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Abstract—The emergence of large-scale dynamic sets in net-
worked and distributed applications attaches stringent require-
ments to approximate set representation. The existing data struc-
tures (including Bloom filter, Cuckoo filter, and their variants)
preserve a tight dependency between the cells or buckets for an
element and the lengths of the filters. This dependency, however,
degrades the capacity elasticity, space efficiency and design
flexibility of these data structures when representing dynamic
sets. In this paper, we first propose the Index-Independent
Cuckoo filter (I2CF), a probabilistic data structure that decouples
the dependency between the length of the filter and the indices
of buckets which store the information of elements. At its core,
an I2CF maintains a consistent hash ring to assign buckets to
the elements and generalizes the Cuckoo filter by providing
optional k candidate buckets to each element. By adding and
removing buckets adaptively, I2CF supports the bucket-level
capacity alteration for dynamic set representation. Moreover,
in case of a sudden increase or decrease of set cardinality, we
further organize multiple I2CFs as a Consistent Cuckoo filter
(CCF) to provide the filter-level capacity elasticity. By adding
untapped I2CFs or merging under-utilized I2CFs, CCF is capable
of resizing its capacity instantly. The trace-driven experiments
indicate that CCF outperforms its alternatives and realizes our
design rationales for dynamic set representation simultaneously,
at the cost of a little higher complexity.

Index Terms—Cuckoo filter, consistent hashing, elasticity

I. INTRODUCTION

SET representation while supporting membership queries
is a fundamental problem in databases, caches, routers,

storage, and distributed applications [1]. These systems often
represent set elements with a probabilistic data structure and
support constant-time approximate membership query with
small false positive probability. The most widely-used proba-
bilistic data structures for approximate membership query are
Bloom filter [2] [3], Cuckoo filter [4] [5] and their variants
[6] [7] [8] [9] .

Bloom filter and Cuckoo filter represent sets in diverse
ways. Bloom filter is a fixed-length array of bits which are
initialized as 0s. To insert an element, k independent hash
functions are employed to map the element into the bit vector.
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Thereafter, the corresponding bits are set to 1s. When testing
the membership of any element x, Bloom filter just checks
the k corresponding bits are non-zero. If they are all ones,
Bloom filter concludes that x is a member of the set (possibly
implying a false positive); otherwise, it correctly indicates
that x is not a member (no false negatives). Unlike Bloom
filter, Cuckoo filter stores the fingerprints of the elements
with their candidate buckets directly. Cuckoo filter derives two
candidate buckets for each element with the partial cuckoo
hashing strategy [10] and tries to store the fingerprint into
one of the candidate buckets. An element is identified as a
member of the set if its fingerprint can be found in either of its
candidate buckets. Bloom filter and Cuckoo filter, however, fail
to represent dynamic set members because of their incapability
of resizing their capacities.

To this end, Dynamic Bloom filter (DBF) [6] and Dynamic
Cuckoo filter (DCF) [7] have been developed. Both DBF and
DCF attempt to add and merge homogeneous Bloom filters
and Cuckoo filters to extend and downsize their capacities
on demand. In both DBF and DCF, the length of each filter
is predefined and cannot be altered since the indices of
cells or candidate buckets are determined by calculating the
modulus based on the length of the filter. As a consequence,
they can only resize their capacity by adding or merging
homogeneous filters. In the worst case where one filter has
to be added to store only one additional element, the resultant
space utilization can be very low. Therefore, in space-scarce
scenarios, the bucket-level capacity alteration is necessary to
save space. Moreover, a major weakness of DBF is that it fails
to support reliable element deletion [7] since there may be
multiple BFs which satisfy the membership query condition.
Although DCF guarantees reliable element deletion, it employs
the XOR operation to derive the second candidate bucket
during reallocations. Therefore, the length of each Cuckoo
filter can only be of the form m=2γ (γ≥0). Otherwise, the
XOR results may go out of range.

Consequently, we envision the design of a Cuckoo filter
style data structure which properly concerns the following
three design rationales for dynamic set representation.
• Capacity elasticity (CE). The data structure’s capacity

is adaptively adjustable according to the set cardinality.
Despite the unpredictability of the number of elements to
represent, the offered capacity shows coincident changing
trends as the set cardinality adaptively.

• Space efficiency (SE). The space utilization remains at a
high level irrespective of the variation of set cardinality.
This is extremely important for space-scare scenarios,
e.g., wireless sensor networks.
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TABLE I
THE FEATURES OF SET REPRESENTATION DATA STRUCTURES. THE

NUMBER OF “+” QUANTIFIES THAT FEATURE.
Name BF DBF CF DCF ACF SCF I2CF CCF

CE ++ ++ ++ +++
SE + + ++ ++ ++ ++ +++ +++
DF ++ ++ + + + + +++ +++

• Design flexibility (DF). All the parameters are adjustable
so that users can customize their own configurations
according to their design goals. For example, the number
of hash functions may be increased for higher space
utilization or decreased for better query throughput.

These rationales, if realized, will bring unprecedented benefits
for set representation and membership query, in terms of
space-saving and quality of service. The design flexibility
further extends the applicability of the data structure to more
general scenarios with diverse requirements.

The existing probabilistic data structures, however, fail to
achieve the three rationales properly and simultaneously. As
shown in Table 1, Bloom filter and DBF achieve low space
utilization. The reason is that they keep half of the bits as 0s, in
order to incur the least false positive rate. By contrast, Cuckoo
filter and its variants improve their space utilization with the
reallocation strategy during each insertion. DBF and DCF
offer capacity elasticity to some extent by adding and merging
filters dynamically. However, in reality, a more fine-grained
capacity scaling is needed to handle small-scale capacity
overflows and recycle space timely when a few elements are
removed. Furthermore, existing data structures are somehow
hindered by their limited design flexibility. In the framework
of Bloom filters, the parameters have to be carefully designed
to guarantee their target false positive rate. Meanwhile, current
proposals of Cuckoo filters must use a fixed number of hash
functions and a power of two number of buckets.

A common reason for the existing data structures’ deficiency
of achieving the three rationales is that they preserve a tight
dependency between the cells or buckets for an element and
the lengths of the filters. As a result, their capacities have
to be predefined and remain immutable irrespective of the
change of dynamic sets. Therefore, in this paper, we first
propose I2CF, a probabilistic data structure which decouples
the dependency between the length of the filter and the indices
of buckets which store the information of elements. At its core,
an I2CF maintains a consistent hash ring [11] [12] to assign
buckets to the elements and generalizes the Cuckoo filter
by providing optional k candidate buckets to each element.
By adding and removing buckets adaptively, I2CF supports
bucket-level capacity alteration for dynamic set representation.

Moreover, in case of a sudden increase or sharp decrease of
set cardinality, we further organize multiple I2CFs as a CCF
to provide filter-level capacity elasticity. By adding untapped
I2CFs or merging under-utilized I2CFs, CCF is capable of
resizing its capacity instantly. As shown in Table 1, both
I2CF and CCF offer elegant space efficiency and design
flexibility. CCF has better capacity elasticity than I2CF, since
I2CF only provides bucket-level capacity alteration, while
CCF additionally supports filter-level capacity adjustment for
dynamic sets. In fact, I2CF is a special case of CCF when

only one I2CF is maintained. To summarize, we achieve the
following contributions.
• We first design I2CF (Index Independent Cuckoo filter),

a probabilistic data structure which decouples the depen-
dency between the length of the filter and the indices
of buckets which store the information of elements. It
allows flexibility in the memory size without the need
for reallocating most elements. Thereafter, we organize
multiple I2CFs as a CCF and present the algorithms for
dynamic set representation and capacity resizing.

• For any I2CF with given parameters in a CCF, we present
a new threshold for the ratio between the number of repre-
sented elements and the number of buckets. Additionally,
we derive an upper bound for the probability that a given
number of elements can be successfully stored in an I2CF.

• Trace-driven evaluations are conducted to measure the
performance of our proposals. The results show that
CCF outperforms DCF and realizes the three design
rationales simultaneously at the cost of a little higher
time-complexity.

The rest of this paper is organized as follows. Section II
elaborates on the application of sketches in networks. Section
III introduces the background and related work. Section IV
presents the I2CF and CCF design and their operations.
Section V details the theoretical performance analysis for
CCF. Section VI reports the evaluation results and Section
VII concludes the whole paper.

II. APPLICATIONS OF SKETCHES IN NETWORKS

Set representation is a fundamental task in networking for
applications such as content caching, packet routing, privacy
preserving, network measurement, blockchain and beyond [1]
[13] [14]. In such scenarios, sketch data structures are em-
ployed to rep-resent a given set while supporting constant-time
membership queries. According to the query result, subsequent
actions will be triggered or avoided.

Content caching is widely implemented in network appli-
cations [15] [16], e.g., CDN, Web, DNS. A typical caching
system includes a main memory which contains all the ele-
ments/items to query and a cache which only stores a subset
of the union. Often, sketch data structures are employed to
represent the elements in the cache memory. The access of
an element x is first directed to the sketch. If the sketch
indicates that x is an element in the cache, the access tries
to read the element from the cache. Due to the potential false
positive errors, x may be not found in the cache, then the
access will be routed to the main memory. If the sketch judges
that x is not stored by the cache, the request will fetch x
from the main memory directly without accessing the cache.
In summary, a cache system benefits from the sketches by
refining unnecessary access to the main memory.

Set representation also plays an essential role in packet
routing for both wired and wireless networks. In wired net-
works, sketches are implemented to speed-up IP lookups and
multicast routing. Specifically, H. Lim et al. proposed to record
the IP length to enable fast longest IP prefix matching [17].
Besides, the multicast tree is represented by a sketch which
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is thereafter embedded into the packet header or stored in
the switch ports [18]. As a result, a packet can naturally
find its next hop by referring to the in-packet or in-switch
sketch. In wireless networks such as mobile ad hoc networks
[19], wireless sensor networks [20], wireless named data
networks [21], sketches are employed to propagate information
of topology, neighborhood, nearby services, probed data, etc.
With the help of sketches, nodes in the wireless networks route
packets more efficiently.

Sketches naturally anonymize user-sensitive data (such as
geo-location, biometric data, personal interest, etc) since they
represent elements without recording the real content. There-
fore, sketches are widely employed to preserve privacy. For
location-based services, Calderoni et al. proposed to represent
the location information with sketches such that the real user
location is transparent for upper-level services [22]. Similarly,
biometric data, which is widely adopted for authentication, can
also be anonymized by sketches to provide fast membership
query without the worry of data leakage [23]. Moreover, a
core module of social APPs is to recommend potential friends
with similar interests to users. To preserve privacy, Oriero et
al. employ sketches to represent users’ interested topics and
thereafter share these sketches among trusted friends [24].

State-of-the-art collaborative network measurement tech-
niques mostly collect the flow information with sketches and
then aggregate them in a central node for further analysis [25].
For diverse measurement tasks, different sketches are designed
and implemented. These sketches keep track of the flow size
with counters, so that complex analysis such as heavy hitter,
heavy changer, entropy evaluation, etc, are enabled.

Consider the wide use of sketches in the networking and
communication community, this paper focus on the represen-
tation of dynamic sets which further restrict the elasticity,
efficiency and flexibility of the employed sketch data structure.

III. BACKGROUND AND RELATED WORK

In this section, we briefly introduce the background and the
related work of this research. We mainly introduce the Cuckoo
hash table, the recently proposed Cuckoo filter and its variants
as well as the consistent hashing techniques.

A. Cuckoo Hash Table

A hash table provides constant query time but incurs only
near 50% space utilization. By integrating the “power of
two choices” into hash tables, cuckoo hash table [26] [27]
achieves high space utilization with the guarantee of constant-
time queries. Basically, a cuckoo hash table is an array of
m buckets. Each bucket is allowed to store an element. To
insert an element x, two independent hash functions h1 and
h2 are employed to select two candidate buckets for x. If
either bucket h1(x)%m or h2(x)%m is empty, x will be stored
in either of them. In contrast, if both of them are occupied,
the cuckoo hash table will randomly select a bucket and kick
out the stored element to accommodate x. The victim will
then be reallocated to its other alternative bucket. The cuckoo
hash table keeps kicking and reallocating the stored elements
until the victim is accommodated successfully or the number

of iterations reaches a predefined upper bound max. When
an element is failed to be inserted, the cuckoo hash table is
considered as a full cuckoo hash table. To query or access the
elements, the users only need to check the two corresponding
buckets. The reallocations help cuckoo hash table refine the
placements of previous elements, thus enabling the high space
utilization. In a real implementation, each bucket is suggested
to accommodate multiple elements [28], and the number of
hash functions can also be an optionally k rather than the
fixed value 2 [29]. Zentgraf et al. further optimize the element-
bucket assignment with the Bellman-Ford and Hopcroft-Karp
algorithms, such that an arbitrary query can find its content as
soon as possible [30].

B. Consistent Hashing

An inherent shortcoming for a hash table is that its resizing
calls for the remapping of all elements. The reason is that
the location for an element is determined by the modular
result between the hash value and the table length. Consistent
hashing [11] [31] relaxes this situation such that only a small
part of the stored elements will be moved when resizing the
hash table, with the assumption that a bucket can accommodate
multiple elements. Consistent hashing maps both the elements
and the buckets in the hash table into a ring ranged from 0 to
a given large integer M. Thereafter, the elements are assigned
to the buckets with either clockwise or anti-clockwise order
in the ring. When a new bucket is added into the ring, only
the elements in its successor may be moved to it. Similarly,
when a bucket is removed from the hash table, the elements
in the bucket will be pushed to its successor directly. Given
the number of buckets in the hash table as m and the number
of elements as n, each update of the consistent hash table only
affects n/m elements on average. Consistent hashing has been
widely employed in distributed systems such as peer-to-peer
network [12], content delivery network [32], OpenStack Swift
[33], Amazon Dynamo [34], etc. To save power consumption,
Xie and Chen leverage the consistent hashing technique by
storing the files on primary servers and scaling down to a few
active servers when necessary [35]. In this paper, we employ
the consistent hashing to assign the fingerprints into the CCF
buckets with the ability of scale-up and scale-down at will.

C. Cuckoo Filters

Cuckoo filter (CF) [5] is a light-weight probabilistic data
structure to support constant-time membership query, based
on the framework of cuckoo hash table [26]. Cuckoo filter
replaces the actual contents of elements in the cuckoo hash
table with the fingerprints of elements. Structurally, a CF
consists of m buckets, each of which is capable of residing
b fingerprints. Any element x is associated with a f -bit
fingerprint (ηx) generated by a hash function h0. An arising
challenge for CF is to derive out the alternative bucket for
a victim without the raw data of the victim. CF employs
the partial-key cuckoo hashing strategy [10] to tackle this
issue. Basically, the alternative bucket can be derived out
by executing an XOR operation towards the current bucket
and the hash value of the victim fingerprint. That is, the two
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Fig. 1. The position of this work in the community.

bucket locations are derived as h1(x)= hash(x) and pair-wisely
h2(x)=h1(x)⊕hash(ηx).

With the above design, to insert an element x, CF first
calculates the fingerprint ηx of x and then generates the two
candidate buckets based on the redesigned hash functions
h1 and h2. Thereafter, the fingerprint ηx will be stored into
either of the candidates and the victim will be reallocated
in the CF vector if necessary. To query an element y is a
member of set A or not, CF checks the two corresponding
buckets of y. If the fingerprint ηy is stored in either them, CF
judges y∈A; otherwise CF concludes y/∈A. Due to the potential
hash collisions of the fingerprints, CF may suffer from false
positive errors (reporting elements which do not belong to A
as members of A). Theoretically, the false positive rate of CF
is bounded as ξCF=(1−(1− 1

2 f )
2b), where f is the number of

bits for a fingerprint and b is the number of slots in a bucket.
There are no false negative errors for CF if all elements in A
are inserted successfully.

Most recently, several CF variants have been proposed
for further improvement. Experimental results validate CF’s
performance, but the merit is not theoretically guaranteed. The
simplified cuckoo filter [8] (SCF) calculates the locations of
buckets for an element x as h1(x) and h1(x)⊕ηx. The impact of
the simplification can be visualized by a fingerprint-edge graph
whose vertices are the buckets of the hash table, and whose
edges connect the possible pairwise locations of a fingerprint.
Based on graph theory, SCF provides theoretical performance
analysis to its filter.

Adaptive cuckoo filter [9] (ACF) tries to remove false
positive errors from the CF vector by resetting the collided
fingerprints. The ACF consists of a CF and a corresponding
cuckoo hash table. Such a design enables ACF to identify false
positive errors and decouple the locations of buckets from the
fingerprints. When a false positive error occurs, ACF generates
a new fingerprint for the conflicted element which is directly
available from the cuckoo hash table. As a consequence, the
false positive error will not arise again in the future.

Inspired by the Dynamic Bloom filter [6], dynamic cuckoo
filter [7] (DCF) dynamically maintains multiple homogeneous
CFs to enable elastic capacity alteration. Initially, only one
Cuckoo filter is maintained and marked as active. The sub-
sequent homogeneous CFs will be introduced in either an
active or passive manner. A recycling mechanism is sug-
gested to merge two underloaded CFs, thereby improving the
space utilization. The false positive rate DCF is bounded as
1−(1− fCF)

s, where fCF is the false positive rate of each CF
vector and s is the number CFs maintained in DCF.

Vacuum filter [36] and Morton filter [37] speed up the
throughput of insertion, deletion, and query with different
methodologies. Specifically, Morton filter [37] introduces a
compressed format that permits a logically sparse filter to be
stored compactly in memory. It prefers to store the elements
with their first candidate buckets, such that subsequent re-
trieval of fingerprints requires fewer hardware cache accesses
without accessing the alternative buckets. The Vacuum filter,
by contrast, Vacuum filter proposes to put the two candidate
buckets in a single alternate range which can be accessed by
one memory access. The Vertical Cuckoo filter [38] proposes
to offer more than 2 candidate buckets for each element for
better space utilization.

The above variants of CF, however, fail to realize our design
rationales properly. SCF and ACF leverage the employed hash
functions only, but their capacities cannot be resized after
implementation. DCF supports filter level capacity alteration
but incurs limited design flexibility and untimely space re-
cycling. Consequently, we present CCF (Consistent Cuckoo
filter), a novel probabilistic data structure which promises
capacity elasticity, high space utilization, and design flexibility
simultaneously. Fig. 1 explicitly plots the position of this work.

IV. CONSISTENT CUCKOO FILTER

We describe the design of the CCF (Consistent Cuckoo
filter) in detail here, including its data structure, operations
for set representation and resizing strategies. Before that, we
introduce the I2CF (Index-Independent Cuckoo filter), which
is the basic component of CCF.

A. Design of Index-Independent Cuckoo Filter (I2CF)

To represent dynamic sets, the employed data structure
should offer elastic capacity. Although DBF and DCF are
capable of filter-level capacity elasticity, they fail to provide
the ability of fine-grained capacity alteration. The reason is
that their lengths of filters are predefined and immutable
throughout their lifetime. The using of XOR operations to
compute hash values in Cuckoo filter further exacerbates the
capacity elasticity by restricting the filter length to be a power
of two. Therefore, we redesign the framework of Cuckoo filter
and propose the Index-Independent Cuckoo filter (I2CF) here.

Basically, I2CF consists of multiple buckets, each of which
has b slots. That is, each bucket can accommodate b finger-
prints at most. As shown in Fig. 2, the buckets are mapped
onto a consistent hash ring [11] [12] ranging from 1 to M−1.
To ensure better load balance in the consistent hash ring, each
bucket has v≥1 virtual nodes in the consistent hash ring. I2CF
also stores the fingerprints of elements instead of the actual
contents by offering each fingerprint k≥1 candidate buckets.
An element is successfully represented if its fingerprint is
stored in one of its candidate buckets. To determine the can-
didate buckets of an element x, k independent hash functions
are employed to map the fingerprint ηx onto the consistent
hash ring. Thereafter, the k nearest buckets (in a clockwise
order by default) of the k hash values are regarded as the
candidate buckets of ηx. In this way, the candidate buckets are
index-independent and decided by the consistent hashing. A
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Fig. 2. An illustrative example of I2CF with k=1, b=2 and v=1. It represents a set with 4 elements, including x, y, z and w. Initially, the I2CF employs 3
buckets to store these elements. When a new bucket B3 is added as a successor of B2, the fingerprint of z is reallocated from B0 to B3, since the hash value
of ηz is mapped between B2 and B3. When B0 is removed, the fingerprint ηy is reallocated to B0’s successor B1.

fingerprint can be stored in any one of these candidate buckets.
If all the candidate buckets are fully occupied, I2CF randomly
kicks out an existing fingerprint from one of these buckets
to store the new fingerprint. The victim will be reallocated
to one of its other candidate buckets. The reallocation ends
successfully when a bucket has available space and fails when
the number of such reallocations reaches the given threshold.

Compared with Cuckoo filter, I2CF has two major improve-
ments. First, I2CF organizes the buckets as a consistent hash
ring to decouple the dependency between candidate buckets
and the length of the filter. As a consequence, I2CF naturally
enables the capability of adding and removing buckets on
demand. A toy example of adding and removing buckets from
an I2CF is given in Fig. 2. Second, I2CF generalizes the
number of candidate buckets from the fixed two in Cuckoo
filter as a mutable variable k. This generalization further
improves its design flexibility. Moreover, as analyzed later,
larger k values also guarantee higher space utilization. With
these improvements, I2CF achieves the bucket-level capacity
elasticity and high space utilization to represent dynamic sets.

B. Overview of the Consistent Cuckoo Filter (CCF)

I2CF provides bucket-level capacity elasticity, but when set
cardinality increases drastically, a single I2CF may fall short of
offering enough space timely. Therefore, we further generalize
I2CF as CCF which dynamically maintains multiple I2CFs.
Just like existing CF variants, CCF also leverages fingerprints
to represent elements in a set. The fingerprint for an element
x is generated by mapping x into a given range [0,2 f−1]
with a hash function h0. Basically, a CCF consists of s (s≥1
and initialized as 1) heterogeneous I2CFs. An arbitrary I2CFi
(i∈[0,s−1]) has mi≥1 buckets with bi≥1 slots. The employed
number of hash functions ki and the value of Mi in I2CFi are
also allowed to be different from other I2CFs. With such a
framework, CCF enables ultimate design flexibility. Note that
to multiplex the calculated hash values for each fingerprint
among the I2CFs, we prefer k0= · · ·=ki= · · ·=ks−1=k, and
M0= · · ·=Mi= · · ·=Ms−1=M by default. More importantly,
CCF provides capacity elasticity at both the bucket level and
filter level. That is, its capacity can be altered by adding or
removing buckets in any I2CF, as well as introducing untapped

or compacting under-utilized I2CFs. The details are given in
Section IV-D. When an I2CF is extended or introduced, it will
be marked as active to store new elements.

Theorem 1: For an I2CFi (i∈[0,s−1]) in CCF, let bi and ki
denote the number of slots in each bucket and the number of
candidate buckets in the filter I2CFi, respectively. The false
positive rate for a CCF query can be calculated as:

ξCCF = 1−
s−1

∏
i=0

(1−ξi) = 1−
s−1

∏
i=0

(1− 1
2 f )

ki·bi . (1)

When k0= · · ·=ki= · · ·=ks−1=k, b0= · · ·=bi= · · ·=bs−1=b,

ξCCF = 1−
s−1

∏
i=0

(1−ξi) = 1−(1− 1
2 f )

s·k·b ≈ s·k·b
2 f . (2)

The false positive error of CCF stems from the hash
collisions of the fingerprints. If two elements x∈A and y/∈A
share the same fingerprint, i.e., ηx=ηy, the membership query
of y implies a false positive error due to the existence of x.
Within the CCF framework, a membership query may check
all of the s I2CF vectors. For I2CFi, the false positive rate
is ξi=1−(1− 1

2 f )
ki·bi . The global false positive rate is thus

derived as ξCCF=1−∏
s−1
i=0 (1−ξi). Note that, both DCF and

CCF have multiple filters and share the same false positive
rate. Generally, larger f leads to lower false positive rate, while
larger k, b and s result in higher false positive rate. However,
DCF fails to support runtime false positive rate guarantee since
the value of s increases continually with the increase of set
cardinality. As a consequence, the false positive of DCF keeps
increasing when more CFs are launched. CCF, on the contrary,
provides runtime false positive rate guarantee by setting a
threshold for s. If the value of s reaches the threshold, on one
hand, CCF can conduct the compact operation to hopefully
merge some I2CF vectors. On the other hand, CCF only
employs the bucket-level resizing strategy to accommodate the
coming elements, thereby the value of s will not be increased
any more. Thus, the false positive rate can be reasonably
bounded.

C. Dynamic Set Representation with CCF

In this subsection, we present the basic operations of CCF
for dynamic set representation, including insertion, query, and
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Algorithm 1: CCF insertion(ηx)
Input: The fingerprint to insert ηx

1 Calculate the hash values h1(ηx), · · · ,hk(ηx);
2 Decide the candidate buckets for ηx in the active I2CF based

on h1(ηx), · · · ,h2(ηx);
3 if ηx can be successfully inserted into the active I2CF within

max reallocations then
4 return True;
5 else
6 Extend CCF with its resizing strategy;
7 Insert ηx into the extended or added I2CF;
8 return True;
9 end

Algorithm 2: CCF query(x)
Input: The element to query x

1 ηx=h0(x) mod 2 f ;
2 Calculate the hash values h1(ηx), · · · ,hk(ηx);
3 for i=0 to s−1 do
4 Determine candidate buckets B1

i (x), · · · ,Bk
i (x) in I2CFi;

5 for j=0 to k−1 do
6 if B j

i (x) has ηx then
7 return True;
8 end
9 end

10 end
11 return False;

deletion of elements. The associated resizing strategies are
detailed later in Section IV-D.

Algorithm 3: CCF deletion(x)
Input: The element to delete x

1 ηx=h0(x) mod 2 f ;
2 Calculate the hash values h1(ηx), · · · ,hk(ηx);
3 for i=0 to s−1 do
4 Determine candidate buckets B1

i (x), · · · ,Bk
i (x) in I2CFi;

5 for j=0 to k−1 do
6 if B j

i (x) has ηx then
7 Remove ηx from B j

i (x);
8 Downsize the CCF when necessary;
9 return True;

10 end
11 end
12 end
13 return False;

Insertion. The CCF tracks the number of elements inserted
into each of its I2CF and thereafter marks the I2CF which
represents the least elements as an active I2CF. To insert an
element x, CCF first generates its fingerprint by mapping x
into the range [0,2 f−1]. Then, k independent hash functions
map ηx onto the consistent hash ring. Based on the generated
hash values, the consistent hashing determines the candidate
buckets for ηx in the active I2CF. After that, we try to insert
ηx into the active I2CF by following the strategy provided
by the cuckoo hashing [5]. If the active I2CF can successfully
store fingerprint ηx, the insertion algorithm will be terminated.
Otherwise, CCF capacity has to be extended at either the
bucket level or filter level. Thereafter, ηx will be inserted

into the extended or added I2CF. The pseudo-code is shown
in Algorithm 1. Note that, upon being extended, CCF marks
the manipulated I2CF as active, so that the coming elements
will be stored by this I2CF vector. We suggest choosing the
I2CF with least buckets for better balance when bucket level
extension is performed. Sometimes multiple buckets have to
be added to successfully reside ηx. If there are still many
elements to be inserted after x, CCF will introduce a new
I2CF vector within the constraints of false positive rate, such
that the coming elements will be stored immediately.

Query. Membership query with CCF may check every I2CF
vector. Let s denote the number of I2CF vectors in CCF. We
need to check at most s·k buckets. Algorithm 2 presents a
membership query in detail. The fingerprint ηx is hashed by k
hash functions to determine the locations of ηx in the hash
ring for I2CFi (i∈[0,s−1]). Based on the hash values, the
consistent hashing tells CCF the candidate buckets for ηx in
I2CFi. Then, if any bucket holds ηx, the membership query
terminates and returns true. By contrast, if ηx cannot be found
in all I2CFs, CCF judges x/∈A and returns false. There may
be a potential false positive error for any queried element, but
no false negative errors for the stored elements.

Deletion. The deletion of an element x needs to first perform
a membership query for finding its possible locations. If
a corresponding fingerprint ηx is found, then the matched
fingerprint will be removed from CCF. Algorithm 3 shows
the details of the delete operation. If the fingerprint ηx is
not found in CCF, the deletion algorithm returns fail. When a
sufficient number of elements have been deleted from CCF, the
resizing operations will be executed to downsize CCF capacity
and maintain high space utilization. CCF prefers filter-level
resizing since a smaller s ensures a lower false positive rate.

D. Resizing operations of I2CF and CCF

An essential challenge for dynamic set representation is the
unpredictable set cardinality n. This challenge puts forward
new requirement for the employed data structure, i.e., the
capability of capacity resizing. Moreover, the set cardinality
n may vary irregularly, i.e., n may increase or decrease
progressively or dramatically. To handle that, the data structure
must be resized in diverse granularity. Therefore, we propose
two options to extend the capacity of CCF, i.e., a scale-
up method which adds buckets into an I2CF, and a scale-
out method which adds an untapped I2CF into CCF. Pair-
wisely, the CCF capacity can be downsized by either removing
buckets from one specific I2CF or compacting sparse I2CFs.
Scale up and scale down support the bucket-level capacity al-
terations, meanwhile, scale out and compact achieve the filter-
level capacity adjustments. These methods generate ultimate
elasticity for CCF when representing dynamic sets.

Scale up. When a new bucket is added into an I2CF,
only the fingerprints stored in the bucket’s successor may
be affected. We consider that a new bucket Bnew is mapped
between two existing buckets Bi and B j (i, j∈[0,m−1]), and B j
is the successor of Bnew. In this case, only the fingerprints in B j
might have to be reallocated to bucket Bnew. Specifically, if a
fingerprint in B j is mapped between Bi and Bnew, it should
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Algorithm 4: CCF compact()
Input: The current CCF

1 success = True;
2 while success do
3 Select the least-loaded I2CF vector I2CFL in CCF;
4 Declare a new CCF named CCFT ;
5 Let CCFT = CCF.remove(I2CFL);
6 for all ηx stored in I2CFL do
7 if !CCFT .insertion(ηx) then
8 success = False;
9 break;

10 end
11 end
12 if success then
13 CCF = CCFT ;
14 end
15 end

be moved to Bnew; otherwise, it should still remain in B j.
Especially, if B j is empty, Bnew will also be empty. A toy
example for adding bucket can be found in Fig. 2(b).

Scale down. Correspondingly, CCF can remove buckets
from an I2CF for higher space utilization. When an existing
bucket is removed from an I2CF, only the fingerprints in this
bucket should be reinserted into the CCF. We consider two
buckets Bi and B j in the hash ring such that B j is the successor
of Bi. CCF tries to store the fingerprints in Bi by pushing them
into bucket B j preferentially and then reallocating the rest of
the fingerprints to other buckets. If all the fingerprints are
successfully stored, Bi will be removed; otherwise, Bi cannot
be removed. An illustrative example for removing bucket is
shown in Fig. 2(c). When scaling down, CCF prefers removing
empty or under-utilized buckets for time-saving.

Scale out. Another method to increase the capacity of CCF
is to add untapped I2CFs. Initially, CCF maintains a single
I2CF and scales up or scales down this filter according to
the real demand. When the number of elements to represent
increases dramatically, the capacity of CCF can be extended
immediately by adding one or multiple untapped I2CFs into
the system. Note that, the added I2CFs are allowed to be
heterogeneous since they are totally independent. The number
of buckets and the number of slots are all mutable.

Compact. When an I2CF becomes sparse due to the re-
moval of elements from the set, CCF tries to remove this
I2CF through the compact operation. As shown in Algorithm
4, CCF first selects a least-loaded I2CF vector I2CFL and
removes it. The updated CCF is denoted as CCFT . Thereafter,
we try to reinsert the fingerprints in I2CFL into CCFT . If
all the fingerprints in I2CFL can be successfully inserted into
CCFT , the selected I2CFL is allowed to be removed; otherwise,
the CCF is already condensed enough and cannot be further
compressed. The compact algorithm keeps removing I2CF
vectors until an undeletable I2CF is reached.

In practice, the set cardinality n varies due to the join or
removal of elements. When the value of n increases (decreases)
gradually, CCF executes the scale up (scale down) algorithm to
adaptively adjust its capacity. In the case of dramatic growth
(reduction) of n, the scale out (compact) operation will be
employed to extend (downsize) the CCF instantly. With these

strategies, CCF ensures capacity elasticity and high space
utilization simultaneously.

E. Resizing Strategy in CCF

CCF provides the capacity elasticity both in the filter level
and the bucket level. For further understanding, we state the
resizing strategy in CCF here explicitly. Note that CCF mainly
offers three functions to its users, i.e., element insertion, query,
and deletion, while only insertion and deletion may trigger the
resizing process.

We rely on the arrival rate of elements (number of inserted
elements per unit time, denoted as α) and the upper bound
of CCF false positive rate ξ to jointly decide the use of
scale up and scale out. Let α be a sentinel value: only when
α ≤ α , CCF can insert the arrival elements with small-scale
scale up operations (adding one bucket in each extension).
We employ the scale out in a conservative manner, since
increasing the number of I2CFs results in a higher overall
false positive rate. Specifically, only when α > α and the
overall false positive rate ξCCF after adding the empty I2CF
is no more than ξ , the scale out operation may be triggered.
Otherwise, CCF will be extended by scale up only. Especially,
when α > α but no more I2CFs are allowed to be added
due to the constraint of ξ , CCF has to extend the I2CFs
with large-scale scale up operation (adding multiple buckets in
each extension). The exact number of added buckets in each
extension is proportional to the arrival rate α .

Compared with the large-scale scale up operation, the scale
out operation is capable of extending the CCF instantly;
while the former incurs more time-complexity to add buckets.
Therefore, within the constraints of ξ , CCF prefers the scale
out operation than large-scale scale up.

Pair-wisely, for downsizing, CCF provides both the scale
down operation to delete buckets from an I2CF and the
compact operation to remove sparse I2CFs. Whenever a bucket
gets empty because of element deletion, it will be removed
from that I2CF with the scale down operation. By contrast,
the compact operation will be triggered only if the number
of stored fingerprints in an I2CF is less than a predefined
threshold. To this end, CCF integrates a counter with each
I2CF to track the number of stored fingerprints.

In reality, an online system inserts and deletes elements
frequently; hence it may not be advisable to resizing the
CCF repeatedly. Especially, when the element arrival rate
approximates the removal rate (number of removed elements
per unit time, denoted as β ), the required capacity is stable. In
that case, resizing CCF is not urgent, unless an insertion failure
occurs or an I2CF gets extremely under-utilized. Therefore,
from a high level, we suggest to resize the CCF with joint
consideration of α and β . When α > β , scale up or scale out
operation is needed to extend CCF; when α < β , scale down
or compact operation is required to downsize CCF.

V. PERFORMANCE ANALYSIS OF CCF

Here we first theoretically analyze the time-complexity of
CCF. Then, we present a new method to calculate the threshold
of the ratio between the number of elements to represent ni
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and the number of buckets mi for a given I2CFi. Lastly, we
offer a bounded probability of successfully inserting a given
number of elements with a given I2CFi.

A. Time-complexities of CCF

Theorem 2: Consider a CCF with s homogeneous I2CFs and
k0= · · ·=ki= · · ·=ks−1=k, b0= · · ·=bi= · · ·=bs−1=b. Let max
and m denote the allowed reallocation times and the lengths
of I2CFs. The time-complexities for CCF insertion, query and
deletion are O(max· logm), O(s·k·b· logm) and O(s·k·b· logm),
respectively.

CCF introduces the consistent hashing to achieve capacity
elasticity. Therefore the time-complexity of query and deletion
is not constant anymore. Basically, whenever we need to
know the indices of candidate buckets for an element, CCF
has to refer to the underlying consistent hash ring. In a real
implementation, the hash values of these buckets are organized
as a binary search tree. Consequently, given a hash value of an
element, the corresponding candidate bucket will be searched
out in O(logm) time. To insert an element into the active I2CF,
at most max reallocations is allowed, thus the time-complexity
is O(max· logm). As for a query and deletion, CCF might
have to go through all the I2CFs, therefore the resultant time-
complexity is O(s·k·b· logm).

Compared with DCF, the time-complexities of CCF are a
little higher with an additional multiplicand of logm. Note
that logarithmic overhead, in fact, is acceptable in practice
since the logarithmic function increases slowly when the value
of m grows drastically. Distributed systems that employ the
consistent hashing techniques all incur log level complexity.
They are proved to function well. Examples include Akamai
[32], Swift [33], Dynamo [34], etc.

B. Threshold for CCF Insertion

Each I2CF in CCF can be extended or downsized by adding
or removing buckets dynamically. But for a static I2CF with
given parameters, we need to explore how many fingerprints
can be successfully inserted. That is, given the number of
elements to be represented ni, a derivative problem is to seek
a threshold Ti for the ratio between ni and mi. When ni

mi
≤Ti,

I2CFi can successfully store the ni elements with probability
1−o(1); otherwise, I2CFi may fail to record all the ni elements
with probability 1−o(1).

The mapping between elements and buckets in I2CFi can
be abstracted as a ki-uniform hypergraph with mi nodes and
ni hyperedges each of which is of fixed size ki chosen
independently from the mi nodes. Based on the core theory
of hypergraph, Ti can be derived out as a function of ki and
bi. The details are given in [39] and [29].

In fact, the resulted hypergraph may not be ki-uniform
since the ki independent hash functions may select the same
buckets from I2CFi for an element x. We call this phenomenon
“mapping conflict”. These mapping conflicts violate the ki-
uniform assumption towards the hypergraph. However, [39]
and [29] did not consider the impact of the potential mapping
conflicts. Therefore, in this paper, we present a novel new
abstraction to I2CF and other Cuckoo filter-like data structures.

(S00  , S01)

η0 η1 η2

Slot level random bigraph G(V=(η,S),E)

(S10  , S11) (S20  , S21) (S30  , S31)

Fingerprints

Buckets/slots

Fig. 3. An instance of slot level random bigraph for an I2CFi with mi=4,
ki=2, bi=2 and ni=3. A “mapping conflict” happens to η2 since only bucket
1 is assigned to it. The three solid edges forms a complete matching, meaning
that the three fingerprints can stored successfully.

We notice that an I2CFi can be naturally represented as a
slot level random bipartite graph (or bigraph) G(V=(η ,S),E),
where η and S denote the fingerprints to be stored and the slots
in I2CFi, respectively. As shown in Fig. 3, each slot has two
subscripts which demonstrate its host bucket and its location
in that bucket. For example, S01 means the second slot of the
first bucket. In the bigraph, edges demonstrate the assignment
between the fingerprints and slots. If a bucket is a candidate
bucket of a fingerprint, all slots of the bucket have an edge to
that fingerprint, to explicitly indicate that these slots can be
employed to store that fingerprint. In the generated bigraph, a
matching indicates a possible way to store these fingerprints.
Besides, this abstraction naturally provides us an important
theorem in bigraphs, i.e., Hall’s Theorem [40].

Theorem 3: (Hall’s Theorem) Let G(V=(X ,Y ),E) be a
bigraph with bipartite sets X and Y . For a set of nodes W ⊆ X ,
let NG(W ) denote the set of neighbors of W in G, i.e., the set
of all nodes in Y which are adjacent to some element of W .
There is a matching that entirely covers X if and only if for
every subset W of X :

|W | ≤ |NG(W )|. (3)

Additionally, referring to the parameters of I2CFi as mi, ki,
bi and the number of fingerprints to be inserted ni, we derive
the following observations.

Observation 1: For an insertion of an arbitrary element x,
let Θ∈[0,ki] denote the total times that element x is mapped
into a bucket. The value of Θ follows a typical binomial dis-
tribution since the employed hash functions are independent.
Specifically, the probability that Θ=θ can be calculated as:

p{Θ = θ}=
(

ki

θ

)(
1
mi

)θ (
1− 1

mi

)(ki−θ)

. (4)

Let p0 denote the probability that an element x is mapped into
the bucket. As Θ≥ 1 means x is mapped into the bucket, the
value of p0 can be derived out as:

p0 = 1− p{Θ = 0}= 1−
(

1− 1
mi

)ki

. (5)

Observation 2: Let Φ∈[0,ni] denote the total number of
elements mapped into a bucket. Then the value of Φ also
follows a typical binomial distribution since the insertions of
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Fig. 4. The T̂i with diverse parameter settings. The value of T̂i can be derived
out by dividing the x-axis value of the crossover point with bi.

elements are independent. To be specific, the probability that
Φ=φ is:

p{Φ = φ}=
(

ni

φ

)
pφ

0 (1− p0)
(ni−φ). (6)

By jointly considering the observations and Hall’s Theorem,
we provide a new threshold T̂i for an I2CFi. When ni

mi
< T̂i, the

fingerprints can be stored successfully with high probability;
by contrast, when ni

mi
≥ T̂i, I2CFi may fail to store some

fingerprints with high probability.
Theorem 4: If Φ < bi, it is impossible for I2CFi to store any

fingerprint with the remained bi−Φ slots. Then, the fraction
of space that may be utilized for a bucket is:

û = 1−
bi−1

∑
φ=0

(
1− φ

bi

)
p{Φ = φ}, (7)

where 1− φ

bi
is the fraction of bucket space which will never

be utilized when Φ < bi. By contrast, if all the fingerprints are
successfully stored, then the space utilization of I2CFi is:

u =
ni

mi·bi
. (8)

Then, the threshold T̂i can be derived as the unique value of
ni
mi

such that:
û = u. (9)

Theorem 4 can be proved by jointly considering observation
1, observation 2 and the Hall’s Theorem. Intuitively, when
ni
mi

is less than T̂i, û is larger than u, meaning there is
sufficient space for the ni fingerprints. As a result, when û≥ u,
I2CFi satisfies the requirement of Hall’s Theorem with high
probability. In contrast, if ni

mi
≥ T̂i, then û ≤ u and the space

that can be utilized is not sufficient enough to accommodate
the ni fingerprints. In this situation, I2CFi will fail to satisfy
Hall’s Theorem with high probability. As shown in Fig. 4,
given mi=50 and bi=2, the value of T̂i grows significantly
when ki increases. Besides, with given mi and ki, the growth
of bi results in increasing of T̂i. Table II further presents the
derived T̂i when mi is taken as 230 while ki and bi varies. This
threshold provides a guide for the users of CCF and I2CF
for their parameter settings in practice. Intuitively, larger T̂i
guarantees higher space utilization. Therefore, given the same
value of bi, I2CF has the potentiality of realizing better space
utilization than DCF by increasing the value of ki.

TABLE II
THE THRESHOLD T̂i FOR I2CFi (WHEN mi = 230).

ki\bi 1 2 3 4
2 0.796812130 1.861790807 2.905683863 3.934728166
3 0.940479791 1.979049536 2.992264312 3.997079786
4 0.980172599 1.996604114 2.999390447 3.999888473
5 0.993022846 1.999453835 2.999955482 3.999996295
6 0.997483538 1.999913939 2.999996938 3.999999888
7 0.999082240 1.999986694 2.999999798 3.999999996

C. Probability of a Successful Representation

Theorem 4 and the literature [39] present the threshold of
ni
mi

for a given I2CF. When ni
mi

is less than the threshold, the ni
fingerprints can be successfully stored with high probability.
However, they fail to settle the derived question: What exactly
is the probability of successfully inserting ni fingerprints with
a given I2CF, or alternatively, how to derive bound of that
probability? We try to answer this question here.

Observation 3: For ni given fingerprints, the num-
ber of edges in the maximum matching of the resultant
G(V=(η ,S),E) implies the maximum number of fingerprints
which can be successfully inserted into I2CFi. If the max-
imum matching is a complete matching, then all the given
fingerprints can be successfully stored by I2CFi.

Note that the maximum matching in a specific bigraph
can be solved by existing algorithms such as the Hungar-
ian algorithm [41], Ford-Fulkerson algorithm [42], Hopcroft-
Karp algorithm [43], etc. Let Ψ be a variable describing the
number of successful inserted fingerprints in an I2CFi with
the parameters of mi, ni, ki and bi. A brute force method
to calculate the probability distribution of Ψ is possible by
exploring the probability space of the G(V=(η ,S),E) and then
count those bigraphs in which the maximum matching contains
a number of Ψ=ψ edges. This method, however, suffers from
exponentially growing time complexity since it has to test all
the mni·ki

i possible bigraphs. Therefore, alternatively, we derive
out an upper bound of p{Ψ=ni} (ni∈[1,mi·bi]) based on the
Hall’s Theorem [40] and observation 3.

Theorem 5: For a given I2CFi with mi, ki, bi and ni
(ni∈[1,mi·bi]) fingerprints to be inserted, the probability that
all the ni fingerprints can be successfully accommodated has
the following upper bound:

p{Ψ=ni} ≤
max{ni·ki,mi}

∑
j=dni/bie

p{Ω = j}, (10)

where p{Ω= j} denotes the probability that the ni fingerprints
are mapped into exactly j buckets of I2CFi. The value p{Ω =
j} can be calculated as:

p{Ω= j}=

(mi
j

)F( j,ni,ki)

∑
l=0

[
Dl ∏

j−1
r=0

(ni−∑
r
q=0 Q[l][q]

Q[l][r]

)]
mni·ki

i

, (11)

where Q is an array of vectors, each with j positive integers
such that the sum of these integers is exactly ni·ki. The number
of vectors in Q is denoted as F( j,ni,ki) and can be calculated
with the input value of j, ni and ki. Dl is the number of
possible combinations of the j integers in Q[l]. The factor
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Fig. 5. The comparison between CCF and DCF with Yahoo! trace. The CDFs are calculated by counting the frequency of a specific result of metric.

∏
j−1
r=0

(ni−∑
r
q=0 Q[l][q]

Q[l][r]

)
counts all possible cases when the ni·ki

mappings are distributed into the selected j buckets according
to the distribution given by Q[l].

Theorem 5 can be proved by considering both observation
3 and the Hall’s Theorem. Basically, p{Ω= j} only counts the
probability that the ni fingerprints are mapped into exactly j
buckets, but fails to consider the situation where a subset of
the ni fingerprints may not satisfy Hall’s Theorem. Therefore,
Eq. (10) offers the upper bound of p{Ψ=ni}. Eq. (11) can
be derived out by regarding each mapping as a ball then
formulating it as a typical balls and bins problem.

We give a walk-through example by calculating the
upper bound of p{Ψ=3} with mi=5, bi=2, ki=2
and ni=3, respectively. From Eq. (10), we have
p{Ψ=3}≤p{Ω=2}+p{Ω=3}+p{Ω=4}+p{Ω=5}. Then,
by Eq. (11), p{Ω=2}=0.03968, p{Ω=3}=0.3456,
p{Ω=4}=0.4992, and p{Ω=5}=0.1152. Therefore, the
upper bound for p{Ψ=3} is 0.99968. When calculating
p{Ω=3}, we have niki=6=1+1+4=1+2+3=2+2+2. Thus
F( j,ni,ki)=3, Q={[1,1,4], [1,2,3], [2,2,2]}, D0=3 since
[1,1,4] has three permutations: {1, 1, 4}, {1, 4, 1}, and {4, 1,
1} such that D1=6 and D2=1. Consequently, p{Ω=3}=[

(5
3

)
·

(3 ·
(6

1

)(5
1

)
+6 ·

(6
1

)(5
2

)
+
(6

2

)(4
2

)
)]/56=5400/15625=0.3456.

With the above analysis, we provide a better understanding
of the proposed data structures, as well as a guide to the
potential users about the parameter settings whenever CCF
or I2CF are within their considerations.

VI. EVALUATION

In this section, we compare the performance of CCF with
DCF for dynamic set representation and then quantify the
impact of the parameters. All of the experiments are conducted
on a host with 8 GB RAM and 3.4 GHz CPU. Especially,
we conduct the evaluations based on the real network flow
trace from Yahoo! [44]. The Yahoo! trace records the basic
information for each flow in its 6 distributed data centers,
including the IP addresses of both source and destination
servers, the arriving and terminating time of each flow, etc.
In this paper, we regard the combination of the source and
destination IP addresses as the content of an element, coupled
with the start and end time. We refer to a time period of
20 minutes from the sketch. In this period, there are in total
58,941 flows and Fig. 5(a) shows the CDF of the optimal
number of buckets in theory mopt . We have mopt=dn/be, since
each bucket can store b fingerprints at most.

A. Comparison with DCF

We implement two versions of CCF, i.e., CCF with only
bucket-level alteration CCFB and CCF with only filter-level
alteration CCFF . For a fair comparison, the parameters for
CCFF and DCF are set as the same, i.e., mi=64, bi=3, ki=2,
f=30. For both CCFB and CCFF , the value of M and the
number of virtual nodes in the consistent hash ring v are given
as 5× 1010 and 10 respectively. Fig. 5(b), (c) and (d) depict
the CDF of the resultant number of buckets, space utilization
and the number of empty slots, respectively.

By jointly considering Fig. 5(a) and (b), we characterize
the capacity elasticity of DCF and CCF. Obviously, CCFB
achieves the best elasticity and keeps capacity up and down
whenever the number of elements increases or decreases.
The curve of CCFB in Fig. 5(b) matches the variation of
mopt in Fig. 5(a) perfectly. The CCFF also responds to
the changes of mopt rapidly by executing its compact and
scale out algorithms dynamically. The DCF, however, fails to
compact under-utilized CFs instantly when the value of mopt
decreases. The reason is that DCF moves any fingerprint in
the under-utilized CF into its corresponding buckets of other
CFs. Therefore, successful compaction is hard to achieve. Our
CCFF , in contrast, always tries to insert the fingerprints in
an under-utilized I2CF into other I2CFs, thereby releasing the
fingerprints from their locations in the under-utilized I2CF.
Thus, both CCFB and CCFF have better elasticity than DCF.

Moreover, the CDF of space utilization is depicted in Fig.
5(c). For DCF, about 37% of resultant space utilization is less
than 0.90. However, CCFB and CCFF have less than 10% of
results which are below 0.90. Moreover, the maximum space
utilization for DCF is 0.970, which is much lower than that
of CCFB (1.0) and CCFF (0.999). To be accurate, on average,
the space utilization for DCF, CCFB and CCFF are 0.8809,
0.9481 and 0.9425, respectively. Correspondingly, the CDF of
the number of empty slots is shown in Fig. 5(d). For CCFB
and CCFF , 93% and 97% results have less than 500 empty
slots, while that value for DCF is 62% only. In the worst
case, DCF remains 3,176 slots empty. More than 16% DCF
results incur more than 1,000 empty slots. The reason is that
DCF can only compact an under-utilized filter if all the stored
fingerprints find their corresponding unfilled buckets in other
CFs. As a result, when the value of n decreases but DCF may
fail to recycle under-utilized CFs timely. Notice that CCFB has
more empty slots than CCFF . The reason is that we only try
to merge the buckets which store less than 2 fingerprints in
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Fig. 6. The impact of different parameters in CCFB with the Yahoo! trace.

our experiments. At the end of our tests, due to the removals
of flows, the proportion of buckets which accommodate 2
fingerprints gets higher, while CCFB doesn’t recycle the empty
slots immediately.

From the above experiments, we conclude that CCF
achieves better capacity elasticity and higher space utilization
than DCF. The feature of design flexibility, on the other hand,
may not be quantified directly. Intuitively, DCF only adds or
merges homogeneous CFs, while the I2CFs in CCF is allowed
to have diverse parameter settings. This flexibility makes CCF
more suitable for dynamic set representation than DCF.

B. Impact of Parameters in CCFB

In this subsection, we quantify the impact of parameters for
CCFB. Especially, we consider four main parameters, i.e., the
number of candidate buckets k, the number of slots in a bucket
b, the maximum reallocations max, and the number of virtual
nodes in the consistent hash ring v. Note that, we evaluate the
space utilization of CCFB when the above parameters vary.
The reference setting is a CCFB with k=2, b=3, max=1200,
and v=10. We then vary the four parameters separately and
show the results in Fig. 6.

As shown in Fig. 6(a), when k increases from 2 to 16,
CCF achieves higher space utilization (rising from 0.9481 to
0.9599 on average). When k=16, nearly half of the results
have more than 0.98 space utilization. However, less than 12%
of the results achieve more than 0.98 space utilization when
k=2. An element with more candidate buckets implies that a
bucket may be assigned to more elements. Consequently, the
probability that a bucket is assigned to less than b elements
gets lower, which leads to higher space utilization. When b is
increased from 3 to 6, we can see from Fig. 6(b) that the space
utilization increases dramatically. To be specific, the space
utilization is 0.9481 for b=3, but 0.9986 for b=6 on average.
This phenomenon is reasonable since, with a larger b, there are
fewer buckets in the CCFB. In the Yahoo! trace, the maximum
number of flows to store is about 7,290. So max=1,200 means
the reallocations when inserting an element may cover the
whole filter to explore potential empty slots. Also, with less
number of buckets in the filter, the probability of buckets
assigned to less than b elements gets lower. Accordingly, the
resultant space utilization increases.

When the value of max is decreased from 1200 to 700,
the CDF of the resultant space utilization is recorded in
Fig. 6(c). Obviously, with more allowed reallocations, CCF

achieves higher space utilization. Namely, with larger max,
the insertion will search more buckets, and hopefully CCF
may find an empty slot to store the fingerprint. Moreover, as
depicted in Fig. 6(d), when the number of virtual nodes in
the consistent hash ring decreases from 10 to 1, the space
utilization experiences a significant drop (decreasing from
0.9481 to 0.9298 on average). When v=1, only about 16%
of the results realize more than 0.95 space utilization. By
contrast, when v=10, about 76% of the results realize more
than 0.95 space utilization. Basically, with more virtual nodes,
consistent hashing generates better load balance among the
buckets. Therefore, the probability that a bucket is assigned
with less than b elements gets lower and thereby resulting in
higher space utilization.

C. Impact of Parameters in CCFF

We further quantify the impact of parameters for CCFF
in terms of space utilization. The parameters we considered
include the number of buckets in each I2CF m, the number
of slots in a bucket b, the maximum reallocations max, and
the number of virtual nodes in the consistent hash ring v. The
reference setting is a CCFF with m=64, b=3, max=20, and
v=10. We then vary the four parameters separately and show
the results in Fig. 7.

As depicted in Fig. 7(a), when m decreases from 64 to 16,
CCFF achieves a better space utilization. The average space
utilization increases from 0.912 to 0.931. About half (48.3% to
be exact) of the results realize more than 0.98 space utilization
when m = 16, while that proportion is just 22.4% when m =
64. The reason is that, smaller m implies more fine-grained
capacity control when adding or merging I2CFs. For instance,
when one extra I2CF is needed to represent 5 elements, adding
an I2CF with 16 buckets is definitely more space-saving than
introducing an I2CF with 64 buckets.

When the number of slots in each bucket i.e., b, varies from
3 to 6, as depicted in Fig. 7(b), CCFF becomes a bit more
space-consuming. Specifically, the average space utilization
drops from 0.912 to 0.899. About 57% of the resultant space
utilizations when b = 6 fall into the interval [0.920, 0.984].
When b = 3, however, 52% of the generated space utilizations
are more than 0.940. This phenomenon is reasonable since
increasing b with fixed m means more space resources when
adding an untapped I2CF, and higher difficulty when merging
under-utilized I2CFs.
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Fig. 7. The impact of different parameters in CCFF with the Yahoo! trace.

Moreover, as recorded in Fig. 7(c), when we increase the
maximum reallocation times for each insertion, i.e., max, from
20 to 50, the space utilization shows a minor growth (i.e.,
0.912 to 0.913). Theoretically, let w denote the number of
buckets with empty slots in an I2CF with m buckets. We
suppose that the candidate buckets for the victims are random.
Then the probability that the empty slot can be searched out
from this I2CF is: 1−

(m−w
max

)
/
( m

max

)
. With given m and w, this

probability indeed increases with the growth of max, however,
in a marginal manner. Therefore, when max is already large
enough, even if we attach a significant increment to it, the
resulted space utilization may show only a slight growth.

Last, Fig. 7(c) plots the CDF of space utilization of CCFF
when the value of v changes from 10 to 1. Apparently, the
CCFF experiences a significant performance drop (the average
space utilization degrades from 0.912 to 0.863). Especially,
when v = 1, the best space utilization of CCFF is just 0.952
and half of the results achieve less than 0.90 space utilization.
More virtual nodes indicates better load balance among the
buckets in the consistent hashing ring. The probability that
a bucket is assigned with less than b elements gets lower,
therefore resulting in a higher space utilization.

From the above results, we conclude that the parameters of
CCF have diverse impacts on its performance. The users can
customize their own configurations to achieve their goals by
leveraging these parameters.

D. Further Comparison between DCF and CCFF

We further test CCF and DCF with a new flow dataset from
the WIDE MAWI working group [45]. This trace contains
20,338,775 IPv4 packets collected by a WIDE MAWI sample
point on June 10, 2020. We group these packets as 96,240
flows with the five tuples src.IP, dst.IP, src.port, dst.port, and
protocol in packet headers. We add/remove the flows into/from
DCF and CCF (b = 3, m = 16) according to their timestamps.
To be fair, we implement the filter-level CCF and count the
number of buckets whenever a flow is leaving. As shown in
Fig. 8, CCF still outperforms the DCF significantly. To be
specific, the optimal solution (a list that represents the flows
with 100% space utilization) only needs 3,826 buckets at most.
About 38.5% of results in DCF need more buckets than that.
By contrast, this value in CCF is just 9%. The reason is that
CCF can extend the filter more conservatively while recycling
the space more aggressively.
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Fig. 9. The throughput of insertion and query with the WIDE MAWI dataset.

Besides, we measure the insertion and query throughput of
CCF (each bucket has 5 virtual nodes in the ring) and DCF
when only one filter is maintained with identical parameter
settings. The numerical results are shown in Fig. 9. As depicted
in Fig. 9(a), when the space utilization goes up, the inser-
tion throughput of both DCF and CCF decreases constantly,
because more subsequent insertions may trigger the kick-out-
and-reallocate process. The consistent hashing technique in
CCF can significantly slow down the element insertion since
more hash computations are required. DCF can be 2 to 3 times
faster than CCF when representing elements. We then query
the filters with a set that refers to the inserted elements as a
subset. As shown in Fig. 9(b), DCF still outperforms CCF in
a large scale. Since more inserted elements are queried, the
resultant throughput increases when space utilization grows.

However, we argue that to obtain the features of capacity
elasticity and design flexibility, such a compromise of insertion
throughput may be acceptable for users with strict requirement
of insertion speed. Further optimization techniques such as
jump table [46] or red-black tree [47] can be employed to
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Fig. 10. The impact of parameters in CCFF with the WIDE MAWI dataset.

speed up CCF. The potential users can trade off such pros and
cons according to their own needs.

We further quantify the impact of parameters in CCFF with
the WIDE MAWI dataset. The reference setting is a CCFF
with m=64, b=3, max=20, and v=10. We then vary the four
parameters separately and record the results in Fig. 10. When
m= 16, the CCFF realizes better space utilization due to finer-
grained capacity expansion and recycling, as shown in Fig.
10(a). By contrast, given m = 64, increasing the number of
slots b in each bucket results in a significant degrade of space
utilization. The reason is that with the smaller capacity of each
I2CF, CCF can introduce new filters or recycle under-utilized
filters timely. Increasing max, on the contrary, brings limited
space utilization growth to CCFF . This is because the filters
are already highly occupied and increasing the reallocation
threshold presents a marginal effect. Lastly, enlarging the
number of virtual nodes in the consistent hash ring from
1 to 10 can significantly increase the space utilization by
providing better load balance among the buckets on the ring.
The parameters show the same trends as the Yahoo! trace,
meaning CCF is general to represent dynamic datasets.

VII. CONCLUSION

In this paper, we present the CCF design for dynamic
set representation and membership query, with the targets of
capacity elasticity, space efficiency, and design flexibility. CCF
is composed of an adjustable number of I2CFs. At its core,
each I2CF enables bucket-level capacity alteration with the
use of consistent hashing. At the filter level, CCF resizes
its capacity by adding untapped I2CFs or merging under-
utilized I2CFs adaptively. Without any inner dependency and
constraints, all the parameters of CCF are mutable and can be
customized by its users. Theoretical analysis and trace-driven
experiments show that CCF outperforms DCF and achieves the
design rationales simultaneously at the cost of a little higher
time-complexity. Users need to consider the gains and losses
before implementing CCF in their systems.
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