sequential relationship between each consecutive frame abstracted from the video to
generate accurate spatial information of the indoor environment. Nevertheless, these systems do
not provide rich semantic information to the indoor floorplans [10, 11].

Indoor Semantic Floorplan Construction. Recently, several techniques have been proposed
tomanually label or learn semantics for objects in an indoor floorplan [10, 11, 17, 22, 27]. ShopProfiler
[17] was proposed to refine floorplans and characterize shops in terms of location, category, and
name using crowdsourced sensor readings from mobile phones of users. Semsense [10] used
sensor data collected by mobile devices from users during their normal check-in operations to
associate a place name with its location on an unlabeled floorplan. AutoLabel [27] was proposed
to automatically label clusters of pictures and the corresponding WiFi Access Points (APs) with
store names in a shopping mall using images and WiFi signals collected by mobile devices. It uses
a mobile device to scan the WiFi APs and recognizes the store the user is in. Overlay [22] was
proposed to register objects or places of interest into an augmented reality system by collecting a
set of images. It has to manually label all the images. TransitLabel [11] was developed to recognize
user activities in transit stations and to infer the functionalities around the physical areas of users.
However, those methods are designed for automatic construction of complete floorplan rather than
continuous updating of semantics in complex indoor space.

Vision-based Text Recognition. Text recognition has become a very active research topic
in the computer vision community. Many methods have been proposed to recognize texts in
images. Almazán et al. [1] addressed the spotting and recognition tasks by learning a common
representation for word images and text strings. Rodríguez-Serrano et al. [33] embedded word
attributes/labels and word images into a common subspace for word spotting and text recognition.
Then, the text recognition problem is transformed to a retrieval problem. Yao et al. [44] used a
representation of strokes to produce more semantic description of characters, that are then classified
using random forests. Recently, deep neural network models, and specifically Deep Convolutional
Neural Networks (DCNN), have been rapidly developed in text recognition. Wang et al. [41] firstly
detected individual characters and then recognized these characters with DCNN models. Bissacco
et al. [6] used binarization and a sliding window classifier to generate candidate character regions
and then used classifier scores into recognizing words. Jaderberg et al. [21] used the convolutional
nature of CNNs to generate response maps for characters, which are then integrated to score lexicon
words. Wang et al. [40] used the Vanishing Points method [19] to extract text boxes and used the
N-gram method to recognize texts. However, due to the complexity of indoor environments and the
presence of large perspective distortions, it is difficult for those methods to achieve the desired text
recognition accuracy in practical applications. In contrast, SiFi exploits sequential relationships
among texts and uses additional geometrical constraints for text inference.

3 OVERVIEW
In this section, we first give the problem description and then describe the architecture of the
proposed system.

3.1 Problem Description
An indoor semantic floorplan contains semantics (e.g., texts) extracted from objects (e.g., store
logos in a shopping mall) in an indoor space. These semantics attached in the indoor floorplan can
enhance the performance of the LBS applications. However, the performance of LBS applications

ACM Trans. Internet Things, Vol. 1, No. 1, Article . Publication date: October 2020.



SiFi: Self-updating of Indoor Semantic Floorplans for Annotated Objects :5

Pre-processing data

Geo-spatial location 

inference and text 

sequence generation

Updating strategy

MLE problem 

construction and 

estimation algorithm

Text localization 

and labeling

Text sequences
Videos, GPS, WiFi, 

barometer data

Accurate text inference

Text & 3D Map

Fig. 1. System architecture.

can deteriorate and even break down due to the out-of-date semantics in an indoor space. For
example, a closing store is closed and a new restaurant is open in the same location. Thus, the
semantics of the closing store should be removed and the semantics of the new restaurant should
be labeled in the indoor floorplan. This general problem is formulated as indoor semantic floorplan
updating.

3.2 Challenges
This paper presents a novel method to make an indoor semantic floorplan last for a long time
by adapting to environmental dynamics. Translating such an intuitive idea to a practical system,
several challenges have to be addressed by SiFi.

First, it is difficult to collect semantic-rich instant videos by mobile crowdsourcing. Usually, most
crowdsourced data not only exhibit low quality but also lack required semantics, because users
may be unprofessional for crowdsourcing tasks. Such data would cause unnecessary consumptions
of energy and bandwidth at mobile devices. To address this problem, several dedicated task models
are designed to guide unprofessional users to collect semantic-rich instant videos.

Second, it is challenging to accurately detect and recognize texts in instant videos. The texts
extracted from each individual instant video suffer considerable false positive and false negative
errors, even with state-of-the-art techniques. These errors will be significantly accumulated. Fur-
thermore, these errors would lead to incorrect updating for the indoor semantic floorplan. To
address this problem, the text inferring is formulated as a Maximum Likelihood Estimation (MLE)
problem since sequential relationships among texts provide additional geometrical constraints.

Third, it is unknown how to update changed texts at correct positions in indoor semantic
floorplans without any indoor localization system. To solve this issue, the text sequence matching
and localization methods are proposed to remove the out-of-date texts and label new texts in an
indoor floorplan incorporating with the Longest Common Subsequence (LCS) [20] and the Structure
from Motion (SfM) [36] algorithms.

3.3 System Architecture
Figure 1 illustrates the architecture of the proposed SiFi system. SiFi utilizes crowdsourced semantic-
rich instant videos. It consists of two components: mobile application software and a server. To
collect semantic-rich instant videos, two crowdsourcing tasks are performed by users in indoor
spaces using mobile devices deployed by the application software (Section 4.1). The recorded
semantic-rich instant videos are then automatically compressed and uploaded to the server for
further processing. Most of the computational burden is enforced in the server where the uploaded
instant videos are processed. Since instant videos can be recorded by different users, there are
significant diversities in mobile devices, usage poses, camera positions, and view directions. Besides,
the camera motion traces are unknown in advance. These factors make the use of videos highly
challenging. Therefore, semantic-rich instant videos received at the server are then fed into the text
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extraction module (Section 4.2). Specifically, the text sequences are generated by a text recognition
algorithm, grouped using the Jaccard similarity metric and extracted using the MLE approach. Once
text sequences are obtained, texts are updated by localizing text sequences in the indoor floorplan
using both room facades and unchanged texts cues (Section 4.3).

4 SYSTEM DESIGN
In this section, we first describe the crowdsourced task modeling for indoor semantic floorplan
updating. We further formulate the text extraction task as a MLE problem and design an efficient
estimation algorithm to solve this problem. Finally, we present a method to update texts at correct
locations of indoor floorplans.

4.1 Crowdsourced Task Modeling
Crowdsourcing provides access to a large number of mobile devices and people in a cost-effective
manner. Usually, most crowdsourced data are of low quality and lack the required semantics, as
users may be unqualified for crowdsourcing tasks. The low-quality data may cause unnecessary
energy and bandwidth consumptions at mobile devices.
To address this problem, we first leverage GPS and barometer data to infer the geo-spatial

information of collected videos and then propose dedicated task models to guide unprofessional
users to collect videos. In this task, videos are recorded to cover as many texts as possible using the
rear cameras embedded in mobile devices. In addition, users are required to hold mobile devices in
front of their free hands and to keep mobile devices stable during recording. Moreover, users are
motivated to record instant indoor videos when they are in a large indoor space.

4.1.1 Geo-spatial Information Inferring. Geospatial information is used to accelerate the text
updating process on indoor floorplans by providing the coarse locations of the users. To obtain a
building location and locations of a user in the building, the localization software development
kit (SDK) of existing indoor methods is used. To obtain the current floor where the user is on, the
barometer is used because of its low power consumption and high accuracy [28].
Given an initial floor number, we infer the users’ floor number using altitude data. It is hard to

determine the initial floor number since the floor number where the user starts to use SiFi is usually
unknown. Therefore, when SiFi is started, a new dialog box is promoted to ask a user to give its
current floor number F0. If the floor height hi is known, where i represents i-th floor, the floor
number Fc can be inferred. As shown in Fig. 2, the altitude data were collected when a user climbed
from floor 1 to floor 4 and then walked down to floor 1. The dotted line represents the smoothed
altitude data generated by averaging all samples within every 6 seconds. We also recorded the
timestamps when the user started walking on the stairs and arrived at a new floor as the ground
truth floor number (red circles in Fig. 2). Let Hp be the initial altitude data from the floor given by a
user, Hc be the current altitude data, the floor difference j is calculated by

F0+s×j∑
i=F0+s×1

hi=|Hc -Hp |, (1)

where s= Hc -Hp
|Hc -Hp |

. Thus, we have Fc=F0+s×j.
Note that, the floor inferringmethod is an online process. It only requires a one-time interaction of

the user, that is a user only once gives his floor number. Afterwards, the method can be automatically
and continuously executed to infer the floor.
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Fig. 2. Data processing for floor number inferring.

4.1.2 Task modeling. The task model is used to guide a user to collect videos based on motion
states of the user. The states of a user are classified into two categories: static state and walking
state.

Task 1: Static State. The quality of videos recorded by a static mobile device is higher than that
recorded by a moving mobile device. Therefore, users are suggested to record semantic-rich instant
videos statically. That is, the camera can be rotated by the user to record a semantic-rich instant
video.

Task 2: Walking State. The user records a semantic-rich instant video at a location A, and then
holds the mobile device and walks to another location B.
Note that, SiFi does not allocate collection tasks for users. Indeed, task allocation algorithms

in crowdsourcing settings can be used to improve the data quality collected by users [25, 42].
However, that is out of the scope of this paper and can be employed to improve data quality in
the future. These two crowdsourcing tasks are released by the server. When participating in these
crowdsourcing tasks, users consume their own resources such as battery and computing power and
expose themselves to potential privacy risks by sharing videos. Therefore, an incentive mechanism
[43, 45] has to be designed to encourage users to perform these crowdsourcing tasks.

4.2 Text Inference
Since SiFi aims to update texts in indoor semantic floorplans, text recognition from an image is an
important stage. Recently, Wang et al. [40] used the Vanishing Points (VP) method [19] to extract
text boxes and the N-gram and the sequential character classification methods to recognize texts.
The accuracy of the text recognition is about 71% when tested in a shopping mall and it produces
many false texts. These errors can be accumulated in the indoor semantic floorplans and degrade
the performance of the LBS applications. In this paper, we remove these recognition errors of
texts using the sequence relationship among texts rather than developing a more advanced text
recognition algorithm. Our method is orthogonal to existing text recognition algorithms and they
can be combined to improve the accuracy of text recognition.

4.2.1 Key-frame Selection. In SiFi, the videos are recorded by a camera at 30Hz and many frames
can be extracted from an instant video. Considering themotion of a camera in amobile device usually
is slow and texts are sparse, neighboring frames in a video are highly similar. Therefore, several
representative frames (namely key-frame) can be selected and processed instead of processing all
of the frames. Specifically, we use ORB [34] features to select key-frames. If the number of ORB
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moimola

Qinoo
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LITTLE mo&co
LITTLE mo&co

ELAND KIDS

LITTLE mo&coQinoo
INDY INDY
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Fig. 3. An illustration of a text sequence generated from four key-frames. Texts recognized from images are
(a) MINTPEACE, Qinoo, INDY, (b) Qinoo, INDY, LITTLEmo&co, (c) INDY, LITTLEmo&co, moimola, and (d)
LITTLEmo&co, moimola, ELANDKIDS. The duplicated texts are Qinoo, INDY, LITTLEmo&co, and moimola.
Finally, the text sequence is generated as MINTPEACE, Qinoo, INDY, LITTLEmo&co, moimola, ELANDKIDS.

features in a frame is larger than threshold THK , the frame is selected as a candidate key-frame.
Each candidate key-frame is matched against its previous key-frame using ORB features. If the
percentage of matched features is less than a threshold RK , the candidate key-frame is selected
as a new key-frame. This process is repeated for remaining candidate key-frames. The selection
of parameters THK and RK is further discussed in Section 5.3.3. Furthermore, blurred key-frames
are removed. The blurred images can decrease the accuracy of text recognition [40]. In this paper,
the blurriness values of a key-frame and its four adjust frames are calculated using the method
proposed in [12]. The frame with the smallest blurriness value is selected as the key-frame. Finally,
a key-frame sequence I={I1, I2, . . . , Im} can be obtained from a video, wherem is the number of
key-frames.

4.2.2 Text Sequence Generation. A text sequence denotes the sequence relationship among texts.
Texts are first recognized from a key-frame [40], resulting in both texts and their coordinates. The
spatial correlation between two texts can be obtained using their coordinates and the temporal
correlation of texts can also be extracted from with timestamps of key-frames. The spatial-temporal
correlation provides us an important clue to generate a text sequence.
As illustrated in Fig. 3, the text sequences are obtained, i.e., (a) MINTPEACE, Qinoo, INDY, (b)

Qinoo, INDY, LITTLEmo&co, (c) INDY, LITTLEmo&co, moimola, and (d) LITTLEmo&co, moimola,
ELANDKIDS. We propose two rules to identify duplicate texts: (1) If a text has existed in the
sequence (namely the second text), it is labeled as candidate. (2) If the neighboring texts of the
second text and the first text (the same text as the second text in the sequence) are also the same,
the second text is the duplicated text. As illustrated in Fig. 3, the duplicated texts are Qinoo, INDY,
LITTLEmo&co, and moimola. The duplicated texts can be a landmark to merge these text sequences.
Finally, the text sequence is generated as {MINTPEACE, Qinoo, INDY, LITTLEmo&co, moimola,
ELANDKIDS}.

4.2.3 Text Sequence Grouping. A list of shop names in a mall is first generated manually. Second,
the Simhash algorithm [35] and Hamming distance [29] are used to refine the text sequence. The
Simhash algorithm is a locality sensitive hashing based fingerprinting technique. It uses random
projections to generate a compact representation of a high dimension vector [35]. The Hamming
distance d(x ,y) between two vectors x ,y ∈ F (n) is the number of coefficients in which they differ,
such as, d(10111, 11001)=3. In SiFi, the vectors x and y are obtained by the Simhash algorithm. The
text with the highest score is selected to be added to the text sequence. As illustrated in Table 1, the
false textsMINTPAACE,Qimoo, andmoonola are amended toMINTPEACE,Qinoo, andmoimola.

Once text sequences are obtained, multiple text sequences are divided into different groups based
on their similarity values. In this paper, the widely used text Jaccard similarity is adopted. The
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Jaccard text similarity of T1 and T2 is:

sim(T1,T2)=
|T1∩T2 |

|T1∪T2 |
, (2)

where, T1 and T2 are the text sequences. Note that, other popular similarity measures can be
converted to Jaccard similarity, such as Hamming distance, cosine similarity, and overlap similarity
[4]. If sim(T1,T2) is larger than a threshold τ , the two text sequences are considered as similar and
classified into a group, where the threshold is empirically set based on experiments (Set to be 0.8 in
our experiments).

4.2.4 Accurate Text Inference. Text recognition results usually contain false positives and false
negatives. These errors introduce challenges for texts updating. To reduce these errors, we infer
accurate texts using the configuration of text sequences. The configuration is defined as the true
value of texts and the sequence relationship among texts in the text sequence, where the sequence
relationship denotes the relative location relationship among the text.

Notations. Suppose there are N local coordinate systems corresponding to N groups of text
sequences, a group is indexed by k as a superscript. te is the true value of text t and S is the
sequence relationship in a text sequence. Z gives the coordinates of texts in the local coordinate
system of a group, that is, the observation of S . We formulate the accurate text inferring (ATI) task
as a Maximum Likelihood Estimation (MLE) problem. Its goal is to infer the best configuration
of te and S with the measurements t and Z provided by a group of text sequences. We consider
this estimation problem as finding te and S to maximize the joint likelihood based on conditional
dependence:

{te , S}= arg max
te ,S

Pr (t ,Z |te , S)

= arg max
te ,S

Pr (t |te , S)Pr (Z |te , S).
(3)

Likelihood Pr (t |te , S). Pr (t |te , S)measures the likelihood of measurement t given the true value
of texts te and sequence relationship configurations S . This term can be estimated by computing
the agreement between observations and estimate values of the true values. That is to say that
the estimated values of the true values what we want to obtain can be calculated by observations
of text sequences via maximizing this probability function. Observations include two probability
expressions. The first one is Pq=

N (tqi )
N (ti )

, which is computed by the candidate tqi of the i-th ground-
truth, where N (ti ) is the number of candidate of the i-th ground-truth and N (t

q
i ) is the number

of the q-th candidate of the i-th ground-truth. The second one is P jq=
N (S j

tqi
)

N (S jti )
, which is computed

by the number of text sequences, where N (S jti ) is the number of text sequences containing the ith
text, N (S j

tqi
) is the number of text sequences containing the q-th candidate and is indexed by j as a

Table 1. Text corrections using the Simhash algorithm.

Text MINTPEACE Qinoo INDY LITTLEmo&co moimola ELANDKIDS
MINTPAACE 100% 0.05% 0.00% 40.03% 19.05% 17.75%

Qimoo 0.05% 100.00% 0.00% 0.02% 0.01% 0.01%
moonola 19.05% 0.01% 8.83% 47.58% 99.99% 93.16%
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Algorithm 1: Estimation Algorithm for Accurate Text Inferring
Input: Text sequences and a uniform random variable q∼U (0, 1).
Output: The final estimation of te and S .

1 /*Likelihood Maximization*/
2 for each text do
3 Propose t ′e and S ′ with Gaussian probability;
4 Compute the acceptance ratio α= Pr (t ,Z |t ′e ,S

′)
Pr (t ,Z |te ,S )

;
5 if α≥q then
6 Accept t ′e and S ′;
7 end
8 end
9 Compute the maximum of Pr (t ,Z |te , S) for accepted t ′e and S ′;

10 return te and S ;

superscript. Overall, we obtain the following likelihood:

Pr (t |te , S)=
Ni∏
i

Nq∏
q

Nj∏
j

PqP
j
q

=
Ni∏
i

Nq∏
q

Nj∏
j

N (t
q
i )N (S j

tqi
)

N (ti )N (S jti )
.

(4)

where Ni is the number of texts in a text sequence, Nq is the number of candidates of a text, Nj is
the number of text sequences in a group.

Likelihood Pr (Z |te , S). Pr (Z |te , S) measures the likelihood of the sequence relationship among
texts in the local coordinate system. The intuition is that the best sequence relationship among
texts in a group maximizes the coincidence degree of text sequences. In this paper, the coincidence
degree of text sequences is measured by the Jaccard similarity. Therefore, the likelihood term can be
estimated by computing the Jaccard similarity among texts and among text sequences. sim(t ji , t

j′
i′ )

is the Jaccard similarity between the i-th text in the j-th text sequence and the i ′-th text in the j ′-th
text sequence. sim(Tj ,Tj′) is the text Jaccard similarity between the j-th text sequence and the j ′-th
text sequence, where i,i ′ and j,j ′. Those Jaccard similarities can be calculated using Eq. 2. Thus,
we obtain the following likelihood:

Pr (Z |te , S)=
Nj∏
j

Ni∏
i

sim(t ji , t
j′
i′ )sim(Tj ,Tj′). (5)

where Ni is the number of texts in a text sequence, Nj is the number of text sequences in a group.
Estimation Algorithm. Our goal is to estimate the true value of texts and the sequence rela-

tionship among texts to maximize Eq. 3. Therefore, an estimation algorithm is proposed to solve
the MLE problem. Algorithm 1 shows the details of our estimation algorithm.

To initialize the true value of texts te and the sequence relationship of texts S , the largest number
of texts in the text sequence are selected from t . To maximize Pr (t ,Z |te , S), we sample te and S in
each position in the text sequence using the Metropolis sampling method [18]. For each text, we
first propose new te and S (denoted as t ′e and S ′) with Gaussian probability and then compute the
acceptance ratio (Lines 3-6 in Algorithm 1). The process continues until all t ′e and S ′ are checked.
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The final parameters are obtained by maximizing Pr (t ,Z |te , S) for accepted t ′e and S ′ (Line 9 in
Algorithm 1).

4.3 Indoor Floorplan Updating
Once text sequences are obtained, the next step is to update texts at correct locations of the indoor
semantic floorplans using instant videos. Given a collected text sequence T={tj |0 ≤ j ≤ n}, where
n is the number of the texts in the text sequence, a text setM={ti |0 ≤ i ≤ m} of an indoor floorplan,
wherem is the number of texts in the indoor floorplan. We need to locate the text sequence, detect
and remove the out-of-date texts, and then label the new text in the indoor floorplan.

4.3.1 Location Inference of Text Sequence. Location inference of a text sequence in the text set
of an indoor floorplan is not trivial. To formally define the problem, let query text sequence be
denoted as the text sequence from new collected data and data text sequence be denoted the text
sequence in the set of an indoor floorplan. Each data text sequence is partitioned by the text set of
the indoor floorplan and its length is the same as that of the query text sequence. Naive methods
such as using the number of same texts between a query text sequence and the data text sequences
could be used, but may produce a false match. That is because there are several shops with the
same name in different areas of a mall.
To address this issue, we propose a location inference algorithm of text sequence based on the

similarity between the query text sequence and the data text sequences, as calculated using Eq. 2.
The data text sequences with top-5 scores are selected as candidate text sequences.

Second, given a vectorTa of a query text sequence with length n and a vectorTb of a candidate
text sequence with lengthm. The similarity score of the two vectors is calculated by the Longest
Common Subsequence (LCS) metric [20]. Given the system metric δ and matching threshold ϵ , the
LCS metric for the two vectors is defined as follows:

L(Ta,n ,Tb,m)=


0, if n=0 orm=0;
1+L(Ta,n-1,Tb,m-1), if d(ta , tb )≤ϵ and |n-m |<δ ;
max(L(Ta,n ,Tb,m-1),L(Ta,n-1,Tb,m)),

otherwise.

(6)

where δ is the maximum length difference between two text sequences and ϵ is the distance
threshold.

The similarity score ST is defined as:

ST =max
f ∈F

L(Ta , f (Tb ))

min(n,m)
, (7)

where F represents a set of sliding windows. The candidate text sequence with the largest ST is
selected.

4.3.2 Text Localization. Once those text sequences are localized, the next step is to detect the
out-of-date, new, and unchanged texts, and then to remove those out-of-date texts and label those
new texts in the floorplan.

Structure from Motion (SFM) technique is used to reconstruct the 3D model using a set of images
captured in the scene from different viewpoints [36]. Specifically, the colmap [36] is used in SiFi.
It recovers a representation of a scene using the SFM technique, resulting in point clouds in the
reference coordinate system, locations of 2D feature points in images, correspondences between 3D
point clouds and 2D feature points, and pose of the cameras for images. Each point in point clouds
represents a physical point in the scene and each 2D feature point detected by Scale Invariant
Feature Transform (SIFT) algorithm [26]. The location of a text in a query text sequence can be
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INDY

LITTLE mo&co
moimolaola

ELAND KIDS

MINT PEACE

Qinoo

Fig. 4. An illustration of the text localization method. The bottom figure represents the sparse point clouds
of the part of the indoor scene generated by the colmap algorithm. The red rectangles in the point clouds
represent the text locations extracted from the top three images in the indoor scene.

obtained using the point clouds and 2D feature points. As illustrated in Fig. 4, the sparse point
clouds are generated by the colmap algorithm. The red rectangles in the point clouds represent the
text locations extract from the three images.
Note that, the text location is expressed in terms of the reference coordinate system obtained

by the colmap algorithm. Therefore, we need to align the reference coordinate system with the
floorplan coordinate system, described as follows. Assuming that most people were holding the
phone in portrait orientation during recording videos. The pose of a camera for each image provides
a cue to align the reference coordinate system and the floorplan coordinate system. First, a plane is
fitted using the camera poses resulting from colmap algorithm and its normal vector (v) is estimated
using the Singular Value Decomposition (SVD) solutions [7]. Let vector y be the axis y direction
in the reference coordinate system. Thus, given a vector x in the reference coordinate system, a
vector x ′ in the floorplan coordinate system can be calculated by Rodrigues’ formula1 as:

x ′=cos(θ )x+(1 − cos(θ ))(u · x)u+sin(θ )(u × x), (8)

where, u=v ×y and θ is the included angle between vectorsv and y. Therefore, the location of a
text in the reference coordinate system can be transformed into the floorplan coordinate system
using the Eq. 8.

4.3.3 Updating Indoor Floorplan. Given two text sequences T a and T b , n andm are the num-
ber of texts in T a and in T b , respectively. tai is the i-th text in T a and tbj is the j-th text in T b ,
t∈{tai =tbj , i=1, . . . ,n, j=1, . . . ,m}. Thus, our objective is to maximize Nt , where Nt is the number of
t . To solve this problem, we conduct exhaustive search inT a andT b . Accordingly, these aligned texts
of T a and T b are unchanged texts (called landmarks). The texts t∈{tk |tk∈T a , tk<T

b ,k=1, . . . ,Nt }

are the out-of-date texts. The texts t∈{tk |tk<T a , tk∈T
b ,k=1, . . . ,Nt } are the new texts. Therefore,

the out-of-date texts are removed and the new texts are directly labeled in the indoor semantic
floorplan.
Once a set of sufficient number of query text sequences are available, the update procedure is

executed once to adapt the current indoor semantic floorplan to the newer measurements. The
1http://mathworld.wolfram.com/RodriguesRotationFormula.html
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Algorithm 2: Updating Algorithm for indoor floorplans
Input: The initial indoor floorplanM0 and its text sequence TM , the newest set of text sequences TS .
Output: The complete updated indoor floorplanMt .

1 for each text sequence T ∈ TS do
2 Localize T in TM ; (Section 4.3.1)
3 3D modeling using the colmap algorithm and align the coordinate systems; (Section 4.3.2)
4 for each text t ∈ T do
5 Get the position of each text using the 3D model and the 2D features of the text in a key-frame;

(Section 4.3.2)
6 end
7 Find the out-of-date and the new texts in T , remove the out-of-date texts, and label the new texts inM0;

(Section 4.3.3)
8 end

updating algorithm is shown in Algorithm 2. The indoor floorplans can be always up-to-date thanks
to a timely adaptation to indoor environmental changes.

5 IMPLEMENTATION AND EVALUATION
In this section, we describe the implementation details of SiFi, and the evaluation setups. We then
test the performance of each component of SiFi.

5.1 Implementation
The SiFi prototype consists of two parts: a mobile application and an updating pipeline working on
a server.

Mobile Application. Themobile application software was used by the crowd to record semantic-
rich instant videos with timestamps. It was installed in different Android mobile devices with
WiFi and cameras. Videos were automatically compressed and divided into 6MB chunks data for
transmission through WiFi network.

Server Configuration. The indoor semantic floorplan updating pipeline was implemented on
a Lenovo computer with 32GB RAM, an i7 CPU processor, a 12GB Titan GPU, and WiFi device.
The pipeline was implemented in Ubuntu Linux using two threads, one is used to receive and
store incoming videos, the other is used to process videos and produce the newest indoor semantic
floorplan.

5.2 Evaluation Methodology and Setups
Extensive experiments were conducted on data collected in Wanda mall, Changsha, China. It has
four floors with over 250 stores. The floorplan of Wanda mall contains rich information including
store names, store location, promotion information, and widths of the corridors. Figure 5 shows
the semantic floorplan of four floors in Wanda mall. During the initialization of our experiment, all
texts (e.g., store names, promotion information, and restrooms) were labeled manually, since the
available floorplans of the shopping mall were out of date.
Five volunteers were invited to participate in the data collection procedure. Each volunteer

carried a mobile device to obtain semantic-rich instant videos at different times of a day. Application
software was installed in the mobile devices for automatic video collection. The walking path of
each volunteer for video acquisition was determined by the volunteer. Each volunteer was asked
to cover the entire experimental area as much as possible. Eventually, we found that the walking
paths of volunteers covered 80% of all the routes in the shopping mall. The videos were collected
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(a) Floor 1

(b) Floor 2

(c) Floor 3

(d) Floor 4

Fig. 5. Updating results achieved on four floors of the Wanda shopping mall. Store names are directly marked
in indoor semantic floorplans, other texts are marked in indoor semantic floorplans using golden stars.

in most areas of the shopping mall and to cover all available texts. In addition, these videos are
different in many aspects, e.g., the area and size they covered. The dataset was used to test the
performance of each component of SiFi.

5.3 Performance Evaluation
5.3.1 Performance of Indoor Semantic Floorplan Updating. Precision is the most important per-

formance metric for indoor semantic floorplan updating. Five volunteers were invited to participate
in this experiment. The Wanda mall has more than 250 store names and 100 other texts (e.g.,
promotion posters). Store names are directly marked in the indoor semantic floorplans, while other
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texts are marked in the indoor semantic floorplans using golden stars. The updated indoor semantic
floorplan achieved by SiFi on four floors of Wanda mall.

To measure the performance of SiFi, the Sacc metric is used:

Sacc=
Ncorr

Nt
× 100, (9)

where Nt is the number of the manually marked ground-truth changed texts on the whole floorplan.
Ncorr is the number of correct texts updated by SiFi. We tested the text updating performance
achieved by SiFi and the Pure Optical Character Recognition (POCR) based method [40]. Experi-
ments were conducted on four floors of Wanda mall. SiFi achieves an average accuracy of the text
updating about 84.5%, while the POCR-based method achieves about 78.4%. That is because SiFi
uses sequential relationship among texts while the POCR-based method uses individual text only.
The error sources of our method are from the text recognition errors and localization errors of
texts (See Section 5.3.4).

5.3.2 Performance of Crowdsourcing Task Model. To test the performance of crowdsourcing task
model, extraction ratio of the texts (rs ) is calculated by dividing the number of extracted texts with
the number of texts in an indoor space. Videos were recorded under two cases: with or without
our crowdsourcing task model. Each video is about 200 seconds long. It can be seen from Table
2 that the extraction ratio of texts is higher with our crowdsourcing task model as compared to
the results achieved without our crowdsourcing task model. That is because videos recorded with
our crowdsourcing task model contains clear images and richer texts. Therefore, these individual
videos recorded with our crowdsourcing task model provide more valuable information about an
indoor scene as compared to those recorded without our crowdsourcing task model.

Accuracy of Floor Number Inferring.We further evaluated the floor number inferring per-
formance based on two walking states, including walking up the stairs and walking down the stairs.
The input floor numbers are floor 1, floor 2, floor 3, and floor 4. It can be seen from Table 3 that SiFi
achieves a floor number inferring accuracy of 100% for any initial floor number. s

5.3.3 Performance of Text Extraction. This section gives the details of the performance of key-
frame selection, the performance of text sequence merging, and the accuracy of text extraction.

Performance of Key-frame Selection. The key-frame selection performance depends on the
threshold for ORB feature number THK and the match percentage RK . THK and RK values can be
determined using the number of key-frames in a specific indoor scene, and a tradeoff lies between

Table 2. Extraction ratio of texts (rs )

Floor 1 2 3 4
With our task model 0.89 0.91 0.91 0.90

Without our task model 0.71 0.75 0.73 0.75

Table 3. The floor number inferring accuracy produced by SiFi

Input floor number

Inferred floor number

1 2 3 4
1 - 100% 100% 100%
2 100% - 100% 100%
3 100% 100% - 100%
4 100% 100% 100% -
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Fig. 6. Effect of the key-frame selection parameters.

the number of extracted texts from a video and the computational cost. We tested the key-frame
selection performance (denoted as key-frame ratio) with respect to different THK and RK on 20
videos. The key-frame ratio is calculated by dividing the number of key-frames selected by SiFi
with the baseline number of key-frames in a video. The baseline number of key-frames is defined as
the smallest number of frames to cover all texts in a video. The average results are given in Fig. 6.
It can be found that as THK increases, the key-frame ratio decreases. As RK increases, the key-

frame ratio increases. WhenTHK=200 and RK=60% orTHK=15 and RK=50%, the key-frame ratio is
close to 1. Therefore, we setTHK=200 and RK=60% in this paper as this setting makes the key-frame
selection process more robust to camera motion.

Performance of Text Sequence Merging. The text sequence merging performance depends
on the threshold for text Jaccard similarity τ . The text Jaccard similarity is used to divide text
sequences into several groups for accurate text inferring. Two text sequences may describe the texts
of the same scene due to text changes. Therefore, the text referring performance can be improved
if a reasonable τ is set. We tested the false positive (FPT ) and false negative (FNT ) results of text
grouping with respect to different τ values. FPT is calculated by dividing the number of similar text
sequences with the number of text sequences of a scene. FNT is calculated by dividing the number
of different text sequences which are considered to be similar with the number of text sequences of
a scene. We randomly selected 20 text sequences of indoor scenes. The average results are given in
Table 4. It is found that as τ is decreased, FPT is increased and FNT is decreased. Specifically, when
τ is set to be 0.9, FPT =0.05 and FNT =0.05. Therefore, we set τ to 0.9 in SiFi.

Accuracy of Text Extraction.We then tested the text recognition accuracy achieved by our text
extraction method and the method proposed in [40]. Volunteers were invited to record semantic-rich
instant videos in different floors. The ground-truth of texts were labeled manually. The precision-
recall metric is used to measure text recognition performance. Specifically, given the ground truth of
text sequences TXtrue and the result TXpro produced by SiFi, precision P is calculated by dividing
the number of correct texts with the number of texts in TXpro . Recall R is calculated by dividing

Table 4. Effect of the text sequence grouping parameter

τ 1.0 0.9 0.8 0.7
FPT 0.00 0.05 0.11 0.23
FNT 0.09 0.05 0.02 0.01
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Fig. 7. The localization accuracy of new texts achieved by SiFi.

the number of correct texts with the number of texts in TXtrue , that is:

P=
|TXpro

⋂
TXtrue |

|TXpro |
, (10)

R=
|TXpro

⋂
TXtrue |

|TXtrue |
, (11)

F=2×P×R
P+R , (12)

where F represents the harmonic mean of precision and recall. Our method outperforms the method
in [40]. The F value achieved by our method is 0.81, while the F value achieved by the method in
[40] is less than 0.76 in all cases. The accuracy improvement in text recognition clearly demonstrates
the effectiveness of our text extraction method.

5.3.4 Performance of Text Localization. This section gives the details of the performance of text
sequence localization and the accuracy of text localization.

Performance of Text Sequence Localization. We tested the text sequence localization per-
formance using localization rate, which is defined as the percentage of text sequences that can be
correctly matched with the text sequence of the indoor semantic floorplan. If the text sequence
estimated by our method matches the ground truth, we consider this localization as a correct local-
ization. Otherwise, it is considered as an incorrect localization. The localization rate is calculated
by dividing the number of correctly located text sequences with the total number of text sequences.
As shown in Table 5, SiFi achieves an average localization rate of 95.7% for four floors in the mall.

Accuracy of Text Localization.We further tested the text localization performance. Specifically,
the new text localization errors were calculated on four floors of the Wanda shopping mall. The
results are given in Fig. 7. It is found that 50% of new texts have an error of less than 2.6m on floors
1 to 3. Besides, 50% of new texts have an error of less than 3.0m on the fourth floor. That is because
the semantics on the fourth floor are relatively sparse than other floors, as shown in Fig. 5.

Table 5. Localization rate under different energy term configurations

Floor Floor 1 Floor 2 Floor 3 Floor 4
Localization Rate 95% 93% 98% 97%
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5.3.5 Other Factors. This section gives the details of the system performance to response delay
and the energy consumption.

Response Delay. We deployed SiFi using a server equipped with a 32GB RAM, an i7 CPU
processor, and a 12GB Titan GPU. The response delay was evaluated using 32 videos and each
lasting about 30 seconds. 7880 key-frames were extracted. In our experiments, the colmap algorithm
takes about 21 hours and other algorithms only take less than 1 hour totally. Therefore, SiFi achieves
the day-level latency and the response delay is also determined by the number of videos for one
update. Note that, the response delay can further be reduced using more powerful machines.

Energy Consumption.We tested the energy consumption of our SiFi mobile application soft-
ware, including those consumed by cameras and WiFi network. The energy is calculated using
the PowerTutor profiler [16] in a Google Nexus 7 tablet. During the experiment, we turned off all
background applications and additional hardware components. The energy consumed by camera
and WiFi network is 6.9 Joule and 1.6 Joule for a 6-second-long video, respectively. Compared to
the battery capacity of 20k Joules, video capturing and uploading do not constitute any signification
power consumption for a mobile device [15].

6 DISCUSSION AND LIMITATIONS
Although several promising results have been reported in our experiments, SiFi still has several
limitations.

System Robustness and Scalability. SiFi was evaluated by different users using different
mobile devices and images on various floors in a shopping mall. These extensive experiments have
demonstrated the robustness of SiFi under a wide range of scenarios. SiFi can be extended to a
worldwide scale using existing indoor semantic floorplans of indoor environments and the cloud.
Particularly, semantics updating of each indoor space can be performed independently based on
GPS and barometer data tagged on videos. It is true that the updating performance of our method
will be decrease if most texts are not recorded on videos due to occlusion of crowds. In the future
work, a pop will be added in our mobile applications of data collection to tips volunteers to avoid
crowds.

Mixed Modality with More Techniques. In SiFi, we mainly use instant videos to extract
semantic sequence and then update out-of-date semantics of annotated objects by locating these
semantic sequences in indoor floorplans. Recent advances in indoor localization, especially those
supported by mobile devices, have enabled meter or sub-meter level accuracy of localization [39, 40].
In the future, we would like to incorporate those techniques to build a mixed modality for semantic
updating. For example, the localization accuracy of semantics can be improved by exploiting the
walking traces and positions of users in indoor space.

Other Indoor Environments. Although SiFi is evaluated in a shopping mall, it can be cus-
tomized to other indoor environments with a similar building structure, e.g., exhibition buildings.
Moreover, SiFi can be extended to other types of buildings using appropriately adjusted parameters.
Specifically, semi-unsupervised or unsupervised learning techniques [38] can be used to extend
our method to new indoor environments. SiFi may have difficulties in indoor environments with
a large open area and a small number of rooms, such as supermarkets. In the future, novel texts
localization algorithms will be proposed to extend the application scenarios of our system.

Information Privacy. Since users can share videos, SiFi may pose a risk of privacy leakage. For
example, building owners might not allow others to share some videos and audio recorded in their
buildings. Therefore, an information privacy protection mechanism should be further designed,
such as people face blurring [13].
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7 CONCLUSION
In this paper, we have presented a method for automatic and continuous indoor semantic floorplan
updating. A system called SiFi is proposed to perform floorplan updating using semantic-rich instant
videos acquired by ordinary mobile devices. With appropriate computer vision techniques, images
and text sequences are used in SiFi to achieve indoor semantic floorplan updating in an efficient,
low-cost, and scalable manner. Extensive experiments have been conducted in a shopping mall
with over 250 stores. Experimental results within nine weeks demonstrate that SiFi can effectively
address semantic variations caused by environmental dynamics.
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