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Abstract—Weak state routing using decay Bloom filters has
been widely studied in the field of data-oriented networks. The
existing weak state routing schemes cannot facilitate in-network
queries effectively. Given a query for any item at an arbitrary
node, the noise1 in an unrelated routing entries is very likely
equal to the useful information in the right routing entries.
Consequently, queries are routed by means of network flooding,
which differs a lot from the desired way of weak state routing,
irrespective of the network topology and the usage and decay
models of the Bloom filters. This work addresses the root cause
of the mismatch between the practically reachable performance
of the existing weak state routing schemes and the desired
performance. Specifically, we study the impact of decay model on
the membership information in the routing entries, and evaluate
the negative impact of noise on a routing decision. Based on such
analytical results, we derive the necessary and sufficient condition
of a feasible weak state routing using decay Bloom filters.
Accordingly, we design a novel receiver-oriented approach for
Bloom filters, called Wader, which satisfies the above condition.
The simulation results match well with our theoretical analysis,
which demonstrate that Wader guarantees the correctness and
efficiency of weak state routing with high probability.

I. INTRODUCTION

Bloom filters (bf ) are often deemed as a suitable tool to aid
information discovery and navigation in multi-hop networks
with high query frequency. This includes navigating queries
from any node. Bloom filters [1], [2] have been widely
employed to realize information-guided routing in overlay
networks [3], [4], [5], [6], wireless sensor networks [7], ad
hoc networks [8], [9], [10], [11], and mesh networks [12]. The
common idea among those proposals is that each node uses
a Bloom filter to represent its data items, and broadcasts it to
nodes residing with its propagation range, e.g. h hops. Each
link, associated with all the received Bloom filters through it,
is maintained as a routing entry. If a node needs to route a
query to a destination residing within h hops away, it forwards
the query over the link, which has at least one of its associated
Bloom filers satisfy the query.

Those schemes, outperforming the blind routing schemes
though, cost large amount of storage space for Bloom filters,
and in turn appear inefficient when scanning the Bloom filers
to seek a routing decision. The delay of each routing decision
is considerably long so that the concurrency of in-network
queries is reduced. These two problems become more serious
when the average node degree is high and the propagation

1For a node receiving a query of an item x, noise on a link L of the node
is defined as the amount of membership information of x in the routing entry
corresponding to L, if the node does not receive a decay Bloom filter from
the destination of x through L.

range of Bloom filters are large, especially in resource-
constrained networks such as wireless sensor networks. Con-
sequently, such schemes suffer poor efficiency and scalability.

Kumar et al. improve the previous schemes by employing
an exponential decay Bloom filters in weak state routing2

[13]. Bloom filters are still propagated within a specified
propagation range, while the amount of information in each
Bloom filter decreases exponentially with the distance from
the source. In addition, in a routing entry, a link is associated
with the union of all the received decay Bloom filters through
it. Note that each routing entry does not contain the complete
membership information of any item. Hence, a query is sent
via the link whose associated routing entry has the maximum
amount of information about the queried item. Such a scheme
significantly saves storage space and reduces the delay of
answering a query than the aforementioned schemes. X. Li et
al. in [14] propose a weak state routing scheme using Scope
Decay Bloom Filters. A Bloom filter is propagated without
any loss within the first h0-hops from the source, while decays
exponentially or linearly outside the h0-hops from the source.

Essentially in weak state routing, each node as a source
creates information gradients in a potential filed. Hints left
on nodes on the existence of data items will smoothly guide
queries towards desired sources. Thus the information gradi-
ents enable efficient local routing by simply ascending the
potential field. Ideally, any query will be propelled towards
the destination once it enters the propagation range of the
destination. In practice, however, given a query for any item
at an arbitrary node, we observe that the noise in unrelated
routing entries is very likely equal to even larger than the
useful information of the item in the right routing entries.
Being misled, almost all queries are routing to destinations
using the flooding approach. Consequently, the weak state
routing schemes usually run in a way that differs a lot from
the ideal one and lack feasibility in practice.

In this paper, we study the cause of the mismatch between
the ideal and practical performances of the weak state routing
schemes, and propose approaches to guarantee the feasibility
of those routing schemes with high probability. This basically
involves the following design criterion. First, once a query
enters the potential filed of the destination, the amount of
information in correct routing entries at intermediate nodes
should increase as the query are propelled towards the desti-
nation. Second, each node should finely control the strength

2The notion of weak state routing used in this work was first proposed
in [10], the authors propose the use of decay bloom filters for large scale
dynamic networks.



of noise at its out-going links so that it can distinguish right
out-going links from others interfering noises. Bearing these
points in mind, our contributions are summarized as follows.

1) We model the weak state routing under a general decay
model, and measure the strength of useful information
in the right routing entries and that of noise in unrelated
routing entries. We also analyze and evaluate the nega-
tive impact of noise on a weak state routing decision.

2) We derive the necessary and sufficient condition of a
feasible weak state routing scheme using decay Bloom
filters.

3) Based on this condition, we propose a receiver-oriented
optimization approach of Bloom filters, called Wader,
since the transmitter-oriented approach fails to satisfy
the necessary and sufficient condition. We further ad-
dress the redundant queries in Wader:

The rest of this paper is organized as follows. In Section II,
we briefly introduce Bloom filters, and measure the effect of
the decay model on membership information of any item in a
Bloom filter for a linear and an exponential decay model. We
further evaluate the impact of noise on routing decisions. In
Section III, we derive the necessary and sufficient condition
which ensures a feasible weak state routing scheme using
decay Bloom filters, and then propose Wader to guarantee a
feasible weak state routing scheme using Bloom filters. Section
IV presents the performance evaluation results. We concludes
this work in Section V.

II. MEASUREMENT OF WEAK STATE ROUTING USING
BLOOM FILTERS

In this section, we first analyze weak state routing under a
general decay model of Bloom filters in Sections II-A and II-B.
To derive the necessary and sufficient condition, as mentioned
in Section III-A, for a feasible weak state routing using Bloom
filters, we measure the strength of useful information in the
right routing entries in Section II-C and the impact of noise
on each routing decision in Section II-D.

A. Bloom filters

A set X of n items is represented by a Bloom filter using
a vector of m bits which are initially set to 0. A Bloom
filter uses k independent hash functions h1, h2, · · · , hk with
a range {1, ..., m}. When inserting an item x to X , all bits
of Bfaddress(x) (consisted of hi(x) for 1 ≤ i ≤ k) will be
set to 1. To answer a membership query for any item x, users
check whether all bits hi(x) are set to 1. If not, x is not a
member of X . If yes, we assume that x is a member of X ,
although we might be wrong in some cases. Hence, a Bloom
filter may yield a false positive which suggests that the item
x is in X even though it is not. A false positive is due to hash
collisions, in which all bits of Bfaddress(x) were set to 1
by other items in X [1].

Let p0 be the probability that a random bit of a Bloom filter
is 0, and let n be the number of items that have been added
to the Bloom filter, then p0 = (1− 1/m)n×k ≈ e−n×k/m, as
n× k bits are randomly selected, with probability 1/m in the

process of adding each item. Now we test membership of an
element x1 /∈ X . Each of k bits of Bfaddress(x1) is 1 with
a probability as above. The probability of all of k bits being
1, which would cause a false positive, is then

fp = (1− p0)k ≈ (1− e−k×n/m)k.

The minimum value of fp is achieved when k = b(m/n) ln 2c.

B. Decay model of Bloom filters

As mentioned above, a local bf at each node is forwarded
to a few nodes in order to implement a weak state routing
scheme. The number of bits set to 1 in the bf decreases
with the distance from the source. An accurate decay model
of Bloom filters is the dominated factor which affects the
correctness and efficiency of the weak state routing schemes.
In this paper, we only consider the scenario that each node
employs a homogeneous decay model.

Definition 1: Given a set X with n items and its Bloom
filter bf , θ(x, bf) denotes the amount of information in bf for
∀x ∈ X , that is the number of bits being 1 in Bfaddress(x).
Let θ(X, bf) denote the amount of information in bf for X ,
that is the number of bits set to 1 in bf . Note that θ(X, bf) is
often less than the sum of θ(x, bf) for each x ∈ X due to the
unavoidable hash collisions between Bloom filter addresses.
Let θ(bf) denote the expectation of number of bits set to 1
in the bf , and equals to m multiply the probability p1 that a
random bit in the bf is set to 1. The p1 is 1− (1− 1/m)k×n,
and hence

θ(bf) = m× (1− (1− 1/m)k×n) (1)
≈ m× (1− e−k×n/m)

The value of θ(x, bf) equals to k for ∀x ∈ X . There
are two models to reduce θ(x, bf) by decaying the bf . In
exponential model, if a bit in Bfaddress(x) is 1, it remains
1 at a constant probability 1/d during each round of decay.
In linear model, number of d random bits which are 1 in
Bfaddress(x) become 0 during each decay. An approximate
method to implement the linear decay model is that number
of d θ(bf)d

k e bits which are 1 in the bf are set to 0 during each
round of decay. Note that d is a decay factor in both models
and is a positive real number.

Definition 2: Let Decay(bf, h, h0, h1,model, d) denote a
general decay model of a bf which is propagated to nodes
within h hops from the source where 1 ≤ h ≤ h0+h1. The bf
does not decay within the first h0-hops, while decays outside
the h0-hops by using the aforementioned decay models, where
h1 is an upper bound on the hops in the second stage [14].

Definition 3: Let bfi denote a new Bloom filter resulted
from the ith round decay of a bf where 1 ≤ i ≤ h. bfi

remains θ(bfi) bits set to 1. If the model is exponential, then

θ(bfi)=





θ(bf), i ≤ h0

d θ(bfi−1)
d e, h0 < i ≤ h0 + h1, d ≤ θ(bfi−1)

0, h0 < i ≤ h0 + h1, θ(bfi−1) < d
(2)
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If the model is linear, then

θ(bfi)=





θ(bf), i ≤ h0

θ(bfi−1)-d θ(bf)d
k e, h0 < i ≤ h0 + h1

0, θ(bfi−1) < θ(bf)d
k

(3)

Let c denote the average node degree in a given network.
According to Definition 2, a Bloom filter initialized at an
arbitrary node can be transmitted to at most Ti = c(c− 1)i−1

nodes during the ith round of decay. Due to the symmetry of
the model, each node A can receive at most (c− 1)i−1 decay
Bloom filters initialized i hops away through each link linkj .
The received Bloom filters by node A are recorded as bf l

i

where 1 ≤ i ≤ h and 1 ≤ l ≤ (c−1)i−1. Thus, the number of
decay Bloom filters a node can receive from the whole system
through linkj is denoted as |linkj |, and

|linkj | =
∑h

i=1
(c− 1)i−1.

As mentioned in [15], the union of homogeneous Bloom
filters can be realized by a logical or operation between their
bit vectors. Thus, the union of |linkj | decay Bloom filters
results in a joint Bloom filter bf(linkj) for a link linkj of
node A. The bf(linkj) acts as a probabilistic summary of all
items which are reachable from node A along a routing path
of at most h hops, and is given by

bf(linkj)) =
⋃h

i=1

⋃(c−1)i−1

l=1
bf l

i . (4)

Lemma 1: The number of bits set to 1 in any bf(linkj) of
each node is given by

θ(bf(linkj)) = m(1− (1− 1/m)β(linkj)), (5)

where

β(linkj) =
∑h

i=1

∑(c−1)i−1

l=1
θ(bf l

i ). (6)

Proof: Recall that |linkj | decay Bloom filters received by
a node through linkj will be merged to construct bfi(linkj).
During the union process, β(linkj) balls are dropped into
m bits of bf(linkj) randomly, i.e., the location of each ball
is independently and uniformly chosen from m possibilities.
β(linkj) denotes the total number of bits being 1 in those
|linkj | decay Bloom filters. Let p0 denote the probability that a
random bit in bf(linkj) is 0 after dropping all β(linkj) balls.
Clearly, p0=(1−1/m)β(linkj). Let p1 denote the probability
that a random bit in bf(linkj) is set to 1. Thus, p1=1 − p0.
Therefore the number of bits set to 1 in bf(linkj) is given by
θ(bf(linkj))=m(1− (1− 1/m)β(linkj)). Thus proved.

C. Effect of decay model on membership information

In general, θ(x, bf)=k where an element x is represented by
a bf . The general decay model might adopt the exponential
or linear decay model. We first measure a metric θ(x, bfi)
which denotes the number of membership information of x in
a decay Bloom filter bfi.

For the linear decay model, we can derive the following
result based on its definition.

θ(x, bfi) =
{

θ(x, bf) = k, i ≤ h0

θ(x, bf)− d(i− h0), h0 < i ≤ h0 + h1

(7)
For the exponential decay model, we can draw the following

conclusion based on its definition.
Lemma 2: If i ≤ h0, θ(x, bfi) equals to k because bfi=bf .

Otherwise, θ(x, bfi) is a discrete random variable, denoted as
Ui. Its possible values are integers ranging from 0 to k. The
probability mass function of Ui is defined by Formula 8.

Proof: Assume a represents the possible value of Ui,
and is an integer ranging from 0 to k. Let Ui=a mean that
the amount of bits being 1 in the Bfaddress(x) is a. After
i rounds of decay of bf , the number of θ(bf)−θ(bfi) bits
being 1 in bf are reset to 0 in bfi. The number of possibilities
that outcome bfi is

(
θ(bf)

θ(bf)−θ(bfi)

)
. The number of possibilities

that just k−a bits in Bfaddress(x) are reset to 0 during
the i rounds of decay is

(
k

k−a

)(
θ(bf)−k

θ(bf)−θ(bfi)−k+a

)
. Then the

probability that θ(x, bfi) = a is given by

P (Ui = a) =

(
k

k−a

)(
θ(bf)−k

θ(bf)−θ(bfi)−k+a

)
(

θ(bf)
θ(bf)−θ(bfi)

) . (8)

θ(bfi) is given by Formula 2. Therefore, Lemma 2 holds.
Corollary 1: If h0 < i ≤ h0 + h1, the expectation of Ui

can been calculated by

E[Ui] =
∑k

a=0
a× P (Ui = a) ≈ k/di−h0 .

If the decay range i exceeds h0, θ(x, bfi) under the linear
decay model and the expectation of θ(x, bfi) under the expo-
nential decay model decrease with the increasing i. Fig.1 plots
an illustrative example of the propagation of a bf from node
A. The color of propagation filed becomes light from deep as
the decay range increases. This result indicates that the number
of membership information of x ∈ X in bf reduces during the
decay transmission of bf .

Practically, a node receiving bfi through a link linkj also
collects other |linkj |−1 decay Bloom filters through the same
link. As shown in Fig.1, node E receives a decay Bloom
filer from nodes A, B, and C through the same link C→E.
Thus, the metric θ(x, bfi) fails to support a weak state routing
scheme since each node uses the union of all received Bloom
filters through a link as a correlated routing entry. To address
this issue, we propose a metric θ(x, bfi(linkj)) which denotes
the amount of information of x in a routing entry bfi(linkj)
at the node receiving bfi through linkj where 1 ≤ j ≤ c.

Before measuring the metric, we first define two events used
frequently in the rest of this paper. Given any bit in an empty
Bloom filter, an event Ez

=i means that the bit is set to i after
throwing z balls into the Bloom filter. The probability of Ez

=0

can be calculated by

P (Ez
=0) = (1− 1/m)z.
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The probability of Ez
=1 is given by

P (Ez
=1) = 1− P (Ez

=0).

Lemma 3: In the context of exponential decay model, the
metric θ(x, bfi(linkj)) is a discrete random variable, denoted
as Vi. Its possible values are integers ranging from 0 to k. The
probability mass function of Vi is defined by Formula 9.

Proof: In bfi, let us consider an event θ(x, bfi)=a that a
bits in Bfaddress(x) are set to while other k−a bits are set
to 0 where 0 ≤ a ≤ k. The probability of this event is given
by Formula 8. To achieve bfi(linkj), other |linkj | − 1 decay
Bloom filters merge with bfi based on the union operation
of Bloom filters. In other words, number of α(linkj) balls
are thrown into bfi randomly, where α(linkj)=β(linkj) −
θ(bfi). Let us consider another event that θ(x, bfi)=a and there
exists b bits in Bfaddress which are 0 in bfi but are hit after
throwing α(linkj) balls into bfi, where 0 ≤ b ≤ k − a. The
probability of this event is denoted as P (Wi=b|Ui=a), and is

(
k − a

b

)
P

(
E

α(linkj)
=1

)b · P (
E

α(linkj)
=0

)k−a−b
.

Assume v represents the possible value of Vi, and is an
integer ranging from 0 to k. An event Vi = v means that the
amount of bits set to 1 in Bfaddress(x) of bfi(linkj) is v.
The probability of this event is given by

Pr(Vi=v) =
∑v

a=0
Pr(Ui=a) · Pr(Wi=v − a|Ui=a) (9)

Thus proved.
Lemma 4: In the context of linear decay model, the metric

θ(x, bfi(linkj)) is a discrete random variable, denoted as Vi.
Its possible values are integers ranging from 0 to k. The
probability mass function of Vi is defined by Formula 10.

Proof: In bfi, θ(x, bfi) bits in Bfaddress(x) remain
1 and other k−θ(x, bfi) bits are reset to 0. The value of
θ(x, bfi) is given by Formula 7. According to the definition
of bfi(linkj), number of α(linkj) balls will be thrown into
the m bits of bfi randomly during the construction process of
bfi(linkj), where α(linkj) = β(linkj)− θ(bfi). The number
of bits in Bfaddress(x) which are set to 0 in bfi but are
hit at least once after throwing α(linkj) balls into bfi is a
discrete random variable, denoted as Qi. Its possible values
range from 0 to k − θ(x, bfi). The probability that Qi = a is
(

k − θ(x, bfi)
a

)
· P (

E
α(linkj)
=1

)a · P (
E

α(linkj)
=0

)k−θ(x,bfi)−a
.

The bits being 1 in Bfaddress(x) of bfi(linkj) includes
those bits being 1 in bfi and other bits set to 1 after throwing
α(linkj) balls into bfi. Therefore, the number of this kind of
bits is a discrete random variable, denoted as Vi. Its possible
values range from θ(x, bfi) to k. The probability that Vi=v is
equivalent to the probability that Qi=v−θ(x, bfi), and is
(

k − θ(x, bfi)
v − θ(x, bfi)

)
· P (

E
α(linkj)
=1

)v−θ(x,bfi) · P (
E

α(linkj)
=0

)k−v
.

(10)
Thus proved.

(a) Valid weak state routing. (b) Invalid weak state routing.

Fig. 1. Illustrative examples of weak state routing.

According to the first design criterion presented in Section
I, we must ensure that the value of metric θ(x, bfi(linkj))
increases with the decreasing i as θ(x, bfi) does. As shown in
Fig.1(a), the value of metric θ(x, bfi(linkj)) should increase
along a path E→C→B→A. This issue dominates the feasibil-
ity of the weak state routing scheme using Bloom filters. The
metric is a function of i and α(linkj), but not a monotonic
decreasing function of i because α(linkj) is a discrete random
variable with an uncertain distribution. Under a reasonable
constraint on α(linkj), we derive Theorem 1.

Theorem 1: Given an item x represented by a bf , consider
two nodes receiving bfi and bfi+1 through linkj and link

′
j ,

respectively. The expectation of θ(x, bfi(linkj)) decreases as
the value of i increases if β(linkj) ≈ β(link

′
j) and h0 ≤ i <

h0 + h1, irrespective the exponential or linear decay model.
Proof: After i rounds of decay, bf becomes a new version

bfi, the number of membership information of x becomes
θ(x, bfi) from θ(x, bfi), and θ(x, bf)−θ(x, bfi) bits being
1 in bf are reset to 0 in bfi. For the linear decay model,
Formula 7 shows that the value of metric θ(x, bfi) decreases
as the decay hop i increases. To construct bfi(linkj), number
of α(linkj) balls are thrown into the m bits of bfi. The
probability that any bit in the m bits is hit by at least one
ball is 1 − (1 − 1/m)α(linkj). Therefore, the number of bits
which belongs to those θ(x, bf)−θ(x, bfi) bits and are hit is

f1 =
(
θ(x, bf)− θ(x, bfi)

) · (1−(1−1/m)α(linkj)
)
.

Actually, the number of f1 bits and remainder bits being 1 in
Bfaddress(x) of bfi represent the membership information
of x in bfi(linkj). Hence, we can infer that

E(x, bfi(linkj)) = θ(x, bfi)+(
θ(x, bf)− θ(x, bfi)

) · (1− (1− 1/m)α(linkj)
)
.(11)

Note that α(linkj) = β(linkj)−θ(bfi) and α(link
′
j) =

β(link
′
j)−θ(bfi+1). The difference between θ(bfi) and

θ(bfi+1) is trivial by comparing to β(linkj) or β(link
′
j).

Therefore the component (1 − (1 − 1/m)α(linkj) in Formula
11 becomes a constant factor since β(linkj) ≈ β(link

′
j), and

can be denoted as 0<g<1. Formula 11 can be expressed as

E
(
θ(x, bfi(linkj))

)
= (1− g)× θ(x, bfi) + g × θ(x, bf).

It is clear that E
(
θ(x, bfi(linkj))

)
and θ(x, bfi) are mono-

tonic decreasing functions of i if h0 ≤ i ≤ h0 + h1. Thus,
Theorem 1 holds in the case of the linear decay model. For the
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TABLE I
SUMMARY OF MAIN NOTATIONS

Term Definition

X a set represented by a bf
m number of counters of a bf
n cardinality of a set
k number of hash functions used by a bf
Bfaddress(x) bits of hi(x) for 1 ≤ i ≤ k
fp number of incorrect item deletions
d decay factor
h decay range (transmission range) of a bf
c average node degree of a given network
bfi a bf resulted from the ith round decay of a bf
θ(bfi) number of bits set to 1 in bfi

θ(x, bfi) amount of information in bfi for x ∈ X
|linkj | number of bfs a node receives through linkj

bf(linkj) union of |linkj | decay bfs through linkj

bfi(linkj) bf(linkj) at a node receiving bfi through linkj

θ(x, bfi(linkj)) amount of information in bfi(linkj) for x ∈ X
Ez

=i a bit is set to i after throwing z balls into a bf
p0 fraction of bits set to zero in a bf
p1 fraction of bits set to one in a bf
Y noise strength about x ∈ X at unrelated links
σ minimum probability of a valid multi-hop routing

exponential decay model, we first achieve the expectation of
θ(x, bfi) according to Corollary 1, and replace θ(x, bfi) with
E

(
θ(x, bfi)

)
in Formula 11. For the same reason, Theorem 1

also holds for the exponential decay model. Thus proved.

D. Effect of noise on routing decisions

For the weak state routing scheme, a node receiving a query
for an item x selects linkj so that the amount of membership
information of x in bfi(linkj) is the largest one comparing to
others. In other words, the node receiving bfi through linkj

will send the query over linkj if x belongs to a set represented
by the bf and the noise at other links are trivial. It is the
second design criterion mentioned in Section I. In practice, we
observe that the assumption about the noise does not usually
hold. To address this issue, we measure the strength of noise
and evaluate its impact on weak state routing decisions.

Given an item x represented by a bf and a node A receiving
bfi through its link linkj , let θ(x, bfi(link

′
j)) denote the

amount of information of x in a routing entry bfi(link
′
j)

at another link link
′
j . If node A did not receive a decayed

version of bf through the link link
′
j , θ(x, bfi(link

′
j)) denotes

the strength of noise on the information of x at that link, and
is a discrete random variable, denoted as Y . Its possible value,
denoted as u, is an integer ranging from 0 to k. The probability
mass function of Y is defined as

P (Y = u) =
(

k

u

)
pu
1pk−u

0 . (12)

Recall that Vi=θ(x, bfi(linkj)) denotes the amount of
information of x in bfi(linkj) at node A and is a discrete
random variable whose possible value, denoted as v, is an
integer ranging from 0 to k. The probability mass function
of Vi is given by Formulas 9 and 10 for the exponential and
linear decay models, respectively. Before a query for an item x
enters the decay range of a destination node, a routing decision
is made randomly. As shown in Fig.1, all routing decisions

along a path K→H→G→E are made randomly. Otherwise, a
routing decision is made according to the following strategies.

1) The value of θ(x, bfi(link
′
j)) is less than v for any other

link
′
j , so that node A can distinguish linkj from others

and forward the query for x through linkj . This is called
an unicast strategy of weak state routing. For example,
a query towards node A is only forwarded to node C
by node E, as shown in Fig.1(a).

2) The value of θ(x, bfi(link
′
j)) is equal to v for some

links, however, is less than v for others. In this condition,
node A cannot distinguish linkj from other links link

′
j

where θ(x, bfi(link
′
j))=v, and hence forwards the query

through linkj and such links together. This is called a
multicast strategy of weak state routing. For example,
a query towards to node A is forwarded to node B as
well as node D by node C, as shown in Fig.1(a).

3) The value of θ(x, bfi(link
′
j)) is larger than v for a link

or links except linkj . The strength of noise about x
at such links is higher than the strength of information
about x at linkj . Therefore, the query will be wrongly
forwarded to a link or links except linkj . This is called
an invalid strategy of weak state routing. For example, a
query towards to node A is wrongly forwarded to node
D by node C, as shown in Fig.1(b).

We will prove the probability of each aforementioned de-
cision in theory once a query enters the propagation field of
a destination. Note that each node has c links averagely and
each is associated with a Bloom filter as its routing entry.

Theorem 2: A node forwards a query for an item x using
the unicast strategy if it receives bfi from a destination of the
query. The probability of this event is given by Formula 13.

Proof: Recall that the information of x in the Bloom filter
associated with linkj through which current node receives bfi

is a discrete random variable, denoted as Vi. Its probability
mass function has been given by Formulas 9 and 10, depending
on the decay model. For any possible value v of Vi where
0 ≤ v ≤ k, consider an event that the information of x in the
Bloom filter associated with another link is less than v. The
probability of this event is given by

∑v−1
u=0 P (Y =u). Further,

we consider an event that the information of x in the Bloom
filter associated with each link except linkj and the link the
query came from is less than v. The probability of this event is
given by (

∑v−1
u=0 P (Y = u))c−2. Thus, the probability that the

query is forwarded using the unicast strategy can be calculated
by

funicast(Vi)=
∑k

v=1
P (Vi=v) ·

( ∑v−1

u=0
P (Y =u)

)c−2

. (13)

Thus proved.
Theorem 3: A node forwards a query for an item x using

the multicast strategy if it receives bfi from the destination.
The probability of this event is given by Formula 15.

Proof: Recall that the information of x in the Bloom filter
associated with linkj through which current node receives bfi

from the destination is a discrete random variable, denoted as
Vi. Its probability mass function has been given by Formulas
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9 and 10, depending on the decay model. For any possible
value v of Vi where 0 ≤ v ≤ k, consider an event that the
information of x in the Bloom filter associated with another
link is less than or equal to v. The probability of this event
is given by

∑v
u=0 P (Y =u). Further, let us consider an event

that the information of x in the Bloom filter associated with
each link except linkj and the link the query came from is
less than or equal to v. The probability of this event is given
by (

∑v
u=0 P (Y =u))c−2. Thus, the probability that the query

can be forwarded successfully using the unicast or multicast
strategy can be calculated by

fvalid(Vi)=
∑k

v=1
P (Vi=v) ·

( ∑v

u=0
P (Y =u)

)c−2

. (14)

The probability that the query is forwarded using the unicast
strategy has been given by Formula 13. Therefore, we can infer
that the probability of the event defined in this theorem is the
difference between Formulas 14 and 13, that is

fmulticast(Vi) = fvalid(Vi)− funicast(Vi). (15)

Thus proved.
Theorem 4: A node forwards a query for an item x using

the invalid strategy if it receives bfi from the destination. The
probability of this event is given by Formula 16.

Proof: As discussed above, the probability that queries
for x are forwarded successfully according to the unicast or
multicast strategy is given by Formula 14. It is easy to infer
that the probability of the event defined in this theorem is

finvalid(Vi) = 1− fvalid(Vi). (16)

Thus proved.

III. FEASIBILITY OF WEAK STATE ROUTING BASED ON
DECAY BLOOM FILTERS

We first derive the necessary and sufficient condition for
a feasible weak state routing based on decay Bloom filters.
We then devise a novel receiver-oriented approach for Bloom
filters to enable the weak state routing, and address redundant
queries and the transmission optimization of Bloom filters.

A. Feasible weak state routing scheme with high probability

In Section II-D, we have discussed the conditions of unicast,
multicast, and invalid routing strategies. Only one of such
strategies will be chosen to deal with a query at each node.
Theorems 2, 3, and 4 have proved the probability that each
strategy is chosen. Among the three strategies, the unicast is a
valid and desired weak state routing scheme. In this strategy,
a query for an item x is only biased at an intermediate node
which receives a decay Bloom filter from the destination and is
closer to the destination than current node. The benefit of the
unicast strategy is that it can ensure the correctness of routing
whereas does not produce redundant queries (forwarding a
query to additional intermediate nodes). The multicast is
another valid weak state routing scheme at the cost of sending
a query to some neighbors which do not receive a decay Bloom
filter from the destination. A weak state routing decision is

valid if it ensures an unicast or a multicast routing decision
by preventing an invalid decision at nodes which reside within
the decay range of the destination.

Note that the weak state routing based on decay Bloom fil-
ters is essentially a probabilistic routing. Thus, it is impossible
and there is no need to achieve an absolutely valid routing
decision for each query. What we need is a valid weak state
routing decision for any query with a high probability. For
any query, we can infer from Theorem 3 that the node which
received bfi from the destination of the query can make a
valid weak state routing decision with probability fvalid(Vi),
and an unicast routing decision with probability funicast(Vi).

So far, we consider the valid weak state routing decision in
the scenario of one hop transmission of queries. In practice,
only potential destinations of a very few queries reside one hop
away from the sources of queries. Thus, we consider a general
scenario in which a query traverses multiple intermediate
nodes along a multi-hop path before it reaches its destination.
In this scenario, a query can be sent to its destination with high
probability only if each intermediate node achieves a valid
routing decision for the query with high probability.

Definition 4: (Weak state routing for multi-hop queries)
Given a multi-hop query, a valid routing can ensure that the
query is sent to its destination by a sequence of valid routing
decisions made at intermediate nodes once it enters the decay
range of its destination. An unicast routing for the query
requires all unicast routing decisions at intermediate nodes. An
invalid routing for the query means that the routing decision at
any intermediate node is invalid. Figures 1(a) and 1(b) plot a
valid and an invalid routing for a multi-hop query, respectively.

Let σ denote a lower bound, depending on applications, on
the probability that each query is sent to its destination by
a valid routing scheme. According to Theorems 2 and 3, we
can infer that the necessary and sufficient condition of a valid
weak state routing scheme for a query is

∏h

i=1
fvalid(Vi) ≥ σ. (17)

If we further seek all unicast routing decisions, the necessary
and sufficient condition should be

∏h

i=1
funicast(Vi) ≥ σ. (18)

Recall that the expectation value of the metric
θ(x, bfi(linkj)) decreases as the value of i increases as
shown in Theorem 1. It is easy to infer that

P (Vi=v) > P (Vi+1=v) for θ(x, bfi) ≤ v ≤ k, 1 ≤ i < h.

On the other hand, the noise distribution is similar in Bloom
filters associated with neighbor links at each node. In sum-
mary, for any query,

funicast(Vi) > funicast(Vi+1) and
fvalid(Vi) > fvalid(Vi+1).

By now, Formulas 17 and 18 become Formulas 19 and 20,
respectively, if we replace funicast(Vi) and fvalid(Vi) with
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funicast(Vh) and fvalid(Vh), respectively.
(
fvalid(Vh)

)h ≥ σ. (19)

(
funicast(Vh)

)h ≥ σ. (20)

In the remainder of this paper, we will use inequation (19)
or (20) to instruct the optimization of Bloom filters.

B. Receiver-oriented optimization of Bloom filters

In many distributed applications, all nodes are required to
adopt the same configuration of m, k, and hash functions
in order to guarantee the compatibility and inter-operability
of Bloom filters. In this work, the union operation of decay
Bloom filters requires the same configuration between all
Bloom filters. Thus, the initial and decay Bloom filters of
each node should adopt the same configuration, and so does
the joint Bloom filter associated with each link. Many efforts
have been made to optimize Bloom filters in stand-alone
applications [16], [17] and distributed [15], [18] applications
from the aspect of transmitter.

Such efforts, however, cannot address the fact that each node
uses the union of all received decay Bloom filters through
a link as a routing entry of that link. Although the fraction
of bits set to one in each single Bloom filter might be low,
that in each routing entry becomes high due to the union of
many decay Bloom filters. Thus, given a query for any item
at an arbitrary node, the noise about the item in unrelated
routing entries is very likely equal to even stronger than the
useful information in the right routing entries. Neither the
design approach of Bloom filters in stand-alone applications
nor the traditional transmitter-oriented optimization approach
in distributed applications can be used in scenarios of the weak
state routing. To address this issue, we optimize Bloom filters
from the aspect of receiver, called Wader. The basic idea is
to derive the optimal configuration of each single Bloom filter
under the constraint of inequation (19) or (20).

Besides the well-known metrics of Bloom filters (the num-
ber of items n, the size of Bloom filter m, and the number of
hash functions k), the decay factor d and decay range h are
two additional dependent factors which impose constraints on
inequations (19) and (20).

Based on a given decay model with parameters d and h, we
first calculate θ(bf) and θ(bfi) according to Formulas 1, 2 and
3 for 1 ≤ i ≤ h. Note that θ(bf) is a function of variables m,
n, and k, whereas θ(bfi) is a function of variables m, n, k,
and d. We then estimate the value of p1 in each joint Bloom
filter according to Formula 5, and finally obtain the distribution
of noise strength at each neighbor link based on Formula 12.
Note that p1 is a function of variables m, n, k, d, and h.
Similarly, According to Formulas 9 and 10, we can achieve
the distribution of information of any item x in a joint Bloom
filter associated with a link through which a decay Bloom filter
is received from a destination. We calculate the probability of
an unicast and a valid weak state routing decision by Formulas
13 and 14 which are functions of m, n, k, d, and h. Finally,

inequation (19) or (20) is used to restrict the value of m, n,
k, d, and h under a constraint of the lower bound σ.

The parameters n, d and h should be assigned appropriate
values based on the topological properties, item distribution
over nodes, query distribution over nodes, and query distribu-
tion over items. As many efforts have been done to measure
the topological properties and investigate the item distribution
and query distribution, depending on applications. Thus, it is
reasonable to assume that we are given n, d and h. In this case,
inequations (19) and (20) depend merely on parameters m and
k, and hence we can optimize the number of hash functions k
to maximize funicast(Vh) and fvalid(Vh) such that inequation
(19) and (20) can be satisfied with m as small as possible.
It is well-known that a single Bloom filter is traditionally
optimal when k=(m/n) ln 2. Such an optimal result, however,
cannot ensure an optimal joint Bloom filter. After optimizing
funicast(Vh) or fvalid(Vh), we can calculate the optimal value
of m and k by solving inequation (19) or (20), respectively.

C. Terminating redundant queries

Given a multi-hop query, the optimal m and k for the joint
Bloom filter which ensures inequation (19) are not necessary
to guarantee inequation (20) since funicast(Vi) < fvalid(Vi)
under the same m and k. Therefore, the joint Bloom filter for
the unicast routing always consumes more bits than that for the
valid routing. The advantage of the unicast routing is that the
query does not traverse any nodes which do not participate the
routing path, and hence does not create any redundant query. In
contrast, the valid routing consumes less bits than the unicast
routing, however, usually produces redundant queries due to
the potential use of multicast routing decision. Those replicas
are sent along other paths deviating from the destination, and
are redundant. Here, we first examine the number of redundant
queries, and then tackle those redundant queries.

In the case of a multicast routing decision for a query at
a node receiving bfi, let Si denote the number of neighbors
to which the query is forwarded by the current node, except
the neighbor receiving a bfi−1. On the other hand, the query
cannot be sent back to the neighbor it came from. In words, Si

measures the number of redundant queries produced by routing
a query at a node which resides within the decay range of a
destination. A multicast routing decision occurs if the query is
sent to at least one of the remainder c−2 neighbors. Therefore,
Si is a discrete random variable. Its possible values, denoted
as s, are integers ranging from 0 to c− 2.

Theorem 5: In the case of a multicast routing decision of
a query for an item x, the probability mass function of Si is
given by Formula 21.

Proof: Recall that the information of x in the Bloom filter
associated with linkj through which current node receives bfi

is a discrete random variable, denoted as Vi. Its probability
mass function has been given by Formulas 9 and 10, depending
on the decay model. For any possible value v of Vi where
0 ≤ v ≤ k, consider an event that the information of x in the
Bloom filter associated with one link except linkj is less than
v. The probability of this event is given by

∑v−1
u=0 P (Y =u).
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For any possible value v of Vi, the event Si=s means that
the information of x in Bloom filters associated with s links
among the c−2 links is equal to v, whereas that in Bloom
filters associated with the other c−2−s links is less than v.
The probability of Si under a given v of Vi is given by

(
c− 2

s

)
P (Vi=v) · P (Y =v)s · (

∑v−1

u=0
P (Y =u)

)c−2−s
,

and that under all possible values of Vi is given by

Pm(Si=s) =
(

c− 2
s

) k∑
v=1

P (Vi=v) · P (Y =v)s ·
( ∑v−1

u=0
P (Y =u)

)c−2−s
(21)

Thus proved.
So far, we only consider the event Si caused by a multicast

routing decision. Actually, such Si might also occur under an
invalid routing decision. That is, multiple links except linkj

have the highest information of x in their routing entries, and
hence the query are wrongly forwarded to such links except
linkj . We will discuss the probability mass function of Si

under an invalid routing decision in Theorem 6.
Theorem 6: In the case of an invalid routing decision of a

query for an item x, the probability mass function of Si is
given by Formula 22.

Proof: For any possible value v of Vi where 0 ≤ v ≤ k,
let consider the event that s of the c−2 links (not including the
link the query came from and the link linkj) have the highest
information of x in their routing entries. The probability of
this event under a given v of Vi is given by
(

c− 2
s

)
P (Vi=v) ·

k∑
u=v+1

(
P (Y =u)s ·(

u−1∑
r=0

P (Y =r)
)c−s−2

)
,

and that under all possible values of Vi is given by

Pi(Si=s) =
(

c− 2
s

) k∑
v=0

P (Vi=v) ·
k∑

u=v+1

(
P (Y =u)s ·

( u−1∑
r=0

P (Y =r)
)c−s−2

)
. (22)

Thus proved.
We further consider Si in the case of a weak state routing

decision which covers the two independent cases we discussed
in Theorems 5 and 6, respectively. In this case, the probability
mass function and expectation value of Si are given by

P (Si = s) = Pm(Si = s) + Pi(Si = s) and

E[Si] =
∑c−2

s=1
s · P (Si = s).

So far, we only consider the variable Si in the scenario of
one hop transmission of a query from a node receiving bfi to
a node receiving a bfi−1. Here, we consider a general query
whose source node is out of the decay region of its nearest
destination. In this case, the query suffers number of h one-
hop transmissions in the decay region of the destination, and

causes number of E[Si] redundant queries due to a routing
decision for each transmission. The average number of such
kind of redundant queries caused by a multi-hop query after
it enters the decay range of its destination is given by

∑h

i=1

∑c−2

s=1
s · P (Si = s). (23)

Nodes receiving such kind of redundant queries take ad-
ditional computations for making decisions on routing those
queries. Although each query only produces a very few redun-
dant queries before reaching a destination as given by Formula
23, these replicas can incur non-trivial negative impact if
they keep on propagating in the network. Fortunately, we find
that such redundant queries can be terminated after their first
transmissions with high probability as shown in Theorem 7.

Theorem 7: Given a weak state routing decision of a query
for an item x at an arbitrary node, receivers of Si resulting
redundant queries stop forwarding such queries with high
probability as given by Formula 24.

Proof: Recall that Vi is a discrete random variable, and
denotes the information of x in the Bloom filter associated
with linkj through which node C receives bfi from a desti-
nation node A, as shown in Fig.1. For any neighbor node D
which does not receives a bfi−1 from node A, let Ei denote
an event that node D receives a redundant query from node
C. Let Ei

v denote an event that node C forwards a redundant
query to node D since the noise strength at the link C→D is
at least the same as a value v of Vi.

The probability of the event Ei
v and Ei is given by

P (Ei
v) = P (Vi=v) ·

∑k

u=v
P (Y =u) and

P (Ei) =
∑k

v=0

(
P (Vi=v) ·

∑k

u=v
P (Y =u)

)
.

Thus, it is easy to infer the conditional probability of Ei
v

given Ei is given by

P (Ei
v|Ei) = P (Ei

v)/P (Ei).

For any possible value v of Vi where 0 ≤ v ≤ k, consider an
event that the information of x in the Bloom filter associated
with each link is less than v at node D, except the link through
which a redundant query came from. This event means that
the weak state routing scheme fails to find a neighbor of node
D which holds higher level of information about x than v,
and hence node D cannot keep on forwarding the query. The
probability of this event under all possible values of Vi is

∑k

v=1
P (Ei

v|Ei) ·
( ∑v−1

u=0
P (Y =u)

)c−1

. (24)

Thus proved.

D. Optimizing transmission of Bloom filters

In the case of receiver-oriented design, the size of Bloom
filter of each node is optimal to support a valid weak state
routing with high probability. However, the size might be too
large to represent items hosted by each node. On the other
hand, a Bloom filter created by each node must be delivered
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Fig. 2. Probability mass functions of θ(x, bfi), θ(x, bfi(link)) and noise,
where m = 60000, n = 100, k = 16, d = 1.2, and h = 5.

to other nodes as messages in order to establish a routing
entry for each link at each node. In this case, the transmission
size becomes a critical factor. To reduce message traffic, we
compress each Bloom filter. Thus, besides the three well-
known metrics, the transmission size corresponding to the size
of Bloom filter after compression is another important metric.

The authors [19] show that the uncompressed Bloom filter,
which is optimized for k = (m/n) ln 2 cannot gain anything.
The reason is that under good random hash functions, each
bit of Bloom filter is 0 or 1 independently with probability
1/2. The Bloom filter which is optimized by receiver-oriented
approach can achieve high compression gain. The reason is
that under the same assumption about hash functions, each bit
in joint Bloom filter is 1 with a lower probability than 1/2,
that is p1 << 1/2. In theory, a m bits Bloom filter can be
compressed down to only mH(p1) bits, where

H(p1) = −p1 log2 p1 − (1− p1) log2(1− p1)

is the entropy function. The arithmetic coding is a near-optimal
compressor which requires m(H(p1) + ε) bits for any ε > 0.
The primary point of this theoretical analysis is to demonstrate
that compression is a viable means to significantly reduce
transmission size and save bandwidth. The cost is additional
computation for compression and decompression, which can
be implemented by using simple arithmetic coding.

IV. PERFORMANCE EVALUATIONS

We evaluate the performance of Wader and demonstrate
that only the receiver-oriented Bloom filters can guarantee
the feasibility of the weak state routing. The settings in the
simulations are as follow. We generate a random network
topology in which the node degree ranges from 3 to 7 and
the average node degree is c=5. The average number of items
hosted by each node is n=100. All Bloom filters are decayed
from the first round of propagation. That is, h0=0. For a large
h0, we have to enlarge the value of m to satisfy the same lower
bound σ, which results in unnecessarily higher space cost. We
have carried out simulations under both the exponential decay
model and the linear decay model, and have obtained similar
results. Due to the page limit, we only report the results under
the exponential decay model.
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Fig. 3. Effect of the parameters k and d on the probability of an unicast
routing and a valid routing, where m=60000, n=100, and h = 5.

A. Effect of decaying operation on membership information

Assume the decay factor is set to be d=1.2 and the decay
range is set to be h=5, depending on a given application.
Then, we can derive that an optimal number of bits for each
Bloom filter is m=60000 and the number of hash functions
is k=16 from the aspect of receiver. Note that the optimal
number of hash functions is about 416 from the aspect of
transceiver if we use the known formula, k=m/n ln 2. Given
a bf which represents a set X , we have analyzed the amount
of information of any item x ∈ X in a decay version of bf
in Lemma 2. The possible values of θ(x, bfi) are integers
ranging from 0 to k=16. Fig.2(a) shows the probability mass
function of θ(x, bfi) for 1≤i≤5 and noise. The results match
well with Formula 8. As we can see from the figure, when
the possible value increases, the probabilities of θ(x, bfi) first
goes up and then goes down for 1≤i≤5. On the other hand,
the probabilities of θ(x, bfi) for the large possible values
decrease as the value of i increases, whereas that for those
small possible values increase as the value of i increases. The
experimental results exactly conform to the analytical results.

Recall that θ(x, bfi) is not accurate enough to support a
weak state routing scheme since each node uses the union
of all received Bloom filters through the same link as a
routing entry for that link. As shown in Lemmas 3 and 4,
we replace θ(x, bfi) with θ(x, bfi(linkj)) to characterize the
amount of information of x in a joint Bloom filter bfi(linkj)
at the node which receives bfi through linkj . Fig.2(b) shows
the probability mass functions of noise and θ(x, bfi(linkj)).
Recall that the noise means the amount of information of
x in a Bloom filter associated with unrelated links except
linkj . The simulation results follow a similar trend as the
theoretical results given by Formula 9. As we can see from
the figure, when the possible value increases, the probabil-
ities of θ(x, bfi(linkj)) first goes up and then goes down
where 1≤i≤5. On the other hand, the probabilities of the
θ(x, bfi(linkj)) for the large possible values decrease as the
value of i increases, whereas that for those small possible
values increase as the value of i increases.

Fig.2(b) also shows that the expectation of θ(x, bfi(linkj))
decreases as the decay hop i increases, and thus the first
design criterion proposed in Section I is satisfied by Wader.
In addition, the expectation of θ(x, bfi(linkj)) is larger than
that of noise for 1≤i≤h. This reveals the reason why a node

9



1 2 3 4 5
0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

Decay hops

P
ro

b
a

b
il
it
y

Theory

Experiment

(a) Unicast decision

1 2 3 4 5
0

0.005

0.01

0.015

0.02

0.025

0.03

Decay hops

P
ro

b
a

b
il
it
y

Theory

Experiment

(b) Multicast decision

1 2 3 4 5
0.98

0.985

0.99

0.995

1

Decay hops

P
ro

b
a
b
il
it
y

Experiment

Theory

(c) Valid decision

1 2 3 4 5
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

Decay hops

P
ro

b
a

b
il
it
y

Theory

Experiment

(d) Invalid decision

Fig. 4. Probability of four types of routing decisions, where m = 60000, n = 100, k = 16, d = 1.2, and h = 5.

holding bfi can forward a query for an item x to a node
holding a bfi−1 with high probability, and thus satisfy the
second design criterion proposed in Section I. On the other
hand, the simulation results conform to Theorem 1 in terms
of the expectation value of θ(x, bfi(linkj)) for 1≤i≤h.

B. Receiver-oriented optimization of Bloom filters

Now we examine the effect of the parameters k and d on the
probability that each query is sent to its destination through
an unicast routing or a valid routing. As shown in Fig.3(a),
given a fixed m and d=1.2, k is the only dependent factor of
all four curves which follow a similar trend. They first ascend
as k increases and quickly reach the peak, and then descend
as k increases. The reason is that θ(x, bfi(link)) and noise
strength increase for any x and 1 ≤ i ≤ h as k increases, and
θ(x, bfi(link)) is more likely higher than the noise relatively.
As discussed in Section III-B, inequations (19) and (20) are the
benchmarks to optimize the parameters of Bloom filters. Given
a lower bound σ on the probability of an unicast routing or a
valid routing for each query, we can find the optimal value of
k under each scenario. Similarly, we can achieve the optimal
k under varying value of m, and can finally find the global
optimal k and m. The simulation results are omitted due to
limited space.

As shown in Fig.3(b), given a fixed m and k=16, the
probability of an unicast routing for any query decreases as
the decay factor d increases in theory, and reaches almost
zero after the decay factor exceeds a threshold. The reason is
that θ(x, bfi(link)) and noise strength decrease as the decay
factor increases for ∀x ∈ X and 1 ≤ i ≤ h, and the noise
strength is more likely higher than θ(x, bfi(link)). We can
also see that the probability of the valid routing first decreases,
and then increases as the decay factor increases. It is worth
noticing that a small decay factor should be adopted in order
to ensure the unicast routing with high probability, although a
large decay factor can always guarantee the valid routing with
high probability. For a large decay factor, we have to enlarge
the value of k in order to satisfy the same lower bound σ,
which results in unnecessarily higher computation cost.

C. Impact of noise on a weak state routing decision

We examine the impact of noise on a weak state routing
decision when each node adopts an optimal Bloom filters

based on Wader. A weak state routing decision for a single-
hop query can be valid (unicast or multicast) or invalid under
the interference of noise in unrelated links once the query
enters the decay range of a destination. The probabilities of
the aforementioned routing decisions have been proved in
Theorems 2, 3 and 4. Fig.4 shows the probabilities of those
routing decisions from aspect of both theory and practice.

We can see that the probability of an unicast routing deci-
sion decreases with the increasing of the decay hop, whereas
the probability of a multicast routing decision increases with
the increasing decay hop. The reason is that the expectation
value of metric θ(x, bfi(linkj)) decreases as the decay hop
increases. Thus, the noise strength is more likely higher than
θ(x, bfi(linkj)), and queries might suffer invalid or multicast
routing decision. Fig.4(c) shows that the probability of a valid
routing decision decreases as the decay hop increases. The
reason is that the negative effect of decreasing unicast routing
decision outperforms the positive effect of increasing multicast
routing decision. Fig.4(d) shows that the probability of an
invalid routing decision increases as the decay hop increases.

It is worth noticing that the probabilities of the unicast
and valid decisions for routing a single-hop query is high
for 1≤i≤h. Thus, a multi-hop query can reach a destination
through a sequence of valid even unicast routing decisions
with high probability. As shown in Fig.4, the curve of practical
probability follows the same trend as the curve of the theoreti-
cal probability for each type of routing decision. The practical
probability, however, is larger than the theoretical value for
the unicast and valid routing decisions. This demonstrates that
Formulas 13 and 14 provide lower bounds on the probabilities
of the unicast and valid routing decisions, respectively. In ad-
dition, Wader achieves lower probabilities of the multicast and
invalid routing decisions than the corresponding upper bounds
given by Formulas 15 and 16. In summary, the theoretical
and practical results demonstrate that Wader guarantees the
correctness and efficiency of weak state routing for multi-hop
queries with high probability.

D. Termination of redundant queries

A node possibly suffers the multicast or invalid decision,
and then sends very few redundant queries (according to
Formula 23), to neighbors which deviate from the potential
destination. We have proved the probability that such queries
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Fig. 5. Number of redundant queries and the probability that they will be
terminated by receivers, where m=60000, n=100, k=16, d=1.2, and h=5.

can be terminated by receivers with high probability in Theo-
rem 7. As shown in Fig.5(a), the average number of redundant
queries caused by routing one query increases as the decay hop
increases in both theory and practice. As shown in Fig.5(b), the
termination probability of those redundant queries by receivers
decreases as the decay hop increases in theory as well as in
practice, but the termination probability still remains at a high
level in theory as well as in practice. Note that the simulation
results outperform the theoretical results. Formula 23 provides
an upper bound on the number of redundant queries resulted
from routing any query at an arbitrary node. Formula 24
provides a lower bound on the termination probability of any
redundant query by an arbitrary receiver. In summary, the
practical results of Wader conform to the theoretical analysis,
and thus the negative effect of redundant queries can be
controlled at a low level. This is very helpful to ensure the
feasibility and usability of the weak state routing.

E. Performance of the current weak state routing schemes

We examine the impact of noise on a weak state routing
decision when each node adopts a transmitter-oriented Bloom
filter. Let fp denote an upper bound on the false positive
probability of the Bloom filter. Given fp and n, k and m
could be optimized with m=dn × log(fp)/ log(0.6185)e and
k=d(m/n) ln 2e [20]. Fig.6 shows that the probability of a
valid routing and the flooding ratio of a query are very close
to 1 at any node, including the source node of the query, when
fp ranges from 10−10 to 10−3. The flooding ratio of a query
at any node means the ratio of the number of query replicas
caused by this node to the node degree minus one. In these
cases, the ratio of bits set 1 in each routing entry is very close
to 1. Thus, the noise in all unrelated routing entries and the
useful information in right routing entries approximate to k.
We have analyzed the root cause of this result in Section III-B.

Consequently, each node almost forwards a query replica
to all neighbors expect the one the query comes from. The
message complexity of the current weak state routing schemes
is O(n) while that of Wader is O(logn), where n and logn
denote the network size and approximate network diameter.
Actually, the current weak state routing schemes are equivalent
to the well-known flooding approach due to the usage of
transmitter-oriented Bloom filters. It is worth noticing that the
termination rules of redundant queries mentioned in Section
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Fig. 6. Probability of valid decision and flooding ratio at any node, where
m=60000, n=100, k=16, d=1.2, and h=5.

III-C are not invoked since it can terminate all query replicas.

V. CONCLUSION

In this paper, we observe that the existing weak state
routing schemes cannot facilitate queries effectively because
of wrong routing decisions. The queries are often routed
towards nodes that don’t have the required items. In such
cases, weak state routing is downgraded to network flooding,
which incurs excessive traffic but achieves extremely low
efficiency. To address this problem, we derive the necessary
and sufficient condition for a feasible weak state routing
scheme, and accordingly propose a receiver-oriented approach
of Bloom filters to satisfy the condition. The simulation results
demonstrate that Wader ensures the correctness and efficiency
of weak state routing using decay Bloom filters with high
probability.

Following this work, we will extend it in several potential
directions. First, we plan to evaluate the impact of network
configurations on Wader, such as the topological properties,
data distribution over nodes, and query distribution. Second,
let each node monitor and control the fraction of 0 bits in
each routing entry in order to make Wader adaptive to varying
network configurations. Third, we will improve the efficiency
of routing that is outside the decay region of a destination, by
using a random replication mechanism and taking multi-path
routing into account.
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