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Optimal Deployment of SRv6 to Enable Network
Interconnection Service

Bangbang Ren, Deke Guo∗, Yali Yuan, Guoming Tang, Weijun Wang, Xiaoming Fu

Abstract—Many organizations nowadays have multiple sites
at different geographic locations. Typically, transmitting massive
data among these sites relies on the interconnection service of-
fered by ISPs. Segment Routing over IPv6 (SRv6) is a new simple
and flexible source routing solution which could be leveraged
to enhance interconnection services. Compared to traditional
technologies, e.g., physical leased lines and MPLS-VPN, SRv6
can easily enable quick-launched interconnection services and
significantly benefit from traffic engineering with SRv6-TE. To
parse the SRv6 packet headers, however, hardware support and
upgrade are needed for the conventional routers of ISP. In this
paper, we study the problem of SRv6 incremental deployment to
provide a more balanced interconnection service from a traffic
engineering view. We formally formulate the problem as an
SRID problem with integer programming. After transforming
the SRID problem into a graph model, we propose two greedy
methods considering short-term and long-term impacts with
reinforcement learning, namely GSI and GLI. The experiment
results using a public dataset demonstrate that both GSI and GLI
can significantly reduce the maximum link utilization, where GLI
achieves a saving of 59.1% against the default method.

I. INTRODUCTION

Nowadays, it is common that big organizations or compa-
nies have many subsidiaries, and each subsidiary has its own
private local area network (LAN). To share information and
communicate with each other more easily, these organizations
have to connect their geo-distributed LANs together. Fig. 1
gives an example where four branch offices of an organization
reside in different geo-locations. One easiest way to accom-
plish this goal is to connect these LANs to the public Internet
and assign them public IP addresses. However, this method
exposes the private network to the public. Some organizations,
e.g., bank and defense departments, have special security
considerations and hope to isolate their private data [1], [2].
To solve this problem, Internet Service Providers (ISPs) have
provided the following alternative methods.

The first method is using physical leased lines to connect
the required LANs directly. Though this method can provide
the highest security level and performance, renting physical
lines can be prohibitively expensive for customers [3]. The
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Fig. 1. An example to show the demand of interconnection service.

second method is using network technologies to build a virtual
circuit in public networks. For example, ISPs usually use
multi-protocol label switching (MPLS) to create a virtual
private network (VPN) in public networks. Though MPLS
is cheaper than renting physical lines and can also provide
good performance through traffic engineering, it needs to
distribute many labels to switch devices and maintain many
state variables [4]. Another method is using encapsulation
technologies, e.g., GRE [5] and IPSec [6], which add headers
to the payloads from a customer’s LAN such that they can be
recognized and forwarded in public networks. Compared with
MPLS, encapsulation technologies do not need to maintain
states in the network and are easy to implement. However,
encapsulation technologies usually rely on the best effort
routing protocol, which is not friendly to traffic engineering.

Along with the worldwide deployment of IPv6, the afore-
mentioned interconnection technologies are expected to adapt
to the new data plane, which leads to the birth of IPv6-
only MPLS [7] and IPv6 with IPSec [8]. On the other
hand, the new data plane also calls for new interconnection
technologies, which leads to the birth of Segment Routing
over IPv6 (SRv6) [9]. The key idea of segment routing is to
break up the routing path into multiple segments in order to
enable better network utilization. The segments are represented
by labels, which can be attached to packet headers. The
details of SRv6 will be left in Sec. II. Here, we just show
how to leverage SRv6 to connect isolated sites across an
ISP network which is composed of access networks and a
transport backbone network. As shown in Fig. 1, PE 1, PE
2, PE 3 and PE 4 represent the border routers of the access
network. Site-B wants to send its packets to site-C crossing
an IPv6 transport backbone network. With SRv6, the packets
from site-B will be encapsulated with two kinds of headers
in PE 2, i.e., an IPv6 header and a segment routing header
which includes a segment list. Note that the encapsulated
packets could be forwarded by ordinary IPv6 routers since
they contain IPv6 headers. Thus, this encapsulation could
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connect the sites successfully. Supporting traffic engineering
by segment lists is the biggest benefit of SRv6, which differs
from traditional encapsulation technologies. The SRv6-BE
strategy which means forwarding the SRv6 packets with the
best effort could accomplish the interconnection tasks [10].
Nevertheless, the network sometimes can be congested, and
we need to reroute the flows to relieve the congestion. In
Fig. 1, we can steer the packets along the red path or blue
path with a segment list to balance the traffic.

One benefit of SRv6 is that we could easily set up a
new routing path for each flow by combining several seg-
ments, which is the so-called SRv6-Traffic Engineering (SRv6-
TE) [9]. Since only SRv6-enabled routers can parse seg-
ment lists, network operators need to upgrade their devices
to support SRv6. However, as it happens with most novel
network protocols and architectures, a “hard” transition from
a pure IPv6 network to a full SRv6 network at once is nearly
impossible due to the typically huge number of routers [11].
Hence, a “soft” transition, i.e., upgrading a sub-set of IPv6
routers, is what can be expected. Usually, operators upgrade
their networks in traffic engineering view, which means that
the network could be utilized as much as possible [11]–[13].
It remains an open problem that what the best practices are
to upgrade the SRv6 network incrementally with the limit of
the maximum number of upgradeable routers. In this paper,
we devote to studying this “soft” transit problem, i.e., SRv6
Incremental Deployment problem (SRID). In detail, given a
candidate router list and the maximum number of upgradeable
routers, we need to decide which routers should be upgraded
to accomplish the optimal traffic engineering goal? After
upgrading the related routers, we still need to decide how to
generate routing paths for flows to accomplish the optimal
traffic engineering goal?

In reality, the network topology and the number of flows
can be much larger, which leads to a huge space of SRv6
incremental deployment solutions. This paper aims to design
efficient methods to solve the SRID problem. We make the
following contributions:

• We formally define the SRID problem and formulate it
with integer programming. We also prove that the SRID
problem is NP-hard.

• We transform the SRID problem into a graph model
and then give a polynomial-time greedy algorithm named
GSI, which focuses on short-term impact.

• We design a method focusing on long-term impact (GLI),
which leverages reinforcement learning to solve the SRID
problem from an end-to-end perspective. This framework
could be trained with small-scale problem instances and
then be applied to large-scale ones.

• We investigate the performance of our methods under
different parameter settings. With extensive experiments,
we demonstrate that both GSI and GLI methods can
significantly reduce the link utilization, with the GLI
method cutting down the maximum link utilization by
59.1% against the default shortest path routing method.

The rest of the paper is structured as follows. In Section II,
we introduce the background of SRv6 and review the re-
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Fig. 2. An example to show interconnection service provided by SRv6.
The IPv6 addresses of the three routers are 2001::1, 2001::2 and 2001::3,
respectively.

lated works. We formulate the SRID problem with integer
programming in Section III. We design the GSI method in
Section IV and the GLI method in Section V. Section VI
presents performance evaluations on the proposed methods and
sensitivity analysis to the parameter settings. Section VII gives
some further discussion and Section VIII concludes the paper.

II. BACKGROUND AND RELATED WORK

A. Segment Routing over IPv6

The key idea of segment routing is to break up the routing
path into segments in order to enable better network utilization.
There are two methods to implement segment routing, i.e., SR-
MPLS and SRv6. Compared to SR-MPLS, SRv6 has many
more special characteristics and benefits [14]. In this paper,
we concern about segment routing over IPv6 data plane. Fig. 2
gives an illustrative example of SRv6. Initially, to transmit the
IPv4 payload from Site-B to Site-C, Router 1 will encapsulate
the packet with an IPv6 header where Router 1 and Router 3’s
IPv6 address will act as the source address and the destination
address, respectively. Then the packet could be transmitted
in the IPv6 network in a best-effort way. As a comparison,
SRv6 will add an extra header between IPv6 header and IPv4
payload, i.e., segment routing header (SRH). There are two
key field types in SRH: segment left denoting the current
activated segment and segment lists denoting segments. With
SRH, the packet could be routed along an expected path.
When Router 1 receives the packet from Site-B, it will add
two segments into SRH as shown in Fig. 2. Since the value
of the segment left field equals 1, the segment list [1] will
be activated and be copied into the destination address field,
and then the packet will be forwarded to Router 2 along the
best-effort path between Router 1 and Router 2. It should be
emphasized that there may be multiple routers along the path
between Router 1 and Router 2. If the routers do not support
SRv6, they will forward the packet according to the destination
address. If the routers can parse SRH, since they are not the
destination of the packet, they will still forward the packet
according to the destination address. When Router 2 receives
the packet, it will decrease the value of the segment left field
to zero and activate segment list [0] and then forward it toward
2001::3. Finally, when the packet reaches Router 3, it will be
decapsulated since the value of the segment left field is zero
and then forwarded to Site-C.

From the above illustration, we can know that SRv6 can
bring two main functions to interconnection service. Firstly,
SRv6 can build tunnels among the sites by encapsulation.
Secondly, SRv6 can steer the flow along the selected paths to
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some extent, which can be leveraged to do traffic engineering.
In fact, the combination of segments can represent any path.
However, too many segments will incur extra header costs.
Actually, some related works exposed that 2-segment routing
could provide performance as nearly good as n-segments in the
view of traffic engineering [15], [16]. Therefore in this paper,
we primarily focus on 2-segment routing where the routing
path for a flow will be composed of at most two segments1.

B. Work Related To This Paper

In most cases, the migration to new network protocols and
architectures cannot be finished at once. In [17], the authors
proposed an incremental deployment solution for IPv6 over
IPv4. SDN is also no exception to the concept of incremental
deploying. In [11], the authors studied the SDN incremental
upgrading problem that is devoted to figuring out which router
should be upgraded. Their solution was made in the preference
of empowering advanced traffic engineering. Our work applies
this migration rule into the SRv6 network with the hope to
provide better network interconnection service from a traffic
engineering view.

Existing literature about leveraging segment routing in traf-
fic engineering includes two categories: full SR domain and
partially deployed SR, as shown in Fig. 3.

Traffic engineering in full SR domain: The works in this
category require that all the concerned nodes support segment
routing. Bhatia et al. used integer linear programming to model
2-segment routing in traffic engineering, where any logical
path contains one middlepoint and thus two segments [15]. To
quickly react to unexpected traffic changes and failures, Hartert
et al. proposed a new approach based on local search [18].
In [19], the authors proposed an algorithm based on column
generation to solve the large-scale linear problems with guar-
anteeing the theory gap bound. In [16], the authors evaluated
segment routing mechanism to do traffic engineering in real-
world topologies and traffic demands. They also pointed
out that 2-SR could be near-optimal as far as minimizing
link utilization and additional intermediate segments are not
profitable for basic SR.

The combination of SDN and SR can improve the effi-
ciency of traffic engineering. In [20], the authors used the
SDN controller to accomplish an online energy-efficient traffic
engineering method that dynamically adapts the number of
powered-on links to the traffic load. Literature [21] leveraged

1Actually, the graph model in Sec. IV-A indicates that our model could be
easily extended to the n-segments case. This part is discussed in Sec. VII

SR and SDN to provide bandwidth-guaranteed paths as well as
minimize the possibility of rejecting traffic demands. Renaud
et al. built a system named DEFO which combines the
declarativity of SDN and expressiveness of SR to optimize
the traffic transmission in large-scale carrier network [22].

Traffic engineering in partially deployed SR domain: It is
necessary to consider backward compatibility when deploying
new network technologies in a production environment, e.g.,
SDN, IPv6 and SR. In [12], the authors first focused on the
incremental deployment of an SR-MPLS network. In their
work, they proposed to embed several SR domains into the
network and leveraged encapsulation to guarantee the proper
routing between SR domain and normal IP routers. In the
SR-MPLS network, if the path between two routers covers
one or more SR domain, then the packet would follow the
IP rules when it traverses within the IP domain, while it
is encapsulated into an SR packet every time it crosses an
SR domain. However, when the SR network uses IPv6 as its
data plane, additional encapsulation will never be used due
to that both SRv6-enabled routers and non-SRv6 routers can
forward the packet under the same packet header definition.
In [23], the authors proposed an architecture for SRv6 network
and designed a series of southbound APIs. In this paper, we
focus on how to incrementally deploy SRv6-enabled routers
into the legacy network from a traffic engineering view, i.e.,
minimizing the maximum link utilization under the constraint
of a limited number of SRv6 routers.

As the most relevant work to ours, Tian et al. [24] studied
the problem of optimizing link weights in a partially deployed
SRv6 network to minimize the most congested links. They first
leveraged three different heuristic rules to enable the SRv6
nodes and then leveraged a method based on reinforcement
learning to adjust the link weights and recalculate the routing
paths. However, the method of adjusting OSPF link weights
may influence the routing paths of background traffic, which
may have different optimality criteria [25]. In this work, we
leverage SRv6 to combine the shortest paths built by the
default OSPF to do traffic engineering, which can be seen
as an overlay routing [26]. With this routing mechanism in
consideration, we study the incremental deployment problem
of SRv6 for providing better network interconnection service.

III. PROBLEM FORMULATION

A. Problem Illustration

Fig. 4 gives a simple example to illustrate the SRID
problem. As shown in Fig. 4, there are seven nodes
{A,B,C,D,E, F,G} in the transport network and three flows
{f1, f2, f3}. Each flow fi can be represented by a three-
tuple (si, di, λi) in which si, di and λi denote flow source,
flow destination and flow size, respectively. Without loss of
generality, we assume that each flow has an unit size, then
f1 = {A,G, 1}, f2 = {C,G, 1} and f3 = {B,F, 1}. Each
link in the network has a two-tuple attribute (we, ce) in which
we represents the link cost and ce represents the link capacity.
Fig. 4(a) shows the case that when all flows traverse along
the shortest paths, then the maximum link utilization will be
(1 + 1 + 1)/3 = 100%. As shown in Fig. 4(b), if the node
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Fig. 4. Three routing solutions with different maximum link utilization using different numbers of SRv6-enable routers. The two-tuple near each edge
represents (cost, bandwidth).

D is upgraded to enable SRv6, then we can first steer f2 to
D then to E. In this example, the shortest path between C
and D only occupies one link, i.e., eCD. Also, the link eDE
is the shortest path connecting D and E. As a result, the
maximum link utilization in Fig. 4(b) is (1 + 1)/3 = 66.6%.
Similarly, when node E is also upgraded to enable SRv6, we
can steer f3 to E before G. In this case, the maximum link
utilization will be 1/3 = 33.3%. From the above example, we
can easily find that the number of SRv6 enabled nodes and
their locations have great impacts on minimizing the maximum
link utilization.

From the above example, we can define our SRv6-enabled
Router Incremental Deployment problem (SRID) as follows.

Definition 1: Given a transport network G = (V,E,W,C)
and multiple flows {f1, f2, ..., fn}. Each flow can be routed
along the shortest path between its source and destination or
using 2-segments routing. Assume that there is a candidate
router set H and at most γ routers can be upgraded as
SRv6-enabled routers, then the SRID problem is to decide
which nodes should be upgraded such that the maximum link
utilization of all links is minimized.

To solve the SRID problem, we must decide: (i) How
many routers should be upgraded? (ii) Where to deploy these
SRv6 enabled routers? (iii) How to assign routings to all the
flows such that the maximum link utilization of all links is
minimized?

B. Problem Model

To ease the presentation, we list the notation in Table II. It
is noted that each segment can leverage ECMP naturally [15].
That is, when there are multiple shortest paths in one seg-
ment, the flows will be divided evenly into these paths. Let
SP (vi, vj) represent the set of shortest paths between vi and
vj . For any edge ∀emn ∈ E, it may occur several times in
SP (vi, vj). We use πiemn

to denote the amount of traffic
on link emn when unit flow fi is routed along the shortest
path between its source and destination. To calculate πiemn

,
we need to count how many times emn occur in SP (si, di),
which could be denoted by |esidimn |. Then we can get

πiemn =
|esidimn |

|SP (si, di)|
,∀emn ∈ E,∀fi, (1)

where |SP (si, di)| denotes the cardinality of the set
SP (si, di). πiemn will be fractional if ECMP is used. If the
flow fi uses 2-segment routing with an intermediate SRv6

TABLE I
SUMMARY OF NOTATIONS.

Notation Description
G network
V node set of G
E link set of G
H candidate router set
wij the cost of link eij
cij the capacity of link eij
fi the ith flow request
γ the number of routers that can be upgraded
hk whether node vk has already been upgraded
si the source of fi
di the destination of fi
λi the size of fi
SP (vi, vj) the set of shortest paths between vi and vj
|evivjmn | denote the frequency of emn in SP (vi, vj)
πiemn the fractional traffic on emn if fi is routed along

the shortest path between si and di
π
vk
iemn

the fractional traffic on emn if fi selects vk as
intermediate node

xik denote if fi routes through vk
ωk denote if node vk is upgraded as SRv6 router
θ the maximum link utilization

router vk, then we can use variable πvkiemn
to denote the amount

of traffic on link emn. It can be calculated as follows

πvkiemn
=

|esivkmn |
|SP (si, vk)|

+
|evkdimn |

|SP (vk, di)|
,∀emn ∈ E, vk ∈ H, fi.

(2)

Specially, to unify the representation, we add a virtual SRv6
router H0 into the network and let H ′ = H

⋃
{H0}. When a

flow uses H0 as its intermediate node, it means that the flow
will be routed along the default shortest path, i.e., πH0

iemn
=

πiemn
. We use a binary variable xik to denote whether fi

is routed through vk, i.e., an intermediate SRv6 router. The
variable θ represents the maximum link utilization, then we
have ∑

fi

∑
vk∈H′

πvkiemn
λixik ≤ θcmn,∀emn ∈ E. (3)

To make sure that all flows are delivered to their destina-
tions, we have ∑

vk∈H′

xik = 1,∀fi. (4)

We use a binary variable ωk to denote whether node vk is
selected and upgraded to SRv6 router. Then we have

xik ≤ ωk,∀fi,∀vk ∈ H. (5)
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Definition 1 imposes that there are at most γ nodes that can
be upgraded as SRv6 routers. To make our model more general
which can be applied in the different stages of incremental
deployment, we assign a binary variable hk to denote whether
node vk has already been upgraded in previous stages. Thus,
we have ∑

vk∈H
ωk × (1− hk) ≤ γ. (6)

With the aforementioned constraints in mind, we can model
the SRID problem with Integer Linear Programming (ILP) as
follows,

(ILP ) min
xik,ωk

θ (7a)

s.t. (1)− (6). (7b)

C. Complexity Analysis

To prove that our SRID problem is NP-hard, we first give
the definition of a classic NPC problem, i.e., the subset sum
problem [27]:

Definition 2: Given a set of integers W = {w1, w2, ..., wm},
the subset sum problem is to decide whether there exists a
subset A $W such that

∑
A =

∑
W
2 .

Theorem 1: The SRID problem formulated in Model (7) is
NP-hard.

Proof: Assume that there is a subset sum instance, e.g.,
W = {w1, w2, ..., wm}, we could construct an instance of
the SRID problem from this subset sum problem instance. As
shown in Fig. 5, there are nine nodes. The links related to node
M are bidirectional while others are unidirectional. The two-
tuple attached to each link represents its weight and capacity
in which M �

∑
W . There are k flows, i.e., (A,G,w1),

(A,G,w2), ..., (A,G,wk), needed to be transmitted from
A to G. Also, there are another n − k flows needed to be
transmitted from B to H , i.e., (B,H,wk+1), (B,H,wk+2),
..., (B,H,wm). Also, G and H can be selected as SRv6-
enabled routers. This means that the flows that hope to visit
G can be first steered to H and vice versa.

At beginning, the flows would be routed along the shortest
path. Thus, all the flows from A will route along A →
C → E → G and all the flows from B will route along
B → D → F → H . Then the maximum link utilization will
be max(

∑k
i=1 wi∑
W ,

∑m
i=k+1 wi∑

W ). If we could make G and H
support SRv6, then we could steer some flows between A and
G through H using 2-segments routing, i.e., A

D,F,H,M−−−−−−→ G.
Similarly, flows between B and H could route through G
with 2-segments routing. Finally, if we could solve the SRID
problem in the constructed example optimally, then we could
solve the subset sum problem. If the link utilization of eCE
and eDF are 50%, then the answer to the subset problem
is yes, otherwise not. However, the subset problem is NPC,
which shows that the SRID problem is also NP-hard. Thus,
Theorem 1 is proved.

IV. SOLUTION I: GREEDY WITH SHORT-TERM IMPACT

The example in Fig. 4 shows that the number of candidate
SRv6 nodes and their locations play key roles in our SRID
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Fig. 5. An illustrative SRID example originated from subset sum problem.
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problem. Theorem 1 indicates that we cannot find the optimal
solution in polynomial time. Thus, we propose to find the
solution in a sequential way that decides the SRv6 nodes one
by one without violating the constraints. In this section, we
first transform the SRID problem from the graph theory view
and then give a greedy algorithm.

A. Model Transformation

Dividing both sides of Equation (3) with cmn, then we will
get ∑

i

∑
vk∈H′

πvkiemn
λixik

cmn
≤ θ,∀emn ∈ E. (8)

Let vector variable ~uik = {π
vk
iemn

λi

cmn
|∀emn ∈ E}, then

Equation (8) could be rewritten as

||
∑
i

∑
vk∈H′

~uikxik||∞ ≤ θ. (9)

Then the model (7) is equal to

min
xik,ωk

||
∑
i

∑
vk∈H′

~uikxik||∞ (10a)

s.t. (1), (2), (4), (5), (6). (10b)

The above model can be reviewed from a graph model view.
As shown in Fig. 6, there are m nodes on top representing
the source nodes of flows and |H| = l nodes on the bottom
representing the candidate routers. Ol represents the virtual
router. Each link has a vector weight ~uik representing the
utilization of all links when fi is forwarded by Ok. The vector
weights attaching to virtual router Ol represent the utilization
of all links when the corresponding flows are delivered along
the shortest paths. Model (10) indicates that we need to find
a subgraph that satisfies the following three constraints,
• The degree of each source node on the top is one.
• There are at most γ candidate routers on the bottom are

covered in the subgraph.
• The sum vector of all the weights in the subgraph should

be minimized in the term of its infinite norm.
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For an instance of SRID problem, we could transform it
into an instance of the graph model in Fig. 62. Thus, in the
later section, we use them interchangeably and use {G′ =
(V ′, E′,W ′), γ} to denote the graph model instance.

B. Greedy with Short-term Impact

For the graph model, we can easily find a greedy heuristic
algorithm. Initially, we set the solution M = ∅ in the graph
model, i.e., {xik = 0|∀i, k} in the corresponding SRID
problem instance. Since our goal is to minimize the infinite
norm, we could add one edge that increases the infinite norm
most lightly. This means that we will set xik = 1 where
(i, k) = argminpq ||

∑
i

∑
k xik~uik + ~upq||∞, i.e., adding eik

to M in the graph model. Once we set xik = 1, we delete all
edges connecting to node si in G′ in order to ensure that the
degree of the node is one. We could repeat the above steps
until all nodes on top have been covered by the subgraph M .
Meanwhile, we need to ensure that the number of covered
candidate routers cannot be larger than γ. Once the number
of covered candidate routers reaches γ, all the edges attaching
uncovered candidate routers should be deleted. As we can see,
the above algorithm selects the edge which increases θ lightest
in the current step. Thus, we call the above method as Greedy
algorithm with Short-term Impacts (GSI). The details of GSI
are shown in Algorithm 1.

Fig. 7 gives a simple example to illustrate GSI. Assume
that there are three flows originating from {s1, s2, s3} and
two candidate SRv6 routers {O1, O2}. O3 represents that
the flows are routed along the shortest paths and γ = 2.
The weights of all edges are set as the right part. At first,
{~u11, ~u22, ~u32, ~u33} have the smallest infinite norm. Without
loss of generality, we add edge e11 into M . Then, we add
edge e22 into M since ~u11 + ~u22 has the smallest infinite
norm. Finally, we add edge e32 into M . As we can see,
the GSI method will select the edges es1O1

, es2O2
and

es3O2
sequentially, then the maximum link utilization will be

||~u11+~u22+~u32||∞ = max{9, 11, 9} = 11. However, we can
easily find that the optimal solution should cover the edges

2For n-segments case, we could extend this graph model to contain n layers
where every layer contains the candidate SRv6 routers list. We leave this
discussion in Sec. VII.

Algorithm 1 Greedy with Short-term Impact (GSI)
Input : G = (V,E,W,C), candidate router set H , flows
{f1, f2, ..., fm}, γ.

Output : xik, ωi, θ.
1: Calculate {~uik|∀i,∀vk ∈ H} and construct the SRID graph

model instance G′

2: {xik = 0|∀i, k}, {ωk = 0|∀k}.
3: while True do
4: (i, k) = argminp,q ||(

∑
i

∑
k xik~uik + ~upq)||∞

5: ωk = 1, xik = 1, delete all edges connecting to si.
6: if

∑|H|
k=1 ωk = γ then

7: for k = 1 to |H| do
8: Delete all edges connecting to Ok in G′ where ωk = 0
9: else if

∑
i

∑
k xik = m then

10: break
11: θ = ||

∑
i

∑
k xik~uik||∞

{es1O1
, es2O1

, es3O3
} with the maximum link utilization being

||~u11 + ~u21 + ~u33||∞ = max{9, 9, 9} = 9. Above example
indicates that GSI method sometimes may lose the opportunity
to find the global optimal solution. To solve this problem, we
redesign the Greedy algorithm with considering Long-term
Impacts (GLI).

Agent

Environment

State Reward Action

Agent

Partial Solution

State Reward Add one edge

Fig. 8. The framework of reinforcement learning and its application in SRID.

V. SOLUTION II: GREEDY WITH LONG-TERM IMPACT

Reinforcement learning is a theory that trains agents to
find the best solution with considering long-term reward in
each decision step [28]. As shown in Fig. 8, the environment
is the surroundings of the agent with which the agent can
interact through observations, actions, and rewards on actions.
Specifically, in each step t, the agent observes state st and
chooses action at, which has the maximum long-term reward.
The long-term reward could be acquired by learning. For a
given SRID problem instance3, we can easily transform it into
a graph optimization problem and train an agent to solve it
sequentially. The right subfigure of Fig. 8 depicts the case
when the reinforcement learning framework is applied to the
SRID problem. However, such an agent trained for one SRID
problem instance cannot be used to solve other SRID problem
instances. As a comparison, the GSI method in Section IV can
solve any SRID problem instances because GSI has no specific
relation with the problem instances.

We hope to train an agent that can be used to solve different
SRID problem instances. The agent with good generalization
ability will have many benefits since there may be different
problem instances in different ISP networks. This expectation
equals to the following problem:

3A given SRID problem instance means that the network G =
(V,E,W,C), the candidate router set H , the value of γ and the flows are
given.
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Algorithm 2 State Representation with Network Embedding
based on Mean-field Inference
Input : G′ = (V ′, E′,W ′), hyper parameter d, the number of

iterations T , X = {xik|∀i, k}.
Output : {µ̃ik|∀eik ∈ E′}

1: Initialize {µ̃ik = 0|∀eik ∈ E′}, W1 ∈ Rd, W2 ∈ Rd×d, W3 ∈
Rd

2: for i = 1; i <= T ; i++ do
3: for ∀eik ∈ E′ do
4: µ̃ik = σ(W1xik + W2

∑
euv∈N(eik)

µ̃uv +
W3||

∑
euv∈N(eik)

~uuv||∞)
5: Return φ(S) using Equation (12)

Given the SRID problem P and a series of problem in-
stances {P1, P2, ..., Pn}, can we learn an agent that could
solve any unseen problem instance of P ?

Fortunately, the results in literature [29] indicated that a
general agent could be trained for the minimum vertex cover
problem and the maximum cut problem. In this paper, we
will leverage the theory in [29] to propose our GLI method.
The GLI method includes state representation, action and
reward design, state-action value function approximation and
Q-learning.

A. Action and State Representation

In the greedy algorithm, we add one edge into the partial
solution M greedily based on the graph itself and the current
partial solution. Thus, we use the combination of graph and
current solution to represent the state S. The action is repre-
sented by adding one edge into the partial solution. However,
there are m×(l+1) edges in the graph model; thus, the number
of the states could reach 2m×(l+1), which is a huge state space.
Besides, the general agent requires that there is a general
state representation to cover different problem instances. The
above direct representation cannot satisfy the requirement,
and it cannot find the potential structure of the graph model.
Literature [30] proposed an embedding framework named
structure2vec. The authors extracted features by performing a
sequence of function mappings in a way similar to graphical
model inference procedures. In detail, they embedded latent
variable models into feature spaces and learned such features
spaces using discriminative information. In this paper, we will
leverage this theory and design the embedding framework for
our SRID graph model. The detailed background theories,
e.g., Hilbert space embedding of distributions and mean-field
inference, could be found in [30].

The basic idea of embedding our SRID graph model is
to add a latent variable µ̃ik ∈ Rd to each edge eik in
which d is a hyperparameter chosen using cross-validation.
Besides, some edges in the SRID graph model are neighbors,
which indicates that they share a common node. To model
these neighbor relations into the embedding space, we connect
the corresponding latent variables together. Fig. 9 shows the
graph embedding model of the example in Fig. 7, these
latent variables are connected if the corresponding edges are
neighbor edges in the original SRID graph model. Since our
solution is decided by which edges are selected, thus, we add
a 0-1 variable xik to denote whether the edge eik is selected.

 

 

!

 

!

!

!

"

 

!

 

"

 

 

 

 

!

 

 

 

 

 

!

!

 

 

 

 

!

"

 

 

 

!

!

 

 

 

 

!

!

!

 

 

 

!

!

"

 

 

 

"

!

 

 

 

 

"

!

!

 

 

 

"

!

"

"

 

 

#

 

"

 

 

#

!

"

 

 

#

"

"

 

!

#

 

"

 

!

#

!

"

 

!

#

"

"

 

"

#

"

"

 

"

#

!

"

 

"

#

 

Fig. 9. The graph embedding of the example in Fig. 7. In this figure, each
edge is built if the two end nodes represent a pair of neighbor edges in the
original SRID graph model.

Obviously, the value of µ̃ik is influenced by the following
three parts.
• xik, which represents whether eik is included in the

solution.
• Other latent variables of its neighbor edges N(eik), which

represent the combinatorial structure of the problem.
• ||

∑
euv∈N(eik)

~uuv||∞, which are used to distinguish
different states further.

Similar to [30], we use a neural network to build this relation:

µ̃ik = σ(W1xik+W2

∑
euv∈N(eik)

µ̃uv+W3||
∑

euv∈N(eik)

~uuv||∞),

(11)
where W1 ∈ Rd, W2 ∈ Rd×d, W3 ∈ Rd and σ represents
a ReLU activation function, i.e., σ(x) = max(0, x). Note
that there is a recursion in Equation (11). The more update
iterations we carry out, the farther away the node features will
propagate and get aggregated nonlinearly at distant nodes. If
we terminate after T iterations, each edge embedding vector
µ̃ik will contain information about its T−hop neighborhoods.

Finally, we will get a d-dimension embedding vector for
each edge {µ̃ik|∀eik ∈ E′} in G′. Then the state could be
denoted by

φ(S) =
∑

eik∈E′

µ̃ik +W4

∑
eik∈E′ xik

γ
, (12)

where W4 ∈ Rd. The above method could embed a SRID
graph model instance with a d-dimension vector no matter
what size of the original network is. As indicated in liter-
ature [29], this general d-dimension vector could represent
the state of G′ with the partial solution in a unified way
for different SRID problem instances. Combining the above
network embedding and mean-field inference, we will find the
final network embedding as shown in Algorithm 2.

B. Reward

The action a that selects edge eik could be represented by
xik = 1. Given a state S and an action a, we could easily get
(φ(St), a)→ φ(St+1) using Algorithm 2.

For any partial solution St, we could define a function
c(φ(St), G) to evaluate its quality. In our SRID graph model,
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Fig. 10. The framework of Q-learning.

the goal is to minimize ||
∑
i

∑
vk∈H′ ~uikxik||∞, it equals

to maximize −||
∑
i

∑
vk∈H′ ~uikxik||∞. Besides, we should

avoid selecting the edges that make the solution infeasible.
Thus, we could set c(φ(St), G) as

c(φ(St), G) = −||
∑

eik∈E′:=S

~uik||∞ + h(St), (13)

where

h(St) =

{
0, if X := St not violates model (10)

−∞, Otherwise.
(14)

Then the reward could be represented by

r(φ(St), a) = c(φ(St+1), G)− c(φ(St), G). (15)

It is easily to prove that the cumulative reward equals to the
goal function value of model (10). Let us review the example
in Fig. 7 to check the reward design. In the first action, i.e.,
adding e11 into ∅, the reward is r1 = −||~u11||∞ − 0 =
−||(3, 4, 2)||∞ = −4. In the second action, we add e22 into
{e11} and get a reward r2 = −||(3, 4, 2) + (2, 3, 4)||∞ −
(−||(3, 4, 2)||∞) = −3. In the third action, we add e32 into
{e11, e22, e32} and get a reward r2 = −||(3, 4, 2)+ (2, 3, 4)+
(4, 4, 3)||∞ − (−||(3, 4, 2) + (2, 3, 4)||∞) = −2. Finally, we
get the cumulative reward r1 + r2 + r3 = −9, which equals
to the goal function value of the solution in the view of
maximization.

C. Q-Learning

In reinforcement learning framework, the state-action func-
tion, i.e., Q(φ(S), a) is used to evaluate the long-term reward
of the action. Every time when the agent is in φ(S), it will
take the action a∗ = maxaQ(φ(S), a). Similar to [29], we use
a neural network to approximate the Q function as follows,

Q(φ(S), axik=1) =W5σ([W6φ(S),W7ũik]). (16)

In Equation (16), [·, ·] is the concatenation operator and W5 ∈
R2d, W6,W7 ∈ Rd×d. Since φ(S) is decided by {Wi}3i=1,
Q(φ(S), a) will be decided by {Wi}7i=1. In Fig. 10, we give
the framework of learning these parameters.

Algorithm 3 Q-learning for the GLI method
Input : A series of the SRID graph model instances P =
{P1, P2, P3, ...}, the experience replay buffer size |E|, the num-
ber of episodes L

Output : {Wi}5i=1

1: Initialize {Wi = 0}5i=1 and {W−i = 0}5i=1

2: for i = 1; i <= L; i++ do
3: Select a problem instance Pi and initialize {xik = 0|∀i, k}
4: while Not Terminated do
5: Select an edge randomly with probability ε, otherwise take

action at = argmaxaQ(φ(St), a|W )
6: if t ≥ n then
7: Add tuple (φ(St−n), at−n, Rt−n,t, φ(St)) to E.
8: Sample random batch B from E
9: Update {Wi}5i=1 using stochastic gradient descent over∑

(y −Q(φ(S), a)|W )2 for B.
10: let W− =W peridically
11: Return {Wi}5i=1.

We use an episode to represent a complete sequence of edge
additions starting from an empty solution in SRID problem
and step to represent a single action, i.e., adding an edge, in
an episode. There are two networks in Q-learning, behavior
network and target network, which both of them represent
the approximation of Q function but with different parameter
values (W and W−, respectively). The behavior network is
responsible for helping the agent to take the next action and
generate the episode, while the target network is responsible
for providing the forecast value of the Q function. In fact, the
setting of these two networks is to increase the stability of the
network model [31]. These two networks are same at first, and
then the behavior network will update the parameters in each
step of the agent and send these updates to the target network
periodically.

The standard deep Q-learning algorithm updates the approx-
imation function’s parameters at each step of an episode by
performing a gradient step to minimize the squared loss

(yt −Q(φ(St), at|W ))2 (17)

where

yt =

{
rt+1, if St+1 is terminal state

r(φ(St), at) + γmax
a

Q(φ(St+1), a|W−),Otherwise.
(18)

As introduced in [29], the final objective value of a solution
for a combinatorial optimization problem is only revealed after
many edge additions, thus, we use n-step Q-learning [32]
to train the parameters. In detail, we compute the forecast
value of Q function for non-terminal state with the following
equation,

yt =

n−1∑
i=0

r(φ(St+i), at+i) + γmax
a

Q(φ(St+n), a). (19)

To further improve the convergence speed, one method
called fitted Q-iteration has been proposed [29], [33]. In fitted
Q-iteration, the parameters of Q-function are updated with a
batch of samples instead of sample-by-sample. The batch of
samples is randomly selected from a dataset E which is called
relay buffer in Fig. 10. In the step t + n of each episode,



9

 

 

!

 

 

!

!

!

"

 "

  

"

 "

!!

# ##

 

#

!

#

$

 

 

!

 

 

!

!

!

 

 

  

 

 

!!

!%$# &#

'

# ##

(

#

)

#

*

 

 

!

 

 

!

!

!

 

 

!

 

 

!

!

!

"

 "

  

"

 "

!!

# ##

 

#

!

#

$

 

 

!

 

 

!

!

!

 

 

  

 

 

!!

!%$# &#

'

# ##

(

#

)

#

*

 

 

!

 

 

!

!

!

 

 %

!

&'

Partial Solution Graph Embedding Solution Extension

(%!% &+ &$

 

)

  

(%!% &+ &$

 

)

! 

(%!% &+ &$

 

)

 !

(%!% &+ &$

 

)

!!

(%!% &+ &$

!

)

! 

(%!% &+ &$

!

)

!!

T iterations

T iterations

iteration 

iteration 

Fig. 11. The overview of Greedy method on Long-term Impact (GLI) .

TABLE II
PARAMETER SETTING.

Notation Description
Network Topology ID {synth50, synth100, synth200,

rf1755, rf3257, rf3967, rf6461}
# flows {10, 20, 30, ..., 200}

# candidate routers {10, 15, 20, ..., 40}
γ {1, 2, ..., 10}

the dimension of latent variables d = 64
the batch size |B| = 64

the propagation iterations |T | = 5
the delay steps in n-step learning n = 5

the tuple (φ(St), at, Rt,t+n, φ(St+n)) is added to E, with
Rt,t+n =

∑n−1
i=0 r(St+i, at+i). With these samples and the

loss function, the stochastic gradient descent algorithm updates
the parameters in the behavior network. The behavior network
will synchronize itself to the target network periodically. To
describe the parameters training more clearly, we summarize
the details in Algorithm 3.

Once we get the value of {Wi}5i=1, we could realize
the greedy algorithm with considering the long-term im-
pact. Fig. 11 gives an example of GLI. After finishing the
training, we will get values of all parameters. Initially, we
use Algorithm 2 to embed the graph, then use parameters
{Wi}7i=4 to get the Q values of all available actions. Next,
we select the action with the maximum Q value and extend
the corresponding partial solution. In the example, es1O1

is
added into the partial solution. Repeat the above steps until
the terminate condition is triggered, and then we will get
the final solution. It is emphasized that the action space is
influenced by the state. In the second iteration of the example,
the available actions are adding es2O1 or es2O2 since there
is no need to considering edges connecting s1. The biggest
difference between GLI and GSI is that GLI greedily selects
the edge based on Q value, while GSI is based on estimating
the degree of increase in the goal function.

VI. EVALUATION

A. Experiment Setting
1) Dataset and parameter setting: We use the network

topologies and flow demands provided by DEFO [22], [34].
• Training dataset: We generate SRID problem instances

from DEFO dataset. There are 7 network topologies in

DEFO, for each network topology, we randomly select
{10, 20, 30, ..., 200} flow demands, {10, 15, 20, ..., 40}
candidate routers and set γ from {1, 2, ..., 10}. For
each parameter combination, we construct 2 problem
instances, thus, we have total 7×20×7×10×2 = 19600
problem instances. Like [29], we set the dimension of
latent variables d = 64, the batch size |B| = 64, the
propagation iterations in state representation |T | = 5 and
the delay steps in Q-learning n = 5. All the parameters
in the training phase are summarized in Table II.

• Validation dataset: We select China Education and Re-
search Network (CERNET), rf1221 and rf1239 as the
network topology in validation experiments. There are
37, 151 and 972 edges in CRENT, rf1221 and rf1239,
respectively. Thus, the weights in the three corresponding
graph models will be 1×37, 1×151 and 1×972 vectors,
respectively.

2) Compared Methods: Since the method in literature [12]
focuses on SR-MPLS, which has a different data plane mech-
anism from our SRID, we did not select it as our benchmark.
We use Gurobi, SP, DEG and BTW as the benchmarks. The
Gurobi method uses an academic free programming solver,
i.e., gurobi [35], to find the optimal solution of the model (10)
directly. We restrict the solver time of Gurobi within one hour
to ensure that the problem is solved efficiently. The SP method
steers all flows along the shortest paths, which are the default
paths in OSPF. DEG and BEW are proposed in [24]. In DEG
(degree), the nodes are selected in the descending order of
node degree. In BTW (betweenness centrality), the nodes are
selected in the descending order of betweenness centrality,
which means the number of shortest paths passing through
the node. It is needed to emphasize that the DEG and BTW
methods are only capable of deciding which nodes could be
upgraded but not finding the routing. Thus, after DEG and
BTW deciding the upgraded nodes, we use our GSI method
to assign the routings.

3) Implementation: The GLI algorithm is implemented us-
ing Pytorch based on the codes in graph com bopt [36]. And
we trained GLI on Amazon EC2 p2.xlarge instance, which is
CUDA K80-enabled. Then we evaluate all the algorithms on
MacBook Pro with Intel Core i5.
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Fig. 13. The different SRv6 deployment solutions in CERENT with the setting
that |H| = 15, γ = 5.

4) Convergence of GLI: We use GSI to get the benchmark
solutions to the different SRID problem instances in the
training phase. In Fig. 12, we plot GLI’s convergence which is
measured by the ratios between the solutions of GLI and GSI.
As we can see, GLI performs better than GSI after around
12500 iterations and finally converges to approximately 0.8.

B. Visualize the different solutions in CERENT

We first evaluate the different methods with CERENT
topology since we can visualize the different solutions in
this small-scale case easily. We generate a traffic matrix with
400 flows, set the candidate router set with |H| = 15 and
γ = 5. It is noted that we set the above parameters without
special requirements. In fact, we can set other values for these
parameters without influencing the conclusions. As shown in
Fig. 13, the compared four methods have different deployment
solutions. The DEG method deploys the SRv6 routers in the
nodes which have the highest degrees, and the BEW method
deploys them in the nodes that have the highest between
centrality values. However, we can see that the solution of
GLI method presents different characteristics that both node
10 and node 19 do not have high degrees or high between
centrality values. Instead, the GLI method deploys the SRv6
routers more evenly. We think that this balanced deployment
can avoid the bottleneck links around the nodes with high
between centrality values. In this experiment, we find that the
solution of the GLI method is the same as the optimal solution
resulted from Gurobi. The maximal link utilizations of GSI,
DEG and BEW are higher than the optimal value by 47.2%,
65.4% and 65.6%, respectively.
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Fig. 14. Small-scale: The impacts of the number of flows on two metrics.

C. Experiment results in small-scale case

As shown in model (10), its complexity is decided by the
number of flows, the number of candidate routers and the
number of network edges. To evaluate the impacts of the
above parameters with the optimal solution, we restrict the
values of the above variables. In this experiment group, we
select rf1221 as our network topology. To better display the
experiment results, we scale the capacities of the network so
that the maximum link utilization in the most congested case
is nearly 100%.

1) The impacts of the number of flows: In this experiment,
we set γ = 5 and select |H| = 20 candidate routers randomly.
Fig. 14(a) indicates that the value of the maximum link
utilization grows up as the number of flows increases. This
phenomenon is easy to understand since more flows will
consume more bandwidth. The optimal solution can reduce the
maximum link utilization by 21.93% on averagely comparing
to default shortest paths. The average result of GLI method is
only 2.83% higher than the optimal solution, while the average
result of GSI method is 14.27% higher than the optimal
solution. The above results indicate that GLI method certainly
outperforms GSI method. Besides, we can see that the curves
of DEG and BEW are almost the same. This phenomenon may
be caused by two factors. The first factor is that the nodes
with higher degrees usually have high betweenness centrality
values. The example in Fig. 13 shows that the DEG method
and the BEW method select as high as 80% of common
nodes. The second factor is that the number of flows in this
experiment is low such that the selected nodes may not need to
handle the flows. Fig. 14(b) shows that SP method can produce
the lightest value in terms of the top 20% highest congested
links. The reason behind this tendency is that the SRv6 strategy
will steer more flows to traverse the links connecting to SRv6
routers. This result indicates that we should also enlarge the
link bandwidth near the SRv6 routers.

2) The impacts of the candidate routers: In this experiment,
the number of flows is 60 and γ = 5. Since the SP method will
neglect all candidate routers, its curve should be flat. However,
as shown in Fig. 15(a), the curve representing SP method has a
variation. We think that this variation is produced by selecting
flow demands randomly. The other curves show a similar
variation, which indicates that the number of candidate routers
has no impact on reducing the maximum link utilization as
long as it is larger than the value of γ. In Fig. 15(b), the
variations of the methods could reach 5.74% at most, which
proves the above conclusion further. One strange point of
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Fig. 15. Small-scale: The impacts of the number of candidate routers on two
metrics.
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Fig. 16. Small-scale: The impacts of γ on two metrics.

Fig. 15(a) is that the curve of the BEW method lies above
the curve of SP. The reason behind this phenomenon is that
the BEW method only selects the nodes with the highest
betweenness centrality values while the detail routings are
greedily found by GSI.

3) The impacts of γ: In this experiment, the number of
flows is 60 and the number of candidate routers is 10. As
shown in Fig. 16(a), the curve representing SP method is
nearly flat, while the other five curves decline as the number
of candidate routers increases. This is because that SP method
neglects the candidate routers while the other five methods will
adjust their routing solutions with different γ. Particularly, the
DEG method and the BEW method can relieve the congestion
of SP as γ increases. However, DEG and BEW still perform
worse than GSI due to the inflexibility in selecting the SRv6
routers. Compared to SP, the maximum link utilizations of
GUROBI, GLI and GSI could be reduced by 24.84%, 21.2%
and 11.26%, respectively. Fig. 16(b) shows the same tendency,
i.e., the average top 20% link utilization of GUROBI and GLI
decreases as γ increases. Besides, the bars of GSI method
do not decline as the γ increases. This may be because that
GSI overvalues short-term impact and is trapped in the local
optimal solution zone.

D. Experiment results in large-scale case

In this group of experiments, we use rf1239 as our network
topology and evaluate the impacts of the number of flows and
γ since the results in small-scale showed that the number of
candidate routers almost have no impacts. Instead of present-
ing the average value of the top 20% link utilizations in the
small-scale experiments, we present the cumulative distribu-
tion function of the top 20% link utilizations. Besides, we
compare the number of flows that have to change their routings
with two different greedy methods. Like the experiments in
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Fig. 17. Large-scale: The impacts of the number of flows on three metrics.

Sec. VI-C. We also scale the capacities of the network to make
the maximum link utilization in the most congested case be
nearly 100%.

1) The impacts of the number of flows: In this experiment,
we set the number of candidate routers as 25 and γ = 5.
Like Fig. 14(a), Fig.17(a) also shows that the maximum link
utilization grows up as the number of flows increases. The GLI
method can reduce the maximum link utilization by 48.3% and
20.8% averagely against SP and GSI, respectively. Fig. 17(b)
shows that the number of flows that have to change their
default routing increases as the number of flows grows up.
Considering the results in Fig. 14(a) and Fig.17(a) together,
we can see that GLI method changes 55.1% fewer routings
averagely than GSI method but can reduce the maximum
link utilization by 20.8% on average. This result indicates
that the greedy strategy which considers long-term impact can
reduce the maximum link utilization with less overhead. As a
comparison, DEG and BEW change fewer routing paths and
produce higher congestion. Fig. 17(c) presents the cumulative
distribution function of the top 20% link utilizations. To make
the figure readable, we only show the case with 500 flows and
2500 flows. It is easy to find that the curves with 2500 flows
lie on the right of curves with 500 flows. Meanwhile, the
curves of GLI-500 and GLI-500 lie on the left of GSI-500’s
and GSI-500’s, respectively. This phenomenon indicates that
GLI method could reduce both the average link utilization and
the maximum link utilization.

2) The impacts of γ: In this experiment, we set the number
of candidate routers as 25 and the number of flows as 2500.
Fig. 18(a) shows that GLI method can reduce the maximum
link utilization by 59.1% and 23.7% at most against SP
and GSI, respectively. Also, we can see that the maximum
link utilization of the two greedy methods reduces as the γ
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Fig. 18. Large-scale: The impacts of the γ on three metrics.

increases, which results from that larger γ gives much more
space to change the default routing paths. This assumption
can be proved by Fig. 18(b) where the number of flows that
change default routings increases as γ grows up. Similar to
Fig. 17(b), GLI method is more efficient than GSI method
since the number of changed routings of GLI is average 49.2%
and is less than that of GSI method. In Fig. 18(c), we plot
the cumulative distribution function curves of the top 20%
link utilizations. To make it clear, we only present the curves
with γ = 1 and γ = 5. Under the same method, the curve
with larger γ lies on the right of the curve with lower γ(e.g.,
see the curves of GLI-1 and GLI-5). The reason behind this
phenomenon is that larger γ will change more flow routings
(as shown in Fig 18(b)) and lead to the utilizations of the
links near to the SRv6 routers increase. Under the same γ,
the curve of GLI method lies on the left of the curve of GSI
method (e.g., see the curves of GLI-5 and GSI-5). This further
indicates that GLI method outperforms the GSI method since
it could minimize both the maximum link utilization and the
average link utilization.

VII. DISCUSSION

A. Model Generality

In the previous section, we have pointed out that our method
could be extended to the general case where n-segments rout-
ing is permitted. In 2-segments case, there are m×|E|×(l+1)
different cases for constraint (2) where m represents the
number of flows, |E| represents the number of edges in G
and l represents the number of candidate routers. While in
n-segments case, there will be m× |E| ×

∑n
k=0A

k
l different

cases since any permutation of the candidate routers from H
could be chained together. Fortunately, the graph model of
SRID problem could convey these massive constraints in a
simple way. For n-segments routing case, we could construct a
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Fig. 19. The multi-level multigraph model for SRID problem.

multi-level multigraph for the SRID problem as Fig. 19 shown.
The 0th level represents the source nodes of m flows. There
are l + 1 nodes in the following each level where the left l
nodes represent the candidate routers in H (|H| = l) and the
rightest node represents the virtual router. From the 1st level,
each arrow towards the next level contains m parallel edges.
Each arrow has a composite weight which is composed of m
vectors. For the example in the bottom of Fig. 19, we can
find ~u11,l−1 = (~u1f11,l−1, ~u

1f2
1,l−1, ..., ~u

1fm
1,l−1) and ~u1f11,l−1 represents

the link utilization of all edges in the original graph G when
f1 traverses the shortest path between O1 and Ol−1 in G. It
is noted that for the arrows connecting nodes in the last row
and the last column, the vectors are calculated differently. For
example, in the last row, ~un−2j,k (j < l, k < l), ~un−2fij,k represents
the link utilization of all edges when fi is routed along the
shortest path between Oj and Ok and then the shortest path
between Ok and the flow destination di. In the last column,
~uhj,l(h ≤ n − 2, j < l), ~uhfij,l (h ≤ n − 2, j < l) represents
the link utilization of all edges when fi is routed along the
shortest path between Oj and the flow destination di since Ol
represents the virtual router.

To find the routing for a flow fi, we need to find a
path in this multi-level multigraph that satisfies the following
conditions:
• Condition 1: The path starts from si and ends in any node

of the last level or the rightest column, i.e., {On−1j |j =
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0, 1, 2, ..., l} ∪ {Ojl |j = 1, 2, ..., n− 1}.
• Condition 2: All the edges apart from the first one must

have the weights about fi, i.e., annotated by ~uhfij,k .
With this multi-level multigraph model, we could solve the

SRID problem by finding a subgraph satisfying the following
constraints:
• The degree of each source node on top is one.
• There exists a path from the source to the node in the

last level or the node in the rightest column.
• Without considering the source nodes, there are at most
γ columns are covered in the subgraph.

• For each source node, there exists a path satisfying
condition 1 and condition 2.

• The sum vector of all the weights in the subgraph should
be minimized in the term of its infinite norm.

With this multi-level multigraph model, we could extend the
GSI method and the GLI method to solve the SRID problem.
In the GSI method, we could first select the edge between the
0th level and 1st level greedily to ensure which flows should
be first routed. Then we extend the path for the selected flows
with the same greedy rule, i.e., increase the objection value
lightest. In the GLI method, we need an agent to evaluate the
long-term impact of adding one edge into the subgraph. In the
extension procedures of GSI and GLI, we just compare the
edges related to the current flow in each level. Such a design
could ensure that the produced result is a feasible solution
to the SRID problem. To reduce the impact of the maximal
number of available segments, we should train an agent for
each possible value of n. In this way, we could promise that
each agent is trained without embedding the parameter of n.

B. Multi-stage Deployment

One important assumption of the SRID problem is that the
network infrastructure cannot be fully upgraded at once and
usually are upgraded with several stages. Our SRID model
can be used to solve the incremental deployment problem even
though it includes several stages. In fact, we have modeled this
multi-stage problem into the SRID model with Equation (6). In
this equation, we assign a binary variable hk to denote whether
node vk has already been upgraded in previous stages. Then
we could treat a multi-stage deployment problem as multiple
independent single-stage deployment problems, which can be
solved by the GSI method and GLI method. The only cost of
this transformation is that we need to recalculate the weights
of edges that are related to the upgraded SRv6 nodes.

VIII. CONCLUSION

The network infrastructure should be upgraded incremen-
tally; thus, we studied the problem of SRv6 incremental
deployment (SRID) for ISPs in this paper. Firstly, we for-
mally defined and formulated the SRID problem with inte-
ger programming. Then we transform this problem into a
graph model. To solve the problem efficiently, we designed
two methods, i.e., GSI and GLI, by greedily extending the
partial solution. In detail, GSI focused on enabling those
SRv6 routers that increase the goal function lightest in the

current step. In comparison, GLI devoted to enabling SRv6
routers with considering the long-term reward. To realize GLI,
we designed an end-to-end reinforcement learning framework
including network embedding, reward design and Q-learning.
The experimental results over a public dataset showed that
both GSI and GLI could significantly reduce the maximum
link utilization, with GLI cutting down the maximum link
utilization by 59.1% at most against the default shortest path
routing method.

ACKNOWLEDGMENT

This work is partially supported by the National
Key Research and Development Program of China (No.
2018YFE0207600 and No. 2020YFE0200500), the National
Natural Science Foundation of China (No. U19B2024 and
No. 61802421), European Union’s Horizon 2020 research and
innovation program under the Marie Sklodowska-Curie Grant
(No. 824019), and Tianjin Science and Technology Foundation
(No.18ZXJMTG00290).

REFERENCES

[1] M. Ikram, N. Vallina-Rodriguez, S. Seneviratne, M. A. Kâafar, and
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