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meGautz: A High Capacity, Fault-tolerant and
Traffic Isolated Modular Datacenter Network

Feng Huang, Yiming Zhang⋆, Dongsheng Li⋆, Jiaxin Li, Jie Wu, Kaijun Ren, Deke Guo, Xicheng Lu

Abstract—The modular datacenter networks (MDCN) comprise inter- and intra-container networks. Although it simplifies the
construction and maintenance of mega-datacenters, interconnecting hundreds of containers and supporting online data-intensive
services is still challenging. In this paper, we present meGautz, which is the first inter-container network that isolates inter- and
intra-container traffic, and it has the following advantages. First, meGautz offers uniform high capacity among servers in the different
containers, and balances loads at the container, switch, and server levels. Second, it achieves traffic isolation and allocates bandwidth
evenly. Therefore, even under an all-to-all traffic pattern, the inter- and intra-container networks can deal with their own flows without
interfering with each other, and both can gain high throughput. meGautz hence improves the performance of both the entire MDCN and
individual servers, for there is no performance loss caused by resource competition. Third, meGautz is the first to achieve as graceful
performance degradation as computation and storage do. Results from theoretical analysis and experiments demonstrate that
meGautz is a high-capacity, fault-tolerant, and traffic isolated inter-container network.

Index Terms—Modular datacenter network, inter-container network, traffic isolation, fault tolerance.
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1 INTRODUCTION

M ODULAR datacenter (MDC) uses shipping-containers as
large pluggable building blocks to construct mega-

datacenters, which is considered as an ideal solution for the
next-generation datacenters [1], [2], [3], [4]. Modular datacenter
network (MDCN) is the fundamental component of MDC, so it has
increasingly attracted significant attention from cloud providers,
hardware vendors, and academia [1], [2], [5]. Due to container-
ization, MDCN comprises the intra- and inter-container network
structures. Generally, the intra-container network organizes 1,200-
2,500 servers in each standard 20- or 40-foot container; meanwhile
the inter-container network connects 400-800 containers of this
kind to build large MDC [6], [7], [8], [9], [10], [11].

MDC is the underlying infrastructure of modern Online Data
Intensive services (OLDI) [12], [13], such as web search, social
networking and scientific computing. The growing demand of
these OLDI services have driven MDCN to an enormous scale,
even accommodating thousands of containers. So for the inter-
container networks, there are three requirements to be met.

High inter-container bandwidth: OLDI services deployed in
MDC can run at a massive scale, where each operation needs to
process data spanning tens of thousands of servers over tens to
hundreds of containers. With high bandwidth between containers
and high throughput of MDCN, every worker node is able to
send results to the aggregation node to assemble the final result
in a timely manner. The fewer the number of worker nodes that
miss their deadline, the better the quality of user experience and
revenue.
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Smooth performance decrease: The current MDC are built
of inexpensive commodity hardware; the failure of devices has
become a norm. Since the devices in containers are prefabricated,
their failure is difficult to repair, due to operational and space
constraints. Therefore, inter-container networks should be able
to tolerate the continuous hardware failures gracefully, making
network capacity decrease as smoothly as computation and storage
capacity do.

No resource competition between inter- and intra-
container flows: Every user’s request to an OLDI service can
generate tens of thousands of flows from worker nodes to aggrega-
tion nodes [12], [13], including the inter- and intra-container flows.
Since the inter-container flows have to traverse multiple containers
to reach the destinations, if they use one or several same links
as the intra-container flows do, resource competition will occur.
As MDC scale out, the inter-container flows increase drastically
and preempt the available resource of the intermediate containers
greedily and rapidly. While the intra-container flows would have
their own bandwidth drop sharply and may even starve, leading to
the performance decline of the entire MDCN. Hence, the problem
of resource competition is nontrivial and it must be solved by
isolating the intra- and inter-container traffic.

However, the current inter-container networks do not achieve
all of the above goals simultaneously, such as Helios [14], uFix
[15], and MDCube [9]. First, their network performance drops too
fast in the presence of failure. For example, MDCube behaves best
on fault-tolerance in the existing proposals. But when 10% of the
servers or switches fail, its throughput decreases by up to 25.5%
and 60.9%, respectively. Second, none of the proposals addresses
the problem of resource competition. Also taking MDCube as an
example, when its servers have an all-to-all traffic from two to
ten containers, its inter-container throughput increases by 56.4%,
whereas the intra-container throughput is reduced by 82.5%,
resulting in an obvious decrease of the per-server throughput
by 16.2% [9]. If all the servers in MDCube generate all-to-all
traffic, its inter-container flows nearly exhaust all the bandwidth
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and starves the intra-container flows. Thus, the increase in number
of failures (that cannot be serviced) and resource competition are
the main reasons of inter-container networks, which affect OLDI
applications severely.

In this paper, we propose meGautz1, a high-capacity, fault-
tolerant, and traffic isolated inter-container network. meGautz
interconnects the containers effectively, and it is able to offer
higher capacity and stronger fault-tolerance than other approaches.
Besides, meGautz achieves traffic isolation between the inter-
and intra-container networks. Hence, it eliminates the resource
competition and allocates bandwidth evenly to inter- and intra-
container flows. meGautz is a server-centric structure, since it
implements routing intelligence on servers and relies on servers
to compute routing paths.

meGautz chooses the SCautz-containers [16], whose inner
network is SCautz, to construct MDC. Generally, containers are
preprovisioned with spare devices to realize “service-free” [1]. By
using these resources, SCautz builds a hierarchical structure and
achieves many nice characteristics for meGautz to isolate traffic
and tolerate faults. In meGautz, each container is regarded as a
virtual node, and these virtual nodes are connected to form an
optimized topology with a constant degree. Based on it, traffic-
isolated and load-balancing routing algorithms are designed. The
traffic-isolated routing multiplexes the spare resources to forward
packets through intermediate containers without affecting the
inner ones, so as to eliminate resource competition. The load-
balancing routing distributes traffic evenly at the container, switch,
and server levels, improving the network capacity and resource
utilization. Furthermore, the multiple paths among containers, es-
pecially the neighboring containers, realizes smooth performance
degradation of meGautz and the entire MDCN.

To the best of our knowledge, meGautz is the first inter-
container network that takes traffic isolation as a design goal (and
realizes it). The main contributions are as follows.

1. meGautz provides high and uniform server-to-server
network capacity across the different containers. In
meGautz, the reserved high-speed ports of multiple com-
modity switches in SCautz are trunked as virtual ports,
and then are linked by the optical fibers to organize
containers into a Kautz [17] topology. Both the con-
struction method and topology of meGautz guarantee the
high network capacity together with its novel routing
algorithms. Moreover, the cost of meGautz is low, for
there is no extra devices are introduced but optical fibers.

2. meGautz is the first to achieve performance degradation
as gracefully as computation and storage capacity do.
High path redundancy between containers realizes better
resilience to failure.

3. meGautz isolates its traffic from the intra-container net-
works. By utilizing the spare links, meGautz is able to
forward the traffic across the containers without inter-
fering with theirs. For the all-to-all traffic, experimental
results show that the intra-container throughput of each
container in meGautz can be achieved and maintained as
high as the ABT (Aggregation Bottleneck Throughput)
of an individual SCautz-container; meanwhile, the inter-
container throughput increases linearly as containers rise
for no resource competition. Therefore, the bandwidth is
allocated to inter- and intra-container networks evenly,

1. meGautz represents “meGa datacenter network based on Kautz-graphs.

and higher network capacity can be obtained without
performance loss.

The remainder of the paper is organized as follows. Section II
discusses the nature of MDC and OLDI, and analyzes the design
goals and challenges of MDCN. Section III describes meGautz’s
architecture. Section IV proposes the routing algorithms. Section
V conducts experiments to evaluate meGautz. Section VI intro-
duces the related works. Finally, section VII concludes the paper.

2 PRELIMINARIES

We start by describing the modular datacenters (MDC) and Online
Data Intensive (OLDI) services. We then introduce Kautz graph
and SCautz structure. At last, we analyze design goals that inter-
container networks should realize.

2.1 Modular Datacenter and Online Data Intensive Ser-
vices
MDC is constructed of 20- or 40-feet standard containers. The
main procedure is that intra-container networks first get thousands
of servers linked, which have been set up and packaged in each
container; then, an inter-container network connects these contain-
ers together. Once hooked up to power, a cooling infrastructure,
and the Internet, MDC can provide services at any location in
the world. Besides high mobility, deployment flexility, and lower
ownership and management cost, the most outstanding feature of
MDC is that containers run in a particular “service-free” manner.
That is, containers as a whole are never repaired during their
lifetime (e.g., 3- 5 years), as long as the overall performance meets
an engineered minimum criterion [1], [2]. Compared to traditional
datacenter networks, this feature poses new challenges on designs
of inter-container networks. To realize “service-free”, the extra
resources are deployed into containers for fault-tolerance. But they
have never been considered by the current approaches.

OLDI applications need to access big data sets simultaneously,
which might be distributed over thousands of servers in different
containers. The processing of OLDI applications includes two
phases: partition and aggregate (or map and reduce). In the first
phase, applications partition each request, and assign them to
workers to process their local data, respectively. In the second
phase, every aggregator fetchs intermediate results from all other
workers to aggregate the final response, leading to a typical all-
to-all data shuffle pattern. If these all-to-all traffic across multiple
containers can be effectively supported, data shuffles will finish
fast without missing deadlines.

2.2 Kautz and SCautz
A directed Kautz graph [17] with degree d and diameter k, denoted
as K(d,k), is a digraph with dk +dk−1 nodes and dk +dk+1 edges.
Let Zd = {0,1, · · ·d} be an alphabet of d + 1 letters. We define
Kautz strings as Zk

d = {x1 · · ·xk|xi ∈ Zd , xi ̸= xi+1 and 1 ≤ i < k},
and their consecutive letters are different. So the nodes in Kautz
are represented by Kautz strings. There is an edge from node X to
Y , if Y is a left-shifted version of X , that is, if X = x1 · · ·xk, Y =
x2 · · ·xkxk+1,xk+1 ∈ Zd , and xk+1 ̸= xk, then an edge X →Y exists.
The undirected Kautz structure we use, denoted as UK(d,k), is
obtained by omitting the directions of the edges and keeping the
loops. Assumes there is a loop between X and Y , comprising edges
from X to Y and Y to X . X is also a left-shifted version of Y , and
X = x3 · · ·xk+1xk+2. So, x1 = x3 = · · ·= xk+2,x2 = x4 = · · ·= xk+1.
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Fig. 1: Kautz graph and SCautz structure.

It has loops only between the d2 +d nodes of the form (abab · · ·),
e.g., (01, 10) and (02, 20), as shown in Figure 1 (a). So it is regular,
which is not like the general undirected Kautz graph. Note that, in
the rest of this paper, the term “Kautz” is used to denote this kind
of undirected Kautz graph. meGautz and SCautz are both designed
based on Kautz graph.

meGautz chooses SCautz [16] as the intra-container network,
because it behaves much better on high-throughput and fault-
tolerance than other proposals. Besides, SCautz is able to realize
intra-container routing all by the links between servers, reserving
the over-provisioned switches and links between servers and
switches for meGautz to design inter-container routing algorithm
and achieve traffic isolation.

At first, SCautz interconnects the NIC ports of servers directly,
forming a physical Kautz topology with degree d and diameter k,
i.e, UK(d,k), as its base structure. And then, it over-provisions
tens of commodity switches to process bursts of traffic and tolerate
faults. Therefore, all the servers and switches constitute a complete
structure of SCautz as follows, denoted as SCautz(d,k, t), where t
represents the identifier length of switches.

In SCautz, the definition and identifiers of servers are identical
to those of the nodes in Kautz graph. The spare switches are
divided into two categories, referred to Sle f t and Sright , respec-
tively. Sle f t (resp. Sright ) connects the servers whose identifiers’ t
leftmost (rightmost) letters are identical. We let these t leftmost
letters (resp. rightmost letters) be Sle f t ’s (resp. Sright ’s) identifiers.
Thereby each switch and its n = dk−t servers form a “cluster”,
denoted as Cle f t (resp. Cright ). In this paper, we will not distinguish
S and C, i.e., the identifiers of clusters and switches are the same.
Furthermore, if clusters are treated as virtual nodes, it has been
proven that all Cle f t and Cright form two higher-level logical Kautz
structures with diameter t, respectively, denoted as UKle f t(d, t)
and UKright(d, t) [16]. So in SCautz, every server connects with

two switches, and belongs to two clusters of two types at the same
time. Accordingly, there are two types of links in SCautz: Lserver
and Lswitch. Lserver connect servers directly to form SCautz’s base
structure, which can provide a throughput as high as BCube [16].
Meanwhile, Lswitch connects the servers with spare switches, which
are reserved and can be used by meGautz to isolate the inter- and
intra-container traffic.

Figure 1 (a) shows a physical structure of SCautz(2,2,1). Its
base structure UK(2,2) is built by connecting 6 servers directly
via links Lserver. Based on UK(2,2), switches Sle f t and Sright
connect the corresponding servers via links Lswitch, to form the
complete structure of SCautz(2,2,1). Figure 1 (b) illustrates a
logical structure of SCautz(2,4,2). We can see that the switch
Sle f t = 10 connects servers 1010, 1012, 1020, 1021, whose 2
leftmost letters are 10, forming a cluster Cle f t = 10. All the Cle f t
build a logical Kautz structure, i.e., UKle f t(2,2). Analogously,
Sright = 21 connects servers 1021, 0121, 2021, 2121, whose 2
rightmost letters are 21, forming a cluster Cright = 21. All the Cright
build a UKright(2,2). Note that the server 1021 is the member of
cluster Cle f t = 10 and Cright = 21, simultaneously.

2.3 Design goals and challenges

Connecting SCaut-containers to build an efficient MDC and
improve the quality of OLDI services, meGautz should address
several challenges and achieve the following design goals.

High inter-container capacity can accelerate all-to-all da-
ta shuffles of OLDI applications. Generally, the inter-container
network improves communication capacity by over-provisioning
a large number of parallel links with high bandwidth between
containers, and organizing them into an excellent topology with
desired network properties.

Typically, there are two representative solutions for container
interconnection: introducing new high-end switches [14], [18] or
connecting existed components [9], [15]. The former incurs either
high cost or over-subscription, or even both; while the latter builds
a non-blocking network at a low cost. So meGautz chooses the
latter approach, and it interconnects the high-speed ports (e.g.,
10- or 40 Gbps) of switches in containers via optical fibers. Note
that these links can never be the bottlenecks. For a network,
node degree and network diameter are two critical metrics to
be determined with caution. We design meGautz base on Kautz
graph, for it achieves a near-optimal tradeoff between them, and
has better bisection width and bottleneck degree. In meGautz,
high node degree means more neighboring containers. But its total
amount of switch ports in each container is fixed, so the ports and
links connected to each neighbor will be less, and the bandwidth
is limited. We consider that meGautz’s degree should be low and
the bandwidth between neighboring containers should be as high
as possible. Firstly, to improve performance, the nearby resources
in the neighboring containers are always scheduled to deploy and
run OLDI services or virtual machines [19]. Secondly, the intra-
and inter-container networks should both be non-blocking, and
links between containers are never the bottlenecks. Therefore, we
construct meGatuz based on an undirected Kautz with a constant
degree of 2, whose degree is lowest. The tradeoff we pay is the
slightly reduced all-to-all throughput of the whole MDCN.

Fault-tolerance helps the network retain its merits and ca-
pacity, when failures happen and grow in “service-free” MDC. In
MDCN, component failures, such as links, servers, and switches,
could affect both of intra- and inter-container networks. For a
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Fig. 2: A meGautz interconnecting six SCautz(2,4,2) containers.

server-centric MDCN, server failure degrades the performance
of MDC’s computation, storage, and network simultaneously.
Intuitively, network capacity should not decrease faster than com-
putation and storage. Otherwise, it will become the fatal cause that
hurts OLDI’s quality significantly.

As far as we know, none of the inter-container networks
achieves the above fault-tolerance goal. There are two problems
that must be solved: (i) single-point failures of switches between
containers, e.g., when an inter-container switch in MDCube [9]
fails, all the traffic through that switch has to be re-routed via
another server in the same container, which brings significant
overhead to that server. (ii) the inefficient fault-tolerant path,
whose length is much longer [9]. Hence, meGautz should not only
deploy a rich connection between the neighboring containers, but
also provide multiple parallel paths for any pair of them, so that it
can construct a fault-tolerant path to bypass the failed components
at a low cost.

Traffic isolation is able to avoid resource competition between
the inter- and intra-container networks. For MDCN, which is built
by connecting containers’ existing components, it is common to
rely on the internal resources to forward the inter-container flows.
However, today’s OLDI and other applications run on the same
MDC, leading to burst inter- and intra-container flows under soft-
real-time constraints. If these two types of flows keep interfering
with each other, lots of flows will have their deadlines expire.

The more internal resources that inter-container flows occupy,
the more severe resource competition will become. To get rid
of this problem, the following challenges of three aspects must
be addressed. Firstly, for the server-centric MDCN, each server
should connect with at least one ingress and egress port. So it
can receive inter-container packets directly, and route to the next
container immediately. Secondly, inter- and intra-container routing
must be decoupled from each other completely. Being multiplexed
or extended to support inter-container routing, the intra-container
routing algorithms will be used to transfer both inter- and intra-
container flows, hence incurring resource competition. At last,
inter-container routing should make full use of the spare resources
without interfering intra-container routing. So, the inter- and

intra-container traffic could be isolated to eliminate the resource
competition.

Although SCautz-containers have many great network proper-
ties, and over-provision switches and links. It is still challenging
for meGautz to interconnect hundreds of them to build massive
MDC, having the above goals to be achieved.

3 MEGAUTZ ARCHITECTURE

Similar to SCautz [16], the meGautz architecture leverages Kautz
graph [17] to achieve low diameter and high bandwidth. In this
section, we introduce and explain how meGautz interconnects
SCautz-containers in detail.

We construct meGautz by interconnecting containers into a
Kautz topology with a constant degree of 2, denoted as UK(2,m).
Firstly, every container needs just two “virtual ingress/egress
ports” to form a UK(2,m) topology. So each “virtual port” can
gain as high an aggregation bandwidth as possible by trunking 1/4
number of switches’ high-speed ports together. Secondly, in the
UK(2,m) Kautz graph, there are four edge-disjoint paths between
any pair of nodes; in meGautz, this means four parallel paths from
source to destination containers. There are rich connections at the
link, server, and container levels. Thus, both construction methods
and optimized topology of meGautz realize rich connections at the
link, server and container levels, and improve the MDCN’s overall
performance. Moreover, the number of nodes in a UK(2,m)
increases relatively slowly as m increases, so meGautz can support
MDC of various scales.

In meGautz, a container’s identifier is denoted as MC, which
can be represented by a Kautz string with base 2 and length m (i.e.,
Zm

2 ). For the servers, links, and switches, their identifiers must add
the related container’s identifier as a prefix. For instance, a server
N belongs to a container MC, then its identifier will be <MC ·N >.

In a SCautz, there are (dt + dt−1)× 2 switches of two types.
Supposing that each switch has sp (sp ≥ dk−t ) low-speed (Blow
Gbps) ports and hp high-speed (Bhigh Gbps) ports, we divide its
high-speed ports equally, and trunk every hp/2 high-speed ports
as one “aggregation port” of a switch, denoted as AP0 and AP1,
respectively. It is easy to know that the bandwidth of AP0 and AP1
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are Bhigh×(hp/2). While at the container level, we view all AP0 of
all the switches MC ·Sright in a container MC as a “virtual egress-
port”, denoted as V P0

out , and all AP1 of all the switches MC ·Sright
as the other one, denoted as V P1

out . Analogously, we can obtain the
two “virtual ingress-ports” of MC, denoted as V P0

in and V P1
in by

aggregating AP0 and AP1 of the switches MC ·Sle f t .
Using the four “virtual ports” of each container, we con-

struct meGautz as follows. Suppose that containers MC =
{c1c2 · · ·cm|ci ∈ [0,1,2],ci ̸= ci+1, and 1 ≤ i < m}, MC0 =
{c0c2 · · ·cm|c0 ∈ [0,1,2] and c0 ̸= c2}, MC1 = {c2 · · ·cmu|u ∈
[0,1,2] and u ̸= cm}, MC2 = {c2 · · ·cmv|v ∈ [0,1,2] and v ̸= cm}.
MC and MC0 are the left-neighbor containers of MC1 and MC2,
and MC1 and MC2 are the right-neighbor containers of MC and
MC0. Let c0 < c1 and u < v. According to the complete ordering
relation of node identifiers, defined in Definition 1, MC0 < MC
and MC1 < MC2 hold.

Definition 1. (complete ordering relation) In a Kautz UK(d,k)
graph, let node X = {x1 · · ·xk|xi ∈ Zd , xi ̸= xi+1 and 1 ≤ i < k}
and Y = {y1 · · ·yk|yi ∈ Zd , yi ̸= yi+1 and 1≤ i< k}, then X >Y
holds, if x1 > y1 or xi > yi if x1 = y1, · · · ,xi−1 = yi−1,1 < i ≤ k.

Viewed as “virtual nodes”, each container in meGautz has
two right and left neighbors, respectively. So, for its V Pout , we
connect the V P0

out to the right-neighboring container with little
identifier, and the V P1

out to the right-neighboring one with big
identifier. Meanwhile for its V Pin, we connect the V P0

in to the left-
neighboring container with little identifier, and V P1

in to the left-
neighboring one with big identifier. The “virtual links” between
“virtual ports”, which consist of optical fibers between switches,
are denoted as V L. Thus, V P0

out and V P1
out of MC connect with the

V P1
in of MC1 and MC2; V P0

out and V P1
out of MC0 connect with the

V P0
in of MC1 and MC2, respectively. Until all the containers get

linked, we obtain meGautz’s UK(2,m) Kautz topology logically.
Physically, the optical fibers connect high-speed ports of

switches that get containers wired in meGautz. For simplicity, we
focus on the interconnection of switches’ trunked ports (i.e., AP),
and denote the “links” connecting APs as Lcontainer. As mentioned,
containers MC and MC1 are neighbors, so we define the switch
MC · Sright and MC1 · Sle f t as “peer switches”, if Sright = Sle f t .
Each V P is a group of AP. If MC wants its V Pout to be con-
nected with MC1’s V Pin, then all pairs of peer switches in them
must get the corresponding APs wired. Therefore, the AP0 (resp.
AP1) of MC · Sright connects with the AP1 of MC1 · Sle f t (resp.
MC2 · Sle f t ). In this way, container MC and MC0 get wired, and
so do all other containers and the whole meGautz. Between the
neighboring containers, meGautz can provide dt + dt−1 switch-
disjoint parallel paths and an inter-container bandwidth of up to
(dt +dt−1)×Bhigh × (hp/2) Gbps.

Figure 2 illustrates a meGautz with a UK(2,2) Kautz topology,
which connects six SCautz(2,4,2) containers. Taking containers
02, 12 and their two right neighbors 20, 21 as examples, since
02 < 12 and 20 < 21, container 02 connects its V P0

out with 20’s
V P0

in, and V P1
out with 21’s V P0

in; Meanwhile, container 12 connects
its V P0

out with 20’s V P1
in, and V P1

out with 21’s V P1
in. For switches,

since the switch Sright = 21 in container 02 and Sle f t = 21 in
container 21 are peer switches, there exist fiber cables connecting
the aggregation port AP1 and AP0, respectively. Therefore, if
each switch is equipped with four 10Gbps high-speed ports, the
bandwidth between two containers is 120Gbps with six switch-
disjoint paths.

In addition, management complexity is an important prob-
lem we try to solve when design and construct meGautz. First,
UK(2,m) is the simplest Kautz structure with the smallest degree.
So each container only needs to be linked to 3-4 neighbors.
Second, all the switches are wired to just two “peer-switches” in
two neighboring containers, respectively. And, the “peer-switches”
have the same identifier suffix and easy to be recognized by
workers. As for wiring, the interior size of a 40-feet container
is 12*2.35*2.38m3, so there is enough space to accommodate the
wires. The inner-container wires are inside the racks and do not go
out. The inter-container wires are between the SCautz units and
we place them on top of the racks.

4 ROUTING IN MEGAUTZ

Routing in MDCN comprises inter- and intra-container flows, and
their traffic should be isolated. In this section, we focus on the
inter-container routing, and propose a suite of traffic isolated, load-
balanced, and fault-tolerant routing algorithms in meGautz.

4.1 Traffic isolated Routing

According to meGautz’s topology, we design a traffic-isolated
inter-container routing algorithm, called meRouting, based on the
following facts. First, every server connects with two switches, i.e.,
Sle f t and Sright , whose high-speed ports are the ingress and egress
of a container, respectively. So each server can receive packets
from two neighboring containers via Sle f t (resp. Sright ) and forward
to the other two containers via Sright (resp. Sle f t ) directly. Second,
the switches, and links Lswitch between switches and servers are are
over-provisioned in SCautz-containers to deal with traffic bursts
and device failure. SCautz is able to complete the intra-container
routing all by the links between servers, without using the switches
and links Lswitch. So, these spare resources can be utilized by
meRouting to transfer inter-container flows without competing
with the inter-container ones. The goal of traffic isolation between
meGautz and SCautz is achieved.

meRouting adopts a hierarchical approach, including three
main steps: 1) Compute a logical path of containers using either
shortest or longest path routing algorithm, based on meGautz’s
UK(2,m) Kautz topology [17]. 2) Choose actual servers and
switches in each intermediate containers to build a physical path,
entering the destination container; 3) Route to the destination
server in the last-hop container.
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For meRouting, step 2 builds inter-container paths from one
container to the next hop. Given MC and MC1, a server MC ·X
sends packets into MC1 via a pair of peer-switches MC ·Sright and
MC1 ·Sle f t . There are dk−t servers linked to MC1 ·Sle f t , meRouting
must designate one to relay packets to the destination. We define
two servers as “peer-switch servers”, if they connect to a pair of
peer switches. So any server has dk−t peer-switch servers in each
neighboring container. In SCautz, every dk−t servers connecting
to the same switch are grouped into a cluster. meRouting sorts and
numbers them in ascending order, according to Definition 1. The
sequence number is denoted as SN, and SN ∈ [1,dk−t ]). Since a
server belongs to two clusters of two types, i.e., Cle f t and Cright ,
it has two respective SN. For example, the server 1021’s SN is
4 in Cle f t = 10, and is 2 in Cright = 21. So server MC ·X always
has the one and only peer-switch server MC1 ·Z in MC1, whose
SN are equal. Hence, the inter-container path from MC to MC1 is
MC ·X → MC ·Sright → MC1 ·Sle f t → MC ·Z. Figure 3 shows two
inter-container paths, MC to MC1 and MC1 to MCd . MC · 2010
and MC1 ·1021 are peer-switch servers, and their SNs are both 4.
So are MC1 ·1021 and MCd ·2102, and their SNs are 2. Thus, the
complete server path from MC to MCd is 10 ·0210 → 02 ·1021 →
21 · 2102. In addition, we know that meRouting only takes one
server and two switch hops to traverse an intermediate container
by just Lswitch links.

In container MCd , the designated server MCd · Z′ may not
be the destination MCd ·Y . So meRouting also needs an intra-
container routing operation. To accomplish the step 3, meRouting
can only rely on Lswitch links for avoiding resource competition.
We design meGautz based on a specific SCautz(d,k, t)-container,
in which k = 2t. So servers in SCautz(d,2t, t) can be represented
as Sle f t ·Sright , where Sle f t = x1 . . .xt and Sright = xk−t+1 . . .xk. By
correcting t leftmost or rightmost letters every time, meRouting
is able to compute a path from MCd · Z′ to MCd ·Y , and it will
never preempt the Lserver links used by intra-container routing.
Supposing that MCd ·Z′ = 21 · 2102 and MCd ·Y = 21 · 0201, the
path is 21 · 2102 → 21 · 21 → 21 · 2101 → 21 · 01 → 21 · 0201.
Combining all sub-paths, meRouting obtains the complete path
from server 10 ·2010 to 21 ·0201, as shown in Figure 3.

In summary, meRouting achieves traffic isolation successfully,
and its diameter can be obtained as follows. Note that all proofs
of theorems and pseudo-code of algorithms are presented in [20].
Theorem 1. For a meGautz with an UK(2,m) Kautz topology built

from SCautz(d,2t, t) containers, the path length in meRouting
between any two servers is, at most, 3m+6.

In meGautz, meRouting delivers a high inter-container capac-
ity at the cost of a longer diameter. This tradeoff is worthwhile for
OLDI applications, as discussed previously. Due to traffic isola-
tion, even if traversing multiple containers is required, meRouting
is also able to deal with traffic bursts gracefully.

4.2 Data Distribution for All-to-all Traffic
OLDI applications generate a typical all-to-all data shuffle over
containers, bringing intensive pressures on MDCN. Although the
situation that an entire MDC is under all-to-all traffic is rare, the
overall throughput to process it can directly reflect the MDCN’s
capacity. So we focus on analyzing meGautz’s throughput under
an all-to-all traffic pattern in theory here.

Due to traffic isolation, the all-to-all traffic in meGautz can be
divided and distributed separately, and thereby high throughput is
achieved. The intra-container flows, that each server launches with

the other servers in the same container, are processed by SCautz
via the links Lserver. While the inter-container flows that each
server launches with all servers in other containers, are processed
by meGautz via the Lswitch links and optical fibers. The overhead
caused by resource competition is completely eliminated, and the
following theorem is obtained.

Theorem 2. Consider that an MDC, with M containers, is under
an all-to-all traffic pattern. With meRouting, the number of
flows carried on a normal link Lswitch is (M−1)N(2Am+As)

4 , and
the number of flows carried on a virtual link V L between the
V P of two neighboring containers is (M−1)N2Am

4 , where N is the
number of servers in a container, Am is the average container
path length, and As is the average intra-container path length
of meRouting.

Theorem 2 indicates that the numbers of flows, carried on
the normal links and virtual links, are different under an all-to-
all traffic pattern; so are their requirements on bandwidth. The
bottleneck of meGautz is determined by the ratio of capacity of
V L over that of Lswitch [9]. According to Theorem 2, the ratio can
be estimated as r = NAm

2Am+As
.

Thus, for a mega-datacenter [2], [9] constructed by meGautz,
it accommodates 1,179,648 servers and 768 SCautz(2,10,5) con-
tainers, organized into an logical UK(2,9) Kautz topology. The
As = 4.2, Am = 7.8, so the ratio r = 605.1. It means that the
required bandwidth of a V L, to process all-to-all traffic, is 605.1
Gbps. Assuming that SCautz adopts 48-port COTS switches with
four 10 Gbps high-speed ports, a virtual port and link can provide
a bandwidth of 960 Gbps. Since all high-speed links are symmetric
and evenly used, each high-speed port should contribute a band-
width of 6.3 Gbps on average. It is less than 10 Gbps. So the fiber
cables between containers are not meGautz’s bottlenecks, and the
line rate of the normal links (i.e., 1 Gbps) can be achieved. If
the degree of meGautz takes more than 2, the required bandwidth
of inter-container links must be more than 579.6 Gbps. However,
since the high-speed ports cannot be trunked, and each one is
connected to a peer-switch in the different containers. So, every
inter-container links can only gain an aggregate bandwidth of less
than 480 Gbps, and they will become bottlenecks of the entire
MDCN, reducing the overall throughput and per-server bandwidth.

The metric ABT (Aggregation Bottleneck Throughput) [8],
[9] reflects DCN’s capacity. ABT is defined as the throughput of
bottleneck flow times the total number of flows, so distribution
time for all-to-all traffic is the total data divided by ABT. Besides
this, we introduce the inter- and intra-container throughput (ITC
and IAC) to evaluate the performance of inter- and intra-container
networks on processing their respective flows. For meGautz, its
ITC is constrained by the Lswitch links, and ITC = 4NM

(2Am+As)
; mean-

while, the throughput of each container is 4N
ASCautz

for no influence
by the inter-container traffic [16], where ASCautz is the average
path length in SCautz, so IAC = 4NM

ASCautz
. Thus, ABT of the whole

MDCN is a sum of ITC and IAC, and ABT = 4NM
(2Am+As)

+ 4NM
ASCautz

.

4.3 Optimization and Load-balancing

meRouting distributes all-to-all traffic evenly but inefficiently.
At container level, meRouting always selects the same logical
container-paths and forwards traffic via the fixed virtual ports.
While at server and switch levels, it always designates a fixed pair
of peer-switch servers with the same SN, routing inter-container
packets via two particular peer switches. Inefficient bandwidth
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usage may lead to a low utilization ratio and poor fault tolerance
of the entire MDC. So we optimize meRouting and design a load-
balancing routing algorithm, called meLBRouting, to solve this
problem.

Randomizing is effective in coping with volatility of traffic
in DCNs. Based on this principle, VL2 realizes an even traffic
distribution among core switches [21], and so does MDCube
among containers [9]. The basic idea of meLBRouting stems from
VL2 and MDCube. Further, meGautz achieves load-balancing at
the container, switch, and server levels.

Algorithm 1 The step2 of meLBRouting algorithm
Require: server X = x1x2 . . .xk, container MC, egress-switch

SMC
right(X), container MC1, SMC

right(X) and SMC1
le f t (X) are peer-

switch, server X and PeerClsuterServer(X)) in MC1 are peer-
switch servers,
X and Peerle f t(X) in Cle f t(X) are peer servers.

Ensure: NeighborContainerPathserver
1: NeighborContainerPathserver = {X , };
2: Pathserver(X ,MC1) = (X → SMC

right(X)) + (SMC
right(X) →

SMC1
le f t (X))+(SMC1

le f t (X)→ PeerClsuterServer(X));
3: let Bandwidth(X → SMC

right(X)) be the available bandwidth of
sub-path X → SMC

right(X) ;
4: let Bandwidth(SMC

right(X) → SMC1
le f t (X)) be the available band-

width of sub-path SMC
right(X)→ SMC1

le f t (X);
5: let Bandwidth(SMC1

le f t (X) → PeerClsuterServer(X)) =

max(LMC1
switch(S

MC1
le f t (X),PeerClsuterServer(X)))

// the available bandwidth of sub-path SMC1
le f t (X) →

PeerClsuterServer(X) is determined by max bandwidth of
dk−t links LMC1

switch(S
MC1
le f t (X),PeerClsuterServer(X));

6: Bandwidth(Pathserver(X ,MC1)) = min(Bandwidth(X →
SMC

right(X)),Bandwidth(SMC
right(X) →

SMC1
le f t (X)),Bandwidth(SMC1

le f t (X)→ PeerClsuterServer(X))).
7: compute dk−t −1 Bandwidth(Pathserver(Peerle f t(X),MC1))
8: find the NeighborContainerPathserver =

Pathserver(Peerle f t(X),MC1) with the max available
bandwidth.

9: let Bandwidth(NeighborContainerPathserver) =
max(Bandwidth(Pathserver(Peerle f t(X),MC1)));

10: if (Bandwidth(Pathserver(X ,MC1)) ≥
Bandwidth(NeighborContainerPathserver)) then

11: let NeighborContainerPathserver = Pathserver(x,MC1);
12: end if
13: return NeighborContainerPathserver;

The procedure of meLBRouting is as follows: 1. Choose
a neighboring container randomly as the next hop, and via it,
compute a logical container path. In meGautz’s UK(2,m) Kautz
topology, there are two node-disjoint paths by left- or right-shift
operations, respectively. So meLBRouting can spread traffic along
the different intermediate containers. 2. For building each physical
inter-container sub-path, pick the servers and switches, among
which the links have the most available bandwidth. Between
the containers, there are plenty of Lswitch and Lcontainer links,
which can be utilized by meLBRouting to construct server- and
switch-disjoint paths for balancing loads. This step is crucial
and its pseudo-code is listed above. The path from the source
to destination server in the next-hop containers comprises three
sub-paths, and its bandwidth is determined by the link with

the minimum bandwidth. To compute the bandwidth of each
path, the server keeps probing the available bandwidth of links
from it to its peer-switch servers periodically. This procedure is
analogous to the fault-routing routing algorithm; the difference is
that meLBRouting needs to find a path with the most available
bandwidth, but that is a survival one. meGautz detects failures
of links, servers and switches by means of period probing. It
marks the bandwidth of failed paths as 0, and computes another
available one to handle failures. More complex scenarios, like
robust meRouting and meLBRouting under churn [22], will be
studied in our future work.

We have the following Theorem for the meLBRouting algo-
rithm.
Theorem 3. Consider a scenario that the servers in any two

containers are under an all-to-all traffic pattern. With meL-
BRouting, the number of flows carried on a normal links Lswitch
is N(4+As)

4 , and the number of flows carried on a virtual link
V L is N2

4 .

From Theorem 3, we get the ratio of capacity of virtual links
over that of normal links, r = N

4+As
. We also take the example

in last section, N = 1,536 and As = 4.2, and r = 187.3. Thus,
for the case of two containers, the ABT is also constrained by
normal links. Even if some high-speed links break down, it will
not hurt the network throughput. Since meLBRouting also realizes
the traffic isolation, ABT = 8N

2+As
+ 8N

ASCautz
.

5 EXPERIMENTS AND ANALYSIS

In this section, we evaluate meGautz from the following aspects:
1) the overall capacity of meGautz to process all-to-all data shuffle
with inter- and intra-container traffic isolated. 2) throughput of
multiple containers for all-to-all traffic, which reflects its capacity
to support OLDI applications in the real world. 3) the performance
fluctuation when failure occurs and increases. Through these
experiments, we analyze and show the effect of traffic isolation
on performance and reliability improvements for MDCN.

The most closely related solution to meGautz is MDCube [9],
the state-of-the-art inter-container, server-centric datacenter net-
work design that performs best in network capacity and fault-
tolerance among existing designs. We take MDCube as a primary
object to be compared with meGautz. Compared with meGautz,
the topology of MDCube does not support strict traffic isolation of
inter- and intra-container routing, therefore meGautz outperforms
MDCube in all experiments where the traffic traverses both inter-
and intra-container links. We assume that the intermediate servers
relay traffic without delay, and do not consider the impacts of CPU
on packet forwarding [23]. We simulate meGautz and MDCube
by modifying the DLG simulator [24], and each experiment is
conducted 20 times to calculate the average results.

We use a meGautz built from 768 SCautz(2,10,5) containers
for mega-datacenters, and all the containers form a UK(2,9) Kautz
topology. In each container, 1,536 servers are directly intercon-
nected into a UK(2,10) Kautz topology, and 96 switches of two
types form 96 “clusters” with 48 servers in each one. So there
are 1,179,648 servers and 73,728 switches, in total. In meGautz,
the servers are equipped with three dual-port Gigabit-NICs, and
the switches have 48 1Gbps ports and four 10Gbps ports. For
comparisons, we choose a typical 2D MDCube, recommended
by [9]. It is constructed by 1,089 BCube(32,1) containers [9].
Each container has 1,024 servers and 64 switches. So there are
1,115,136 servers and 69,696 switches in it.
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TABLE 1: Key simulation results of meGautz and MDCube (Gbps).
ABT ITC IAC PST PST − ITC PST − IAC

meGautz 828,874.9 238,312.7 590,562.2 0.70 0.20 0.50
MDCube 524,656.5 524,175.2 481.3 0.47 0.46 ≪ 0.01
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Fig. 4: The key metric of meGautz (with the basic meRouting algorithm) and MDCube under the all-to-all traffic pattern.
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Fig. 5: The throughput comparison between meGautz (with the load-balanced meLBRouting algorithm) and MDCube.

The quantities of containers and servers in the candidate
meGautz and MDCube structures are both different. So, besides
the well-known metrics ABT (Aggregation Bottleneck Through-
put) [8], we also use PST (Per-server Throughput) [8], [16] to
represent the capacity of each server for processing traffic bursts
on average. Moreover, the inter- and intra-container throughput
(ITC and IAC), and the per-server throughputs for inter- and intra-
container traffic (PST-ITC, and PST-IAC) are introduced.

At last, we also analyze the cost of meGautz to build MDC
at different scales, and compare with MDCube. The comparison
shows that meGautz’s cost is relatively low and suitable to deploy
in practice.

5.1 Overall Performance with Traffic Isolated

Assuming that all the servers are under an all-to-all traffic pattern,
we measure the overall performance of meGautz using the basic
traffic-isolated meRouting algorithm. Compared to MDCube, we
make some important observations, as follows.

First, as shown in Table 1 and Figure 4, the whole meGautz
ABT is 828,874.9 Gbps and its PST is 0.70Gbps, which are im-
proved by 58.0% and 48.9% over MDCube, respectively. Second,
in meGautz, the ITC and IAC are 238,312.7 Gbps and 590,562.2
Gbps, which account for 28.8% and 71.2% of the total ABT.
Its IAC is much higher than MDCube’s IAC. More importantly,
the average IAC of each container in meGautz is 768.9Gbps,
which equals to the ABT of a separate SCautz(2,10,5) container
for processing its own all-to-all traffic, independently. While for
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MDCube, its total IAC is just 481.3 Gbps, which accounts for
far below 0.01% of its ABT. Even worse, its average IAC of
each container is only 0.5 Gbps, while the ABT of a separate
BCube(32,1) container is 1,057.1 Gbps [8]. Obviously, MDCube’s
inter-container traffic exhausts the most available bandwidth, and
almost starves its intra-container traffic.

Thus, meGautz is able to provide much higher capacity than
MDCube. In the meantime, it prevents the inter- and intra-
container traffics from interrupting each other. In particular, the
IAC of each container in meGautz can be achieved as high as
ABT in a separate SCautz container. meGautz’s traffic isolation
effectively eliminates the overhead caused by resource competi-
tion, and so it achieves high performance of both of inter- and
intra-container networks, and further that of the entire MDCN and
individual servers.

5.2 Performance on OLDI support

OLDI applications generate massive all-to-all flows over multiple
containers in MDCN. We designed a load-balanced meLBRouting
algorithm to deal with these bursts efficiently. In this subsection,
we evaluate its performance on shuffling the all-to-all traffic in
two to ten containers.

From Figure 5(a) and 5(d), we know that meGautz’s ABT
grows linearly from 3,036.4 Gbps to 15,182.3 Gbps as the con-
tainers increase from two to ten. In the meantime, its PST is
achieved and retained up to 0.99 Gbps. Clearly, the meLBRout-
ing algorithm optimizes the resource utilization of meGautz and
improves the performance. By comparison, the MDCube’s ABTs
are just 1,637.6 to 6,963.2 Gbps, when it uses its load-balancing
routing algorithm to deal with the traffic bursts. Moreover, its PST
drops from 0.79 to 0.68 Gbps, which are less than meGautz’s by
25.3% and 45.6%, respectively. The reasons why MDCube suffers
performance loss, but meGautz does not, are as follows.

On one hand, as implied by Figure 5(b) and 5(e), the ITCs of
meGautz and MDCube both grow linearly, in which the ITC of
meGautz (using the improved meLBRouting algorithm) is higher
than that of MDCube. But meGautz’s PST-ITC is kept at 0.49
Gbps without variations, while MDCube’s increases sharply from
0.39 to 0.61 Gbps by 56.4%. In the simulations, we choose
a typical 2D MDCube, which is constructed by BCube(32,1)-
containers, to compare to meGautz. Each BCube-container has
four neighbors with the high-speed ports of switches linked
directly. By using its detour routing algorithm [9] to balance load,
the most servers can deal with the inter-container traffic via the
neighboring containers. Therefore, MDCube’s ITC is able keep
increasing when the number of containers is not more than four,
for there is little resource competition between the inter- and intra-
container traffic. Once the number of containers is beyond four, the
resource competition in MDCube becomes more frequent. The
resulting performance loss will make the PST-ITC of MDCube
flatten out.

On the other hand, as the number of containers rises to ten,
Figure 5(c) and 5(f) shows that meGautz has its IAC to grow
linearly, with the average IAC of each container (768.9 Gbps)
and PST-IAC (0.50 Gbps) unchanged. However, although the
number of servers rises from 2,048 to 10,240, MDCube’s total IAC
decreases, instead. It is because that the PST-IAC drops notably
from 0.40 to 0.07 Gbps by 82.5%.

In summary, MDCube has the majority of resources over-
whelmed by its inter-container flows, resulting in a significant

overhead by resource competition. While in meGautz, meLBRout-
ing not only makes flows utilize all the resources efficiently,
but also achieves traffic isolation between the inter- and intra-
container flows, and allocates bandwidth to them evenly. Thus,
meGautz is able to provide a high and sustaining capacity to
distribute traffic bursts quickly, and support OLDI services better.

5.3 Robustness

In this subsection we evaluate the robustness of meGautz under
server/switch failures.

For the server-centric DCNs, server failures not only make
computation and storage capacities decrease, but also hurt network
performance. So, network capacity should not degrade faster than
the computation and storage. In these simulations, we assume
that all the faults are caused by servers and switches, and their
links become unavailable. We study the throughput changes of two
containers in meGautz and MDCube, as faults occur and increase.
This scenario is ordinary and representative in practice, because
an OLDI application always needs more than one container.

We first evaluate the impact of server failures on the through-
put of meGautz, and compare it with MDCube under the same
configuration. We emulate the failures by choosing failed servers
randomly and uniformly from the network and making them not
participate in the routing. The percentage of failed servers ranges
from 0 to 20 percent. Typically, when 10% and 20% of servers
fail, the computation capacity of datacenters drops by 10% and
20%. While for MDCN, the meGautz’s ABT drops by 10.4%
and 23.4%, in which the ITC decreases by 11.4% and 24.9%,
and the IAC decreases by 9.7% and 21.9%, shown in Figure 6
(a). However, MDCube’s ABT drops by 25.5% and 50.1%. Since
our simplified simulator cannot distinguish the inter- and intra-
container traffic of MDCube, Figure 6 depicts ITC and IAC only
for meGautz.

We then evaluate the impact of switch failures on the through-
put of meGautz, and compare it with MDCube under the same
configuration. We emulate the failures by choosing failed switches
randomly and uniformly from the network and making them not
participate in the routing. The percentage of failed switches ranges
from 0 to 20 percent. From Figure 6 (b), we see that 10% or
20% of failed switches result in only 4.78% and 9.73% ABT
degradation of meGautz. It is because that the switch faults have
little impact on its IAC, and consequently, much less impact on
the network performance than servers. By comparison, MDCube’s
ABT shrinks over 50% when just 10% of the switches fail.

Thus, meGautz not only behaves much better than MDCube
on tolerating the faults of servers and switches, but also makes the
network performance degrade as slowly as the computation and
storage do.

5.4 Cost comparison

Construction cost is an important issue, which needs to be con-
sidered for interconnecting containers to build MDC. meGautz
and MDCube adopt the containers with different intra-container
networks, and organize them into the different topologies, re-
spectively. Consequently, the number of servers in SCautz- and
BCube-containers are different, and the number of containers in
a complete meGautz and MDCube are also different. To compare
fairly, we estimate their cost to construct MDC with the same
number of servers in a incomplete structure, including the number



JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 10

5 10 15 20
500

1000

1500

2000

2500

3000

3500

Failure Ratio (%)

T
h

ro
u

g
h

p
u

t 
(G

b
p

s
)

meGautz ABT

meGautz ITC

meGautz IAC

MDCube ABT

(a) Server failures

5 10 15 20
0

500

1000

1500

2000

2500

3000

3500

Failure Ratio (%)

T
h

ro
u

g
h

p
u

t 
(G

b
p

s
)

meGautz ABT

meGautz ITC

meGautz IAC

MDCube ABT

(b) Switch failures

Fig. 6: The throughput degradation of two containers in meGautz and MDCube as failures occur and increase.

TABLE 2: Costs of meGautz and MDCube at various scale.
Container NO. Swtich NO. Links NO.

small meGautz 7 672 2,688
small MDCube 10 640 2,560
medium meGautz 66 6,336 25,344
medium MDCube 98 6,272 25,088
large meGautz 652 62,592 250,368
large MDCube 977 62,528 250,112

of containers, switches, and links between containers they need at
least.

Assuming the small, medium, and large scale MDC have
10,000, 100,000, and 1,000,000 servers, respectively, we compute
and compare the construction costs of meGautz and MDCube.
Typically, meGautz and MDCube still choose SCautz(2,10,5)-
and BCube(32,1)-containers with same switches as in above three
evaluations. As shown in Table 2, both meGautz and MDCube
need a large number of switches and links to support efficient
all-to-all traffic. On the other hand, meGautz and MDCube have
almost the same costs. Although the number of switches and
links in meGautz is slightly more than that in MDCube, the
needed number of containers is less by about 30%. It helps
lowering wiring and management complexity. The spare switches
we need have already been prefabricated in each SCautz-container,
and the number is fixed. In SCautz, they are reserved to deal
with traffic bursts and frequent failures. Because meGautz does
not introduce new switches, and the required optical fibers for
container interconnections are slightly more than MDCube, so the
cost for meGautz to construct massive datacenters is relatively
low. Besides, meGautz achieves higher performance and better
fault-tolerance than MDCube, so it is more cost-efficient.

6 RELATED WORKS

The modular datacenter network (MDCN) allows the intra- and
inter-container networks to be designed separately, which sim-
plifies the construction and maintenance of huge MDC. It is
considered as the ideal next-generated DCN, and lots of novel
solutions [8], [9], [14], [16], [25], [26] have been proposed. The
classic intra-container networks include CamCube [27], BCube
[8], and SCautz [16]. CamCube adopts a direct-connect 3D torus
topology, and it focuses mainly on providing flexible routing
APIs for cloud applications. BCube interconnects servers into a
hypercube topology, by taking the COTS switches as dumb cross-
bars; meanwhile, SCautz first connects the NIC ports of servers,

forming a base Kautz topology, and then over-provides tens of
COT switches, further building two logical Kautz structures.
Both of them achieve an uniformly high network capacity and
graceful performance degradation, in which SCautz behaves much
better with lower cost, particularly, in fault-tolerance. SCautz and
meGautz both successfully achieve high performance and fault
tolerance. But SCautz only focuses on the flows in one container,
while meGautz simultaneously deals with the inter- and intra-
container flows effectively. meGautz is built based on SCautz for
its special hierarchical structure, other than BCube, DCell, and
Fat-tree. SCautz has a physical and two logical Kautz topologies.
So it can accommodate a specific number of spare switches and
links, which are used by meGautz to isolate traffic and tolerate
faults. Therefore, meGautz is able to achieve higher throughput
without resource competition, and fewer performance degradation
with continuous failures.

In this paper, we focus on the inter-container networks. He-
lios [14] deploys both commercial 10Gbps packet switches and
MEMS-based optical circuit switches between containers, and
uses them to deal with the different communication patterns. To
lower the cost, it tries to achieve full bisection bandwidth by
allocating bandwidth dynamically. Facing the all-to-all traffic, the
throughput of Helios is limited by its performance bottlenecks and
worse than fat-tree. Jellyfish [28] adopts a degree-bounded random
graph topology to interconnect the top-of-rack (TOR) switches. It
realizes incremental expansion of MDCN to build massive MDC
with different degrees of oversubscription. For one-to-one traffic
pattern, Jellyfish is more cost-efficient than a fat-tree, while for all-
to-all, its throughput will be limited by the bottlenecks. uFix [15]
builds mega-datacenters based on the heterogeneous containers, by
interconnecting just one Gigabit-NIC port of servers. Therefore,
its aggregation bandwidth between containers is small, resulting
in a poor per-server throughput of 0.21 Gbps at most. By contrast,
MDCube [9] connects the neighboring containers via two switch-
es, and arranges containers into a 1D or 2D hypercube structure.
Therefore, its capacity and reliability are both better than Helios,
Jellyfish, and uFix. However, as in uFix, all its links are used by
both of BCube and MDCube simultaneously. So, no matter if the
intra- or inter-container traffic increases, it will preempt the avail-
able bandwidth, resulting in a significant throughput decline of the
other one. Moreover, switches between containers are the single
point of failure in MDCube, i.e., the failure of only one switch will
disconnect the neighboring containers. Despite it still being reach-
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able via other intermediate containers, the fault-tolerant routing
will take more hops and consume extra bandwidth, making the
performance of MDCube decrease sharply. For meGautz, there
are three advantages in gaining higher throughput over MDCube:
topology design, construction method, and traffic-isolated routing
algorithm. First, we design meGautz based on a constant-degree
Kautz graph. The Kautz graph can obtain a smaller diameter than
other topologies with the same degree and order, e.g., hypercube
in MDCube, Butterfly, and d-dimensional torus. Second, we make
a tradeoff between the degree and diameter of meGautz. The rich
connectivity and high bandwidth between the containers support
OLDI services well. Third, the inter- and intra-container routing
makes full use of the different links and switches to forward their
flows. The inter- and intra-container traffic are isolated to avoid
throughput loss caused by resource competition.

Traffic isolation is firstly considered as a design goal of
MDCN, has been well achieved by meGautz to avoid performance
loss caused by resource competition. As discussed in Section
2, there are two way for container interconnection: introducing
new high-end switches [14] and wiring the existed components
[9], [15], [28]. The former uses the new switches and external
links transfer the inter-container flows, which do not have to
rely on any links inner the containers. For example, MDCN
is built by wiring containers with core switches into a fat-tree
topology. To be non- oversubscribed, its number of servers in
each pod or container, and links and switches in each layer are
all accurately planed. Every inter-container (or inter-pod) flows
must be evenly mapped to the different paths and be forwarded
by one core switch, needless to get a third container (or pod)
involved. So, the MDCN can achieve full bisection bandwidth
for there is no resource competition. The latter wires the free
components in the different containers, e.g., uFix wiring NICs
of servers, MDCube and Jellyfish wiring high-speed ports of
switches. Before reaching the destination server, an inter-container
flow has to traverse multiple intermediate containers, entering
from one port and leaving from another. If it has to multiplex the
resources in containers, resource competition will occur, no matter
that the MDCN is switch- or server-centric. Take MDCube as an
example, it has high-speed ports of the different switches in each
BCube-container linked to the neighboring containers. MDCube
computes the sub-paths through the intermediate containers for
inter-container flows, by leveraging the same routing algorithm
and links in BCube. Therefore, when MDCube’s servers have
an all-to-all traffic from two to ten containers each with 1,024
servers, its per-server throughput for inter-container traffic (PST-
ITC) increases from 0.39 to 0.61 Gbps by 56.4%; whereas its per-
server throughput for intra-container traffic (PST-IAC) decreases
from 0.40 to 0.07 Gbps by 82.5%. As a result, the total per-
server throughput (PST) of MDCube drops by 16.2%, from 0.79 to
0.68 Gbps. Since MDCube is over-subscripted and the bottleneck
is its intra-container links [9], their bandwidth is continuously
preempted by inter-container flows and links get more congested,
as the number of containers grows. So MDCube’s PST-IAC is
reduced obviously, and its PST decreases as well. In sum, all
the existed inter-container networks dont consider the problem
of resource contention. They leverage the intra-container links
to realize inter-container routing, and allocate bandwidth to the
intra- and inter-container flows proportional to their quantities.
If the novel routing algorithms are proposed to limit the two
kinds of flows at computed rates by switches and servers, the
available network capacity can be utilized optimally. So either

TABLE 3: Comparison of different network structures.
Degree Diameter Bisection

Bandwidth
hypercube log2 N log2 N N2

4
d-torus 2d 1

2dN
1
d

1

4dN
1
d

fat tree / 2log2N N/2
Kautz d logd N − logd(1+1/d) 2dN

logd N−logd (1+
1
d )

kind of flows cannot consume excessive resources, making the
other one starve. But if the inter- and intra-container flows are still
transferred via one or several same links in the containers, e.g., in
Jellyfish [28], the resource competition can also not be eliminated.
By comparison, meGautz is able to isolate traffic from SCautz, by
using the spare switches and links in containers. So it eliminates
the resource competition completely.

We design meGautz based on Kautz graphs [17], [29]. As
Table 3 shows, among all the existing graphs (including hy-
percube, d-torus, fat tree, etc.), Kautz graphs have the smallest
diameter D = logdN (given the number of nodes N and maximum
degree d), which reaches the Moore bound [30]; Kautz graphs also
accommodate the maximum number of nodes of dD+dD−1 (given
the diameter D and maximum degree d). Furthermore, Kautz
graphs have many other desirable properties such as maximum
connectivity, constant congestion and robust routing.

meGautz realizes traffic isolation from the topology per-
spective, i.e., the inter- and intra-container routing is conducted
using different links of the topology. Therefore, our design is
orthogonal to packet-level isolation methods like MPLS (Multi-
Protocol Label Switching) [31], traffic classification [32], and
bandwidth provisioning [33]. For example, one can realize inter-
and intra-container traffic isolation on a meGautz network, and
further distinguish intra-container traffic based on the label of each
packet [31].

Additionally, there are a lot of ongoing works about MDCN
in other aspects, such as energy saving, TCP in datacenters [34],
flow scheduling [35], and network virtualization [7]. Our work is
orthogonal, and takes some inspiration from them.

7 CONCLUSION AND FUTURE WORK

According to the distinctive prosperities of MDC, inter-container
networks should not only be high capacity and fault-tolerant, but
also should isolate traffic from the intra-container networks. In
this paper, we have presented the design, construction, and eval-
uation of meGautz. By making full use of the spare resources in
containers, it isolates traffic between the inter- and intra-container
routing, so that its intra-container throughput of each container can
be achieved as high as the throughput of an individual SCautz-
container; its total throughput is 40% more than MDCube. As
far as we know, in the server-centric inter-container networks,
meGautz is the first to realize traffic isolation in both topology and
routing algorithms. Due to rich connectivity between neighboring
containers and multiple paths in meGautz, the reliability of the
entire MDCN is improved greatly. Our theoretical analysis and
experiments show that meGautz is an attractive and valid inter-
container network structure for MDC. In the ongoing work, we
are building a practical prototype system to further evaluate its
characteristics.

In this paper we mainly focus on all-to-all traffic, which is the
worst-case communication pattern in datacenter networks [36].
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As discussed in [13], however, some OLDI applications’ traffic is
not always all-to-all. Therefore, it is possible to design simplified
network topologies that could satisfy specific OLDI applications
(but provide less ABT for all-to-all traffic than meGautz), which
will be studied in our future work. The incremental deployment
of meGautz is another problem we plan to solve in the future
work. In [37], the author has presented a method for constructing
incremental scalable partial line diagraphs [38] of Kautz graphs
with best possible connectivity, close to, or exactly equal to, d. It
makes the Kautz graphs unique in the sense that they are not only
the densest digraphs, but also incremental scalable. Moreover, the
topology expanding of Kautz graphs have been deeply studied in
DHT of P2P [29], [30]. We will take some inspiration from them
and realize incremental scalability of meGautz without rewiring
links between containers.
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[38] M. Fiol, A. S. Lladó et al., “The partial line digraph technique in the de-

sign of large interconnection networks,” Computers, IEEE Transactions
on, vol. 41, no. 7, pp. 848–857, 1992.



JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 13

Feng Huang received his PhD degree in com-
puter science and technology from the College
of Computer, National University of Defense
Technology in 2013. His research interests in-
clude cloud computing, data center networking,
virtualization technology, and high-performance
router.

Yiming Zhang is currently an associate pro-
fessor in the National Laboratory for Parallel
and Distributed Processing, College of Com-
puter, NUDT. His current research interests in-
clude cloud computing and operating system-
s. He received the China Computer Federation
(CCF) Distinguished PhD Dissertation Award in
2011 and the HP Distinguished Chinese Student
Scholarship in 2008. His current research is pri-
marily sponsored by NSFC.

Dongsheng Li is a professor and doctoral su-
pervisor in the College of Computer at National
University of Defense Technology (NUDT). He
received his PhD degree in computer science
and technology from NUDT in 2005. He was
awarded the Chinese National Excellent Doctor-
al Dissertation in 2008. His research interests in-
clude distributed systems, cloud computing and
big data processing.

Jiaxin Li is a PhD candidate in the College
of Computer at National University of Defense
Technology (NUDT). He received his Master’s
Degree in computer science and technology
from NUDT in 2013. His research interests in-
clude distributed systems, and computer net-
works & communications.

Jie Wu is a professor in the College of Sci-
ence and Technology at Temple University. He
received his PhD degree in computer engineer-
ing from Florida Atlantic University in 1989. His
research interests include mobile computing and
wireless networks, routing protocols, computer
and network security, distributed computing, and
fault-tolerant Systems.

Kaijun Ren is a professor at National University
of Defense Technology (NUDT). He received his
PhD degree in computer science and technology
from NUDT in 2008. His research interests in-
clude Web-based systems, cloud computing and
big data processing.

Deke Guo received his B.E. degree in Depart-
ment of Industry Engineering from Beijing Uni-
versity of Aeronautic and Astronautic, and his
Ph.D. degree in School of Information System
and Management, National University of De-
fense Technology. His research interests include
multi-hop wireless networks and data center net-
working.

Xicheng Lu is a professor and doctoral supervi-
sor in the College of Computer at National Uni-
versity of Defense Technology (NUDT). He is a
member of the Chinese Academy of Engineering
since 1999. His research interests include par-
allel and distributed processing, and computer
networks.


