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Abstract—Nowadays vehicle fleets are launched to perform
business or scientific tasks, with new features supported by the
emerging multi-access edge computing (MEC) platform. In the
presence of high vehicle mobility, however, it is challenging to
precisely provision resources among distributed edge clouds so
that i) the QoS of vehicular service is guaranteed and mean-
while ii) the provisioning cost is minimized. We systematically
investigate the QoS guaranteed optimal resource provisioning
problem for the connected vehicle fleet in the MEC environment.
Based on stochastic traffic analysis, we propose an optimization
framework to minimize the cost of resource provisioning, while
the service blocking probability is guaranteed to be smaller than
a predefined threshold. We then present a lightweight two-phase
algorithm based on bracketing and binary searching to solve the
problem efficiently. To evaluate our method, we use two large
real-world datasets collected by an online taxi service platform
and validate the QoS with our resource provisioning strategy. The
results demonstrate that our method can save the total provision
cost up to 40%, compared with the naı̈ve resource provisioning
strategy, and meanwhile can provide reliable QoS guarantee,
compared with the mobility estimation-based approach.

I. INTRODUCTION

The market of connected vehicles, including the connected
autonomous driving (AD) vehicles, is growing rapidly with
a five-year compound annual growth rate of 45%, which is
10x faster than the overall car market [1]. According to the
statistical report from Statista [2], the revenue in the connected
vehicle market accounted for $8.2 billion in 2017 and will
grow up to over $18 billion by 2021 in the U.S. alone.

Recently, more and more vehicle manufacturers, retailers
and owners are marching into the connected vehicle market.
They own and manage a fleet of vehicles, consisting of hun-
dreds or even thousands of cars, taxis or trucks, to undertake
specific business or scientific tasks. For example, Google [3],
Lyft & Aptiv [4], GM [5] and JD.com [6] have launched their
own fleets of connected (AD) vehicles in cities, on highway
backbones, or around port wharves, for the purposes of street
scene capturing, passenger delivering and goods shipping.

The efficient and safe running of connected vehicle fleet
is technically provided by advanced vehicular applications,
including i) intra-vehicle assistant services, e.g., self-parking
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Fig. 1. LTE/5G aided MEC architecture for connected vehicle applications.
Note that the edge cloud can be located either at the base stations (or cell
towers) upgraded by mobile operators or in the SDN/NFV-enabled (mini)
datacenters deployed by telecom equipment vendors (e.g., IBM, Huawei, and
Ericsson) and IT platform vendors (e.g., AWS and Azure).

and automated driving [7], and ii) inter-vehicle cooperated
services, e.g., traffic monitoring and alerting, optimal route
navigation, and real-time videos sharing [8]. While these
services introduce new digital vehicular features, they pose
significant technical challenges on supporting high computa-
tion, low latency, and high bandwidth in the vehicular network.

The above challenges can be tackled with the technology of
mobile edge computing, with recent evolution to multi-access
edge computing (MEC) [9], [10]. Under the MEC paradigm,
traditional backend cloud environment is moved to the network
edge (named edge cloud), and is thus much closer to the end
users. Further aided by the upcoming LTE/5G networks, MEC
is expected to provide a high quality of service (QoS) for the
connected vehicle fleet [11]. Fig. 1 gives a big picture of the
MEC architecture and its role played in the connected vehicle
fleet. As shown in the figure, the connected vehicles get access
to the cellular network via their nearest base stations (or cell
towers), and make use of resources provided by distributed
edge clouds for particular vehicular applications.

To ensure the QoS for the connected vehicle fleet, we need
to carefully provision sufficient resources1 for the distributed
edge clouds. To be specific, the resources of each edge cloud
should be sufficient at any time instant, upon the requests
of vehicles, especially those running under high levels of
autonomous driving [12]. The shortage of edge resources may
incur the service delay, and in some cases such a delay might
be fatal. Hence, edge resource provisioning cannot be more

1The resources at an edge cloud in this paper generally refer to the
computation, storage and bandwidth that are deployed for supporting specified
vehicular services.
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critical for the safe running of the connected vehicle fleet.
Under the condition of high vehicle mobility, how to

optimally allocate resources among distributed edge clouds
becomes extremely difficult. As demonstrated by a large body
of investigations on vehicle mobility, it is hard to precisely
compute the vehicle travel time from one location to another,
due to the complex traffic conditions and diverse driving
habits [13], [14]. Thus in our application context, we can
only estimate the approximate vehicle travel time, from one
mobile network cell2 to another, particularly with a (travel
time) distribution, rather than a precise value. This leads to
the uncertainty of real-time vehicle arrivals and departures
at each cell, as well as the edge resource requests during a
short period. Consequently, precise resource provisioning to
guarantee “seamless handover” of vehicular services between
cells is almost impossible.

Simple over-provisioning with redundant resources before-
hand is not ideal at best and infeasible at worst, due to the high
cost and limited amount of resources deployed at the edge.
Previous work on edge/cloud resource provisioning utilized
the expected resources from either historical observations [15],
[16] or mobility estimations [17], [18], and apply the expected
values for provisioning. The expected values, however, can
be much different from the actual ones from a probabilistic
perspective. For instance, with the result of “the expected
number of vehicle arrivals is 9.5” from an expectation-based
solution, by no means it guarantees that the actual vehicle
arrivals will not exceed 10. In other words, those expectation-
based solutions cannot guarantee actual resource demands and
thus may lead to a high rate of service failures in practice.

While there is a broad spectrum of work on resource
provisioning for the mobile cellular network, the problem in
the context of MEC for connected vehicle fleets is much
different and even more challenging. With the commonly-
used virtualization technology, redundant resources at the edge
cloud can be temporarily freed and then reused whenever
needed. In other words, resource provisioning at the edge
cloud should be elastic, which differs from the static provision
in the mobile cellular network. In addition, vehicle arrivals
and departures in neighboring cells are highly correlated.
Although such correlations can be helpful to the design of edge
resource provisioning in a general view, to correctly identify
and properly exploit them for an optimal resource provisioning
solution are still challenging.

The above challenges directly motivate our work in this
paper, in which we make the following major contributions:
• We systematically investigate the QoS guaranteed optimal

resource provisioning problem for connected vehicles
over the typical MEC architecture, where the request
uncertainty caused by vehicle mobility has been carefully
captured.

• With stochastic traffic analysis, we establish an optimiza-
tion model to minimize the resource provisioning cost at
each edge cloud, with the constraint of service blocking
probability smaller than a predefined threshold. Using

2In the rest of the paper, we use “cell” to represent “mobile network cell”
for simplicity.

a fleet mobility matrix which will be defined later, our
model well captures the correlation in vehicle mobility in
neighboring cells. We also develop a two-phase algorithm
to solve the problem based on bracketing and binary
search.

• We evaluate our method with two large real-world
datasets from an online taxi service platform, containing
the trajectory information of 58, 770 vehicles in one
month time. By extensive experiments, we demonstrate
that our method could save the total provisioning cost
up to 40% compared with the naı̈ve resource provision-
ing strategy; meanwhile our method could always pro-
vide reliable QoS guarantee compared with the mobility
estimation-based method.

The rest of the paper is organized as follows. Sec. II reviews
the literature relevant to our work. Sec. III gives an overview
of the targeted scenario and basic assumptions, as well as the
formal problem representations. Sec. IV presents our traffic
flow models and the stochastic traffic flow analysis, based
on which an optimal resource provisioning problem is built.
We solve the optimization problem under QoS guaranteed
constraints in Sec. V and validate our approach by performing
comparison experiments using real-world datasets in Sec. VI.
Sec. VII concludes the paper.

II. RELATED WORK

Both MEC and RAN (radio access network) resource pro-
visioning are related to this work, while we mainly focus on
the former in this paper. Research on resource provisioning
under the MEC paradigm can be roughly grouped into two
categories: (1) historical data based methods, and (2) mobility
estimation based methods.

A. Historical Data based Methods

To satisfy the resource needed by the vehicle fleet, the
simplest solution is to provision sufficient resources at each
cell which can serve the whole fleet simultaneously. However,
such a method will cause significant resource waste. To
match the allocated resource with future resource demands,
the historical data based methods have been proposed, which
estimate future resource demands based on historical data. The
method in [19] estimated the resource requests in each cell
based on historical resource usage information. In [15], [16],
vehicle historical trajectories were firstly used to predict the
future trajectories, based on the observation that people drive
along familiar routes more frequently. Then, the resources
of each cell along the future trajectories could be estimated.
Authors in [20] addressed the resource deployment problem
by solving a mixed integer linear programming problem from
a global view. It took the user mobility into consideration by
combing the VM replication and migration technologies.

Methods in this category have two major pitfalls: i) There
is no guarantee for sufficient resource allocation or optimal
resources provisioning at any time, because “history does not
happen everyday”. ii) Such methods may work well only for
situations where the movement pattern of vehicles repeats
periodically, but it would be difficult to apply them in other
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scenarios involving irregular vehicle movements, such as the
online taxi services introduced in our later experiments.

B. Mobility Estimation based Methods

Since a vehicle cannot pass through multiple cells within a
short time period, methods in this category normally consider
neighboring cells. The method in [17] adopted a proactive
resource allocation approach, in which all cells one-hop away
from the current cell would be provisioned with resources. Ob-
viously, such strategy may lead to resource over-provisioning
and inefficient utilization. To reduce the resource waste caused
by provisioning resource at all neighboring cells, the authors
in [18], [21] proposed to allocate resources to a subset of
neighboring cells. The subset was selected based on a weight
value that indicates the handover probability with neighboring
cells [18], and only the neighboring cells with weights larger
than a threshold were selected. Moreover, in [21], the subset
was selected by minimizing an objective function related to
expected average delay and caching cost. Authors in [22], [23]
built a user mobility model by using multiple users’ traces. In
addition to the user-defined mobility model, some work pre-
dicted mobility using Markov-based and compression-based
predictors [24]. A continuous time Markov decision process
was adopted to decide whether to deploy resources on the cell
where the user located [25]. In this scenario, the user would
be continuously served by the cloud resources in previous cell
even if it reaches a new one, in which the deployment cost
was valued more than the QoS.

Our method presented in this work belongs to this category,
but it is different from the above ones. Previous mobility
estimation based methods usually make resource provision
using the expected values of vehicle arrivals/departures. In
contrast, our method considers all possible values of vehi-
cle arrivals/departures and guarantees a pre-defined blocking
probability upon resource provisioning.

There are also related works on resource provisioning and
allocation for MEC using different (and less strict) QoS mea-
sures. or example, in the latest work [26], [27], [28], instead
of enforcing a rigid QoS threshold, the average service delay
was minimized in designing the optimal resource allocation
schemes.

III. PROBLEM REPRESENTATION AND ASSUMPTIONS

A. Overview

Fig. 2 illustrates an example scenario of the MEC-enabled
connected vehicle fleet in a target area (i.e., the area where
the vehicle fleet is expected to travel around), which consists
of four cells (labeled by A, B, C and D). In each cell,
the base station (or cell tower) initially constructed for the
mobile network is also attached with an edge resource pool
(i.e., the edge cloud) supplying resources for computation and
data storage of vehicular services. The connected vehicles can
travel freely in the target area as shown in Fig. 2.

Note that when a vehicle leaves cell A and drives into B,
its original connection to mobile network in A will be cut
down, and meanwhile a new connection to mobile network in
B will be established. Ideally, the handover process should be

Edge Resource Pool

Vehicle Traffic 
between Cells

A

B

C

D

Fig. 2. An example scenario of the system model: the target area consists of
4 cells A,B,C, and D, each installed with a base station for communication
and edge resources for computation.

seamless such that the vehicle will not be “out of service”. For
the MEC-enabled vehicular service, once the (radio) handover
process is completed, the vehicle will make a migration request
to the edge cloud deployed in cell B, and the edge cloud
responds to the request by allocating necessary resources for
the service migration (i.e., the MEC-based communication is
in a request/response way). If cell B runs out of edge resources
when the vehicle enters the cell, the vehicular service will be
denied by the edge server or wait in a queue. In this case, we
say the service request is blocked. Specifically, we have the
following definition for QoS metric used in this work.

Definition 1. Service blocking probability, denoted by P (∅),
is defined as the probability that a vehicle’s request cannot
be served due to the unavailability of edge resources in the
MEC-enabled vehicular service, with the event of no available
edge resources represented by ∅.

Notice that with the above QoS metric, we can easily
infer the availability of targeted vehicular service, which is
one major concern in the service-level agreements (SLAs)
provided to the customers.

Assume that for a particular task assigned to a connected
vehicle fleet, the vehicles need to travel around the target area
covered by N cells. Each of the cells has an edge resource
pool. Since the available resources within each pool should
fluctuate as the vehicles arrive and depart throughout the day,
we use Cn(t) to denote the required edge resources3 for cell n
at time t. Our goal is to ensure that there are always sufficient
resources serving the requests of connected vehicles, while
eliminating resource over-provisioning.

We assume a working time period for the connected vehicle
fleet, e.g., 8:00 am to 6:00 pm, and then divide the time period
into smaller equal time slots, e.g., 3 minutes. Then, we further
assume that the edge resources should be provisioned one
time slot ahead, because resource provisioning involves tasks
such as environment preparation and VM/container allocation,
which may be time consuming.

With the above assumptions, our goal is to find out the min-
imum resources that each edge cloud should be provisioned
in each time slot, such that the service blocking probability
of the vehicular service is smaller than a user-defined QoS
threshold, such as ε = 0.01.

3To ease analysis, one unit of edge resource here refers to the amount
of resources (such as computation, storage and bandwidth) consumed by one
vehicle in providing required services for a given time period (e.g., 3 minutes).
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Fig. 3. Arrival and departure time analysis of vehicles at cell n.

B. Vehicle Fleet Modelling: States & Partition

Consider a fleet of connected vehicles to complete a given
task, such as goods shipping or passenger delivery. Assume
that the time slot sequences in a working day are denoted as
{1, 2, · · · , T}, where T is the total number of time slots. For
an arbitrary time slot t, we define a fleet distribution vector
S(t), with Sn(t)(n ≤ N, t ≤ T ) representing the number of
vehicles in cell n at the beginning of time slot t:

S(t) := [S1(t), S2(t), · · · , SN (t)], (1)

where N is the total number of cells (or edge resource pools)
in the target area. Note that the information of fleet distribution
vector can be determined with the help of edge cloud service
(like vehicle localization), and the total number of working
vehicles in time slot t can be computed by

∑N
n=1 Sn(t).

Then, within an arbitrary time slot t, we define a fleet
mobility matrix H(t) to include the overall moving directions
of all vehicles at the beginning of this time slot:

H(t) :=


H1,1(t) H1,2(t) · · · H1,N (t)
H2,1(t) H2,2(t) · · · H2,N (t)

...
...

. . .
...

HN,1(t) HN,2(t) · · · HN,N (t)

 (2)

in which Hi,j(t) is the fraction of vehicles in cell i that are
travelling towards cell j in time slot t, where 0 ≤ Hi,j(t) ≤ 1

and
∑N
j=1Hi,j = 1. Note that Hi,i denotes the fraction of

vehicles that would stay in the same cell i. Such information
can also be obtained with the help of the edge cloud service,
for example, by collecting the information of navigated routing
path and real-time localization of each vehicle.

With the information of fleet distribution vector and fleet
mobility matrix, we are able to compute fine-grained vehicle
traffic flows: the number of vehicles in cell i that are moving
towards cell j(6= i) in time slot t is Si(t)Hi,j(t). Further-
more, for an arbitrary time slot t, we can also calculate the
total number of vehicles that are moving towards cell n by∑N
i=1,i6=n Si(t)Hi,n(t) and the total number of vehicles that

are leaving cell n by
∑N
j=1,j 6=n Sn(t)Hn,j(t).

C. Vehicle Arrival and Departure Analysis

In addition to knowing how many vehicles are moving
towards where, we also need to know approximately when
they will leave one cell and enter another, i.e., the time
instant when a vehicle arrives at the boundary of two cells.
As we have mentioned before, precise travel time estimation

for vehicles nearly impossible. Instead, we should use an ar-
rival time probability distribution function (arrival time PDF),
which discloses the vehicle arrival time from a probabilistic
perspective [13]. Similarly, we can also use the departure time
PDF of a vehicle, which indicates the distribution of vehicle
departure time.

Then, for an arbitrary cell n, as illustrated in Fig. 3, both
the arrival time PDFs of vehicles moving towards cell n and
departure time PDFs of vehicles leaving cell n in each time
slot can be computed, with travel time estimation techniques
(e.g., in [13]) and the computing capability provided by the
edge cloud. Specifically, for an arbitrary time slot t, we denote
the arrival time PDF of vehicle m towards cell n by P

(arr)
n,m,t

and the departure time PDF of vehicle m leaving cell n by
P

(dep)
n,m,t, respectively.
Thus, for a specific time slot t, the expected number of

vehicles that arrive at cell n (i.e., the vehicle arrival rate of
cell n), denoted by λn(t), can be calculated by:

λn(t) =

{
0, if M = 0,∑M
k=1

∫ t+1

t
P

(arr)
n,mk,t

(t)dt, else,
(3)

where M =
∑N
i=1,i6=n Si(t)Hi,n(t) is the total number of

vehicles that are moving towards to cell n in time slot t.
Similarly, for a specific time slot t, the expected number of

vehicles that departure from cell n (i.e., the vehicle departure
rate of cell n), denoted by µn(t), can be calculated by:

µn(t) =

{
0, if M = 0,∑M
k=1

∫ t+1

t
P

(dep)
n,mk,t

(t)dt, else,
(4)

where M =
∑N
j=1,j 6=n Sn(t)Hn,j(t) is the total number of

vehicles that are leaving from cell n in time slot t.

Remark 1. A main difficulty of our problem comes from the
uncertainty on the times of vehicle arrivals/departures to/from
a cell, which can be indicated by the variation of P (arr)

n,m,t (or
P

(dep)
n,m,t). As a real case shown in Fig. 4, we can observe that
P

(arr)
n,m,t (or P (dep)

n,m,t) indeed had a large variation. In the daytime
particularly, the variation range was as high as 20 minutes.

D. Problem Statement

As vehicles arrive and depart, the volume of available edge
resources within each cell changes throughout the working
time period. Unexpectedly, the service request of a vehicle
towards an edge will be blocked if the resource of the edge
has been used up upon arrival of the vehicle.

Mathematically, for an arbitrary time slot t, 1 ≤ t ≤ T and
a cell n, 1 ≤ n ≤ N , given the knowledge of fleet distribution
vector S(t), fleet mobility matrix H(t), and vehicle arrival
rate λn(t) and departure rate µn(t), our goal is: to minimize
the edge resources provisioned at the cell for this time slot
Cn(t), such that the service blocking probability at the cell is
no bigger than a (small) user-specified QoS threshold ε, i.e.,
P (∅) ≤ ε.

Remark 2. Equations (3) and (4) cannot be used directly to
determine the resources of edge cloud within the given cell.
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Fig. 4. The variation of vehicle travel time from one cell to another (A to
B in Fig. 5), extracted from the dataset collected in a real-world online taxi
service platform over one month time.

These are expected values which may be different from actual
values. For instance, given that the expected number of arrival
vehicles during a future time slot is 9.5, it is not correct to
conclude that provisioning 10 units of resources is sufficient
during this time slot. Instead, we should apply probabilistic
analysis to compute the blocking probability.

IV. OPTIMAL RESOURCE PROVISIONING BASED ON
STOCHASTIC TRAFFIC ANALYSIS

A. Traffic Flow Definition

To analyze the vehicle mobility among all the N cells, we
first investigate the vehicle flows at a particular cell n. Then,
making use of the arrival and departure information of vehicles
in the current time slot, we calculate the vehicles’ arrival and
departure in the next time slot at cell n. By doing so for
each cell, we can provide the one-time-slot-ahead resource
provisioning for each edge cloud.

Referring to the mobility of individual vehicles illustrated
by Fig. 3, we can model two vehicle flows at cell n:

• Arrival flow: it is the traffic flow formed by the vehicles
that are arriving at cell n from all the other cells, with
a rate of λn(t), 1 ≤ n ≤ N, 1 ≤ t ≤ T , given by
Equation (3).

• Departure flow: it is the traffic flow formed by the
vehicles that are leaving cell n towards other cells, with
a rate of µn(t), 1 ≤ n ≤ N, 1 ≤ t ≤ T , given by
Equation (4).

During time slot t, to capture the number of vehicle arrivals
at cell n before the next time slot, we model the arrival flow
and departure flow as Poisson processes, which are widely
used in customer-server queue systems and traffic estimation
in transportation systems [29]. Thus, the arrival rates of the
two Poisson processes are λn(t) and µn(t), obtained via
Equations (3) and (4), respectively.

As the arrival rate of the Poisson process in our context is
estimated by the expected value of vehicle arrivals during one
time slot, the shorter the time slot is, the more precise the
model of Poisson process should be. In later evaluations, our
experimental implementations (Sec.VI-A) and results (Sec.VI-
C) show that, the time slot with a length of 3 minutes is short
enough to yield accurate results.

B. Stochastic Traffic Flow Analysis

1) RV for Vehicle Arrival (Resource Demand): During the
time slot t at cell n, we define a random variable (RV):

Dn(t) := number of vehicle arrivals at cell n.

Thus, according to our analysis in previous subsection, Dn(t)
can be estimated by following a Poisson process with rate
λn(t) and PDF:

PDn(t)(x) =
(λn(t))xe−λn(t)

x!
, (5)

where 0 ≤ x ≤ B̌n(t) with B̌n(t) representing the maximum
possible number of vehicles arriving at cell n in time slot t.
Thus, B̌n(t) is actually the upper bound of Dn(t), and with
the vehicle fleet modelling in Sec. III-B, B̌n(t) is given by:

B̌n(t) =

N∑
i=1,i6=n

Si(t)Hi,n(t). (6)

2) RV for Vehicle Departure (Resource Release): For vehi-
cles leaving cell n in time slot t, we define another RV:

Un(t) := number of vehicle departures from cell n.

Similarly to the vehicle arrival RV, Un(t) can also be estimated
by following a Poisson process with rate µn(t) and PDF:

PUn(t)(x) =
(µn(t))xe−µn(t)

x!
, (7)

where 0 ≤ x ≤ B̂n(t), with B̂n(t) representing the maximum
possible number of vehicles leaving cell n in time slot t (i.e.,
B̂n(t) is the upper bound of Un(t)). Also, with the vehicle
fleet modelling in Sec. III-B, B̂n(t) can be calculated by:

B̂n(t) =

N∑
j=1,j 6=n

Sn(t)Hn,j(t). (8)

3) RV for Difference of Two Flows (Resource Difference):
We further define the difference between Un(t) and Dn(t) as:

fn(t) := Un(t)−Dn(t). (9)

Consider the situation where fn(t) ≤ 0, i.e., the resource
requested is greater than that of released. Then, according to
the difference distribution of two discrete RVs, its PDF is:

Pfn(t)(x) =

B̂n(t)∑
k=0

PUn(t)Dn(t)(k, k − x) (10a)

=

B̂n(t)∑
k=0

PUn(t)(k)PDn(t)(k − x), (10b)

where PUn(t)Dn(t)(k, k − x) is the joint probability of Un(t)
and Dn(t), and −B̌n(t) ≤ x ≤ 0.

Remark 3. Notice that we can derive (10b) from (10a), as in a
short time slot t (e.g., 3 minutes in our later implementation),
the vehicle arrival flow can be considered to be independent
of the departure flow from the view point of cell n. For a
long time period, however, this does not hold, as the vehicles
arriving at a cell eventually will leave the cell.
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C. Optimal Resource Provisioning under QoS Guarantee

At the beginning of time slot t, given that there is an amount
of Cn(t − 1) resources available in edge cloud within cell
n (which is known), the probability that a random vehicle
arriving from other cell is blocked at cell n is given by:

P (∅|Cn(t− 1)) =

{
0, if Cn(t− 1) ≥ B̌n(t),∑−Cn(t−1)−1

x=−B̌n(t)
Pfn(t)(x), else.

(11)

Note that those vehicles, which are in cell n at the beginning
of time slot t and will stay in the same cell during this time
slot, would not make any change on the available resources,
because their resources have already been allocated at the
beginning of time slot t.

Thus, our target is to find the minimum amount of edge
resources at the end of the time slot t− 1, such that:

P (∅|Cn(t− 1)) ≤ ε, (12)

where ε is the user-defined blocking probability. Then, our
optimization problem, for edge resources provisioning at cell
n, can be formulated as:

minimize Cn(t− 1) (13a)

s.t. (12),∀t ∈ {2, 3, · · · , T}. (13b)

In the above optimization problem, the decision variable is
Cn(t − 1), i.e., the volume of resources provisioned at cell
n, 1 ≤ n ≤ N during time slot t − 1, prepared for the next
time slot t. Note that the optimal resource provisioning begins
with the second time slot (t = 2). Without loss of generality,
we assume that the system starts working at the beginning of
the first time slot, when all edges have the demanded resources
for the first time slot.

The optimization problem in (13) is formulated for the
whole target area consisting of N cells. By solving it, we
can find the minimum resources at any edge that can satisfy
the blocking probability constraint for the next time slot. Thus,
we achieve the goal of one-time-slot-ahead optimal resource
provisioning under the given QoS guarantee.

V. SOLUTION METHODOLOGY

A. A Two-phase Algorithm to the Optimization Problem

To solve the optimization problem and find the optimal
volumes of resources for each edge cloud, we apply a two-
phase algorithm with techniques of bracketing and binary
searching (with pseudo-code in Algorithm 1).
• Phase-1 (bracketing): Feed an initial small value of
Cn(t − 1) and compute the corresponding blocking
probability with Equation (11). If the resulted blocking
probability is larger than the predefined QoS threshold
ε, then double the value of Cn(t− 1). Repeat the above
process until the desired blocking probability is reached,
which will result in a resource volume range, denoted by
[CL, CH ] where CL = CH/2.

• Phase-2 (binary searching): Apply the binary searching
strategy within range of [CL, CH ] to find the minimum
value of Cmin that can satisfy the QoS requirement, i.e.,
the blocking probability is smaller than ε.

Algorithm 1: A Two-Phase Algorithm to Problem (13)
Input: required QoS threshold ε, capacity (maximum

resources) of the edge cloud Cmax
Output: minimum edge cloud resources Cmin that

satisfies the conditions of (13b)
CL, CH ← 1;
// Phase-1: Bracketing;
while P (∅|CH) > ε do

CL ← CH ;
CH ← 2× CH ;
if CH > Cmax then

return false;

// Phase-2: Binary Searching;
while true do

Cmin ← (CL + CH/2) ;
if P (∅|CH) ≤ ε then

CH ← Cmin;

else
CL ← Cmin;

if CH − CL ≤ 1 then
return Cmin;

else
return false;

Theorem 1. Algorithm 1 guarantees the convergence to the
optimal value of problem (13).

Proof. We first prove that the blocking probability of
P (∅|Cn(t− 1)) (given by Equation (11)) is a monotonically
decreasing positive function, with Cn(t−1) as the variable in
the region of {1, 2, · · · , B̌n(t)}.

When Cn(t− 1) < B̌n(t) where B̌n(t) is the upper bound
of Dn(t), referring to Equations (10b) and (11), we have:

P (∅|Cn(t− 1)) (14a)

=

−Cn(t−1)∑
x=−B̌n(t)

Pfn(t)(x) (14b)

=

−Cn(t−1)∑
x=−B̌n(t)

B̂n(t)∑
k=0

PUn(t)(k)PDn(t)(k − x) (14c)

>

−(Cn(t−1)+1)∑
x=−B̌n(t)

B̂n(t)∑
k=0

PUn(t)(k)PDn(t)(k − x) (14d)

= P (∅|Cn(t− 1) + 1) (14e)

When Cn(t− 1) = B̌n(t), with Equation (11), we have:

P (∅|Cn(t− 1)) = 0 < P (∅|Cn(t− 1)− 1) (15)

Combining (14) and (15), we conclude that P (∅|Cn(t −
1)) is a monotonically decreasing function in the region
{1, 2, · · · , B̌n(t)}. With bracketing and binary searching, it
is thus guaranteed to find the optimal Cn(t− 1) meeting the
blocking probability constraint, as long as the problem has a
feasible solution.
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B. Computational Complexity Analysis

Although, theoretically algorithm 1 is guaranteed to find
the minimum volume of resources to be provisioned at each
edge cloud in each future time slot, it still matters whether the
algorithm is efficient enough to obtain the optimum.

We then analyze the computational complexity when solv-
ing the problem, especially in computing the value of
P (∅|CH). To be specific, Equations (5) and (7) (i.e., the
PDFs of Poisson processes) have factorial terms and therefore
can be expensive to compute, especially when the size of the
connected vehicle fleet is large. Nevertheless, we have noticed
that, the Poisson probability decreases dramatically with the
increase of the two RVs Dn(t) and Un(t). Particularly, for
a Poisson process with the mean value of 15, the probabil-
ity value of arrivals exceeding 40 is almost negligible, i.e.,
P (x > 40) ≈ 0. Thus, we can ignore those input values larger
than a pre-defined threshold.

Overall, the optimal edge resource provisioning problem has
a computational complexity of O(t1t2 logm∗0), where:
• t1 is the time consumed to compute i) arrival/departure

rate (λn(t)/µn(t)) for the vehicle arrival/departure flow
by Equations (3) and (4), and ii) the total number
of vehicle arrivals/departures (B̂/B̌) in determining the
parameter bounds of two Poisson processes by Equa-
tions (6) and (8), which all amount to simple summation
operations in short time periods;

• t2 is the time for computing the probability P (∅|Cn(t−
1)) in Equation (11), which can be solved efficiently
via the given method introduced at the beginning of this
subsection;

• logm∗0 indicates the number of iterations in the two-phase
algorithm described above, where m∗0 is the obtained
optimal value, which depends on the number of vehicles
travelling into cell n.

According to our experiments, the algorithm has a very low
computational complexity. As will be shown in Sec. V-B,
our method can easily handle three-minute-ahead resource
provisioning for over 50, 000 vehicles running across the target
area of 100 cells (edge clouds).

C. Algorithm Applicability

During the working period of connected vehicle fleet, e.g.,
8:00 am to 6:00 pm, the specified vehicular service is running
as a background program at each edge cloud. Under the MEC
paradigm and our resource provisioning scheme, the back-
ground program mainly conducts three tasks: (i) receive/send
necessary information (e.g., vehicle locations and fleet distri-
bution) from/to edge clouds in neighboring cells, (ii) compute
the optimal resources provisioning solution with our algorithm,
and (iii) complete the resource allocation at the edge cloud,
e.g., by applying resource virtualization technology in VMs or
containers. In supporting the MEC-enabled vehicular service,
we regard the resources consumed by the background program
as default/basic configuration at each edge cloud and thus do
not take them into consideration during our optimal resource
provisioning process.

Trip-1

Trip-2

Trip-3

Trip-1

Trip-2Trip-3

Trip-4

1 10

91100

1120 B

A

Fig. 5. Target area of our experiment with DATASET-I: the downtown area
of a city divided into 10-by-10 blocks. Two example taxi trajectories are
illustrated on the map.

VI. EXPERIMENTAL EVALUATIONS

In this section, we first introduce the experimental setup
and evaluation methodology. Then, both overall and detailed
performance analysis are made, by comparing our method with
two typical benchmarks. Furthermore, the investigations on
stability and time complexity of our method are also made.

A. Experimental Setup

We use two real-world datasets for evaluations, which were
collected by a large online taxi service platform [30]. All the
taxis over the platform can be regarded as a special type of
connected vehicle fleet for passenger delivery.

Datasets: The two datasets include (1) trajectory records
of 40, 770 taxis and the order records of 150, 412 passengers
(DATASET-I), and (2) trajectory records of 18, 000 taxis and
the order records of 117, 569 passengers (DATASET-II), in two
metropolises of China, respectively, both from Nov. 1, 2016
to Nov. 30, 2016. In more detail:
• A taxi trajectory record consists of the taxi ID, the IDs of

the orders it takes, and the time stamp with corresponding
location, with a sampling rate of 3 seconds.

• A passenger order record consists of the order ID, the
departure time and corresponding location, the arrival
time and corresponding location (of destination).

Preprocess: We choose a target area with the densest
passenger orders in the city for each of the datasets. As an
illustration, the area for DATASET-I is shown in Fig. 5. Then,
we divide the target areas into 100 blocks, each representing
one cell of the mobile cellular network. By observing the
working time of most taxi drivers every day from the datasets,
we select the time interval between 6:00 am to 0:00 am
next day (18 hours) as the working time period. There is
a tradeoff in choosing an appropriate length of time slot.
On the one hand, a shorter time slot could result in more
accurate estimations of vehicle arrivals/departures in one cell.
On the other hand, the time slot should be long enough so
that our algorithm (for computing the optimal resources to be
provisioned) can output the solution one time slot ahead. The
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TABLE I
OVERALL RESULTS FROM OUR METHOD AND THE TWO BENCHMARKS

Benchmark-1 Benchmark-2 Ours (ε = 0.01) Ours (ε = 0.02) Ours (ε = 0.05)

DATASET-I
(#vehicles = 40, 770)

aca 100% 96.8% 99.3% 98.5% 96.1%
tpc 8.96× 104 5.34× 104 5.63× 104 5.50× 104 5.26× 104

cpv 2.20 1.31 1.38 1.35 1.29

DATASET-II
(#vehicles = 18, 000)

aca 100% 95.8% 99.2% 98.1% 95.9%
tpc 3.87× 104 2.32× 104 2.43× 104 2.39× 104 2.34× 104

cpv 2.15 1.29 1.35 1.33 1.30

TABLE II
PROPERTIES OF DATASETS AND PARAMETER SETTINGS

Properties Values

DATASET-I

Target area 156 km2

Time period 2016.11.1 - 2016.11.30
Number of taxis 40, 770

Number of orders 150, 412
Sample rate 3 seconds

DATASET-II

Target area 63 km2

Time period 2016.11.1 - 2016.11.30
Number of taxis 18, 000

Number of orders 117, 569
Sample rate 3 seconds

Preprocessing
Number of cells 100

eNBs density 0.64/km2 (I); 1.59/km2 (II)
Working period 6 : 00 am - 00 : 00 am (+1)
Time slot length 3 minutes

3-minute time slot is set empirically to balance the tradeoff.
Thus, we divide the 18 hours into 360 equal-length time slots
(each time slot is 3 minutes), and re-sample the trajectory data
with a sampling interval of 3 minutes.

The detailed information about the datasets and parameter
settings is summarized in Table II.

B. Evaluation Methodology
To validate the effectiveness of our method, we implemented

the following two benchmarks for resource provisioning and
compared their performance with ours:
• Benchmark-1 (naı̈ve provisioning): allocate resource be-

forehand; once the path of a vehicle is determined, the
resources are provisioned at all cells along the path.

• Benchmark-2 (mobility estimation based provisioning):
provision resources at the most likely cell where a vehicle
might appear for the next time slot, based on the vehi-
cle’s current status of mobility, e.g., location, (estimated)
speed and moving direction. Such a principle was used
in [22], [23] in predicting future vehicle locations, and an
equivalent idea was also adopted in [28] by minimizing
the average latency for optimal service placement.

It studied a user mobility aware service placement problem
under the MEC environment, and the concept of “service” in
this work took a similar role as the “resource” in ours. To find
the optimal service placement solution, the authors constructed
an optimization problem to minimize the average service
latency. This optimization purpose is actually equivalent to
that of Benchmark-2 given in our work, i.e., to determine the
most likely cell where a vehicle might appear in such that the
average service delay can be minimized.

Note that the complete route information of each vehicle is
treated known for both the two benchmarks and our method.

What make the three methods different are their ways of
applying the route information in provisioning edge resources.
Specifically, for Benchmark-1, it allocates (redundant) re-
sources for all edge clouds along the whole path of the route.
In Benchmark-2, it estimates the most likely cell that a vehicle
may enter in the following time slot and only provisions (one
unit of) resource for the edge cloud there. With our method,
for each vehicle, we provision resources among the multiple
cells that it probably appears based on both the vehicle’s
arrival/departure time PDFs and the pre-defined QoS threshold.

Our evaluation methodology is as follows. First, we use
the taxi trajectory data to populate the fleet model (S(t) and
H(t)) at each time slot. Referring to the order information
that discloses the routing paths, we are able to estimate
the travel time distribution of vehicles between cells. We
performed statistical tests on the travel times, and found that
the travel time distribution can be modelled with a normal
distribution, with the mean value representing the most likely
travelling distance (for inferring possible destination cells) and
the variance indicating the uncertainty of the estimation. Then,
in each time slot, we compute the resource demand of each cell
for the next time slot, using our method and the benchmark
methods. Finally, with our provisioned resources in each cell
as well as the vehicle trajectory data, we can compute the
actual blocking probability (denoted by ε′) of the fleet over the
whole working time period. To guarantee sufficient resources
to be provisioned, we set the capacity of each edge cloud to
the number of vehicles in the fleet, i.e., the maximum possible
resource requests from the vehicle fleet (when all vehicles
appear in the same cell).

We apply the following metrics to evaluate and compare the
performance of different methods:

• Actual resources availability (aca):

aca := 1− ε′, (16)

where ε′ is the actual blocking probability during the
running of the whole fleet, with a certain resource provi-
sioning method applied beforehand.

• Total provisioning cost (tpc):

tpc :=

T∑
t=1

N∑
n=1

Cn(t), (17)

where Cn(t) is the provisioned volume of resources at
cell n in time slot t. Thus, this metric reflects the total
cost of resource provisioning for all the N cells during
the whole working period.
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• Volume of resources (units) per vehicle (cpv) of the fleet
per time slot:

cpv :=
1

T

T∑
t=1

∑N
n=1 Cn(t)∑N
n=1 Sn(t)

, (18)

where Cn(t) is the provisioned volume of resources at
cell n in time slot t and Sn(t) is the number of vehicles
localized in cell n in time slot t. This metric indicates the
average units of resources that assigned to each vehicle
during the whole working time.

Note that the value of cpv can be derived from that of tpc.
With the ideal value equal to 1 (one vehicle is at least in need
of one unit of resource for QoS guarantee), cpv helps compare
the performances of different resource provisioning methods.

C. Performance Results

1) Overall Performance Analysis
For the whole fleet: We set the QoS thresholds to ε =

0.01, 0.02 and 0.05, i.e., the probability of resource avail-
ability is required to be no less than 99%, 98% and 95%,
respectively4. Then we perform the 3-min-ahead resource
provisioning at the 100 cells for all vehicles in each day. The
overall results from the two datasets are shown in Table I.
From the results, we can see that:
• The naı̈ve provisioning strategy (benchmark-1) and our

method can achieve the required QoS goal with guar-
antee, while the mobility estimation based method
(benchmark-2) cannot. Compared with benchmark-1, our
method can achieve the QoS goal using much smaller
amount of edge resources.

• Our method and benchmark-2 consume much less re-
sources than benchmark-1. For example, for the case
of ε = 0.01, our method and benchmark-2 are with
overall cost/resource reductions of i) 37.3% and 40.5%
under dataset-I, and ii) 37.2% and 40% under dataset-II,
respectively.

From all the above results, we can conclude that our method
can much reduce the resource provision cost while still ensures
the QoS guarantee.

For subsets of the fleet: To gain more insights on
the overall performance, we randomly select 10 subsets of
the two fleets (from the two datasets), each subset with
1000, 2000, · · · , 10, 000 vehicles, respectively. Then, we per-
form resource provisioning for these vehicle subsets, under
the QoS requirement of ε = 0.01. The performance results
from the two datasets for different vehicle subsets are shown
in Fig. 6 and Fig. 7, respectively. From the results, we can
further observe that:
• The QoS requirement with our method can be satisfied

in all cases, indicating the reliability of our method.
• The benchmark-2 cannot achieve aca above the required

value of 99%.

4The values of QoS thresholds here are mainly for testing and validation
purposes. The values should be set higher, e.g., 99.99% for mission critical
applications such as autonomous driving.

• The maximum reduction of tpc with our method can
reach i) 40% for DATASET-I under the 10, 000-vehicle
case, and ii) 41% for DATASET-II under the 3, 000-
vehicle case, respectively.

• The minimum value of cpv with our method can reach i)
1.35 for DATASET-I under the 7, 000-vehicle case, and
ii) 1.31 for DATASET-II under the 3, 000-vehicle case,
respectively.

From the viewpoint of total provisioning cost, the advantage
of our method and benchmark-2 (the mobility estimation based
method) over benchmark-1 (the naı̈ve provisioning strategy) is
obvious. From the viewpoint of QoS guarantee, our method
and benchmark-1 outperform benchmark-2. Nevertheless, the
average aca value for benchmark-2 is above 95% as shown in
Table I. This seems to suggest that benchmark-2 would be a
good method under the QoS requirement ε = 0.05. Unfortu-
nately, this is not true, as disclosed in our next experiment.

2) Detailed Performance Analysis
To further look into the performance of actual resource

availability, especially that of benchmark-2, we sample one
day’s data (a Tuesday from DATASET-I as an example) and
perform resource provision for all vehicles. We record the
intermediate values of aca for each time slot and illustrate
their values from the three methods in Fig. 8. In particular, we
investigate the time period from 8:00 am to 6:00 pm, which
includes two traffic peaks in a day. As we can see from the
figure, our method can always satisfy the QoS requirement
(ε = 0.01) in each time slot, as it performs resource provision
optimization for each next time slot under the condition of
blocking probability no less than ε.

In contrast, the aca resulted from benchmark-2 varies
largely along the timeline, with quite low values during
traffic peak time in the morning (90.4% around 8:40 am)
and the traffic peak time in the afternoon (90.8% around
5:50 pm), and with relatively high values during other times.
This phenomenon is caused by inaccurate mobility estimation
and incorrect cell determination during the busy traffic times,
due to the complex traffic conditions and uncertain driving
behaviors. Different from benchmark-2 that only selects one
cell for resource provisioning, our method looks into the
distribution of possible cells and choose (one or multiple) cells
for resource provisioning from a probabilistic perspective.

Notably, with the lowest aca value, benchmark-2 fails to
serve nearly 10% of the whole vehicles in the fleet, which is
not acceptable in practice. For the same traffic condition, the
QoS provided by our method is almost one order higher than
that of benchmark-2, as the actual blocking probability with
our method is guaranteed to be less than 1%.

3) Stability Analysis
From the results in scenarios where the number of vehi-

cles varies (Figs. 6 and 7) and the results where the traffic
conditions change over time (Fig. 8), we can easily observe
that our method consistently results in stable performance
outcomes w.r.t aca and cpv. In contrast, benchmark-2 has
a high variance in aca, as shown in Fig. 8. While the
performance of benchmark-1 is also stable, such stability is
obtained with the high cost of over provisioning.
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Fig. 6. Performance of vehicle subgroups with different number of vehicles (DATASET-I), with the required QoS ε = 0.01.
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Fig. 8. Detailed results of the actual resource availability of the whole fleet
during one day from 8:00 am to 6:00 pm, with the QoS requirement ε = 0.01.
The traffic peak times (morning peak and afternoon peak) are marked by
shaded areas, which are based on the historical traffic data from TomTom for
Chengdu on Tuesdays [31].

To further test the performance of benchmark-2 (the mo-
bility estimation based provisioning), we update the mobility
estimation strategy by: i) replacing the one most likely destina-
tion cell of the vehicles with the k most likely cells (k ≥ 1),
and ii) performing a parametric analysis for the value of k,
with respective to its impact on the actual resource availability.

From the parametric analysis, we find similar outcome to
that in Fig. 8, i.e., the obtained aca is unstable and the
performance cannot be guaranteed. To be specific, as the value
of k increases, we observe an overall upward shift of the aca
curve; however, there are always time instances when the aca
values are below the required QoS, until k grows up to a
large value with a much increased resource provisioning cost
(cpv = 3.0 in our test). This further validates the weakness
of benchmark-2 in making trade-off between QoS requirement
and provisioning cost.

4) Overhead Analysis
In this experiment, we investigate the running time of our

method. When we apply the one-time-slot-ahead resource
provisioning, we should make sure that the computing task
in finding the solution can be finished within one time slot5.
In other words, if the resource provision solution cannot be
found within one time slot, our method would fail in practice
even though the resulted solution is theoretically correct.

Fig. 9 shows the running times in solving the problem
of (13) with our proposed two-phase algorithm given in Sec. V,
performed on a low-end machine (64-bit Windows OS with
3.4-GHz CPU and 8-GB RAM). From the results shown
in the figure, we can conclude that: i) our algorithm can
effectively solve the problem of resource provisioning for
40, 770 vehicles, the maximum number of vehicles in the
system under study, in 101.70 second, ii) if assuming the same
trend of running time vs the number of vehicles, our method
would be able to handle about 60, 000 vehicles, within a time
slot of 3 minutes (i.e., 180 seconds), which should be large
enough in practice.

VII. CONCLUSIONS

In this paper, we investigated the problem of optimal edge
cloud resource provisioning for connected vehicle fleets under
given QoS (service availability) requirements. With the com-
monly used virtualization technology at the distributed edge
clouds, our goal is two-fold: i) to minimize the total resource
provisioning cost among the edge clouds, and ii) to ensure the

5Actually there are more to be finished within the time slot, such as (vehicle
trajectory) data collection and (edge cloud) resource re-configuration. These
tasks, which should be cooperated with our resource provisioning strategy in
a real-time fashion, fall into other research topics and beyond the scope of
this paper.
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Fig. 9. The running time by applying our method along with the increase
of fleet scale. With a 3-min time slot, our method can handle the maximum
possible number of vehicles (40, 770) in the system under study.

predefined QoS of vehicular service all the time. To address
this problem, we defined it formally from a probabilistic
perspective. Then, with the stochastic analysis on vehicle
traffic flows, we established an optimization model for op-
timal resource provisioning with the constraint on the service
blocking probability that is smaller than a predefined threshold.
An efficient algorithm was used to tackle the optimization
problem based on bracketing and binary searching. We use
two real-world dataset containing 58, 770 vehicles trajectory
information in one month to evaluate our solution. With
extensive experiments, we demonstrated that our method could
save the total provisioning cost up to 40% compared with the
naı̈ve resource provisioning strategy; meanwhile our method
could always provide reliable QoS guarantee, compared with
the mobility estimation based method. Currently in this work,
the evaluation was based on two datasets from an online taxi
service platform. In the future, the proposed approach may
need to be further examined in more general scenarios.
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